1
|
Khan N, Aslan H, Büttner H, Rohde H, Golbek TW, Roeters SJ, Woutersen S, Weidner T, Meyer RL. The giant staphylococcal protein Embp facilitates colonization of surfaces through Velcro-like attachment to fibrillated fibronectin. eLife 2022; 11:76164. [PMID: 35796649 PMCID: PMC9302970 DOI: 10.7554/elife.76164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus epidermidis causes some of the most hard-to-treat clinical infections by forming biofilms: Multicellular communities of bacteria encased in a protective matrix, supporting immune evasion and tolerance against antibiotics. Biofilms occur most commonly on medical implants, and a key event in implant colonization is the robust adherence to the surface, facilitated by interactions between bacterial surface proteins and host matrix components. S. epidermidis is equipped with a giant adhesive protein, extracellular matrix-binding protein (Embp), which facilitates bacterial interactions with surface-deposited, but not soluble fibronectin. The structural basis behind this selective binding process has remained obscure. Using a suite of single-cell and single-molecule analysis techniques, we show that S. epidermidis is capable of such distinction because Embp binds specifically to fibrillated fibronectin on surfaces, while ignoring globular fibronectin in solution. S. epidermidis adherence is critically dependent on multivalent interactions involving 50 fibronectin-binding repeats of Embp. This unusual, Velcro-like interaction proved critical for colonization of surfaces under high flow, making this newly identified attachment mechanism particularly relevant for colonization of intravascular devices, such as prosthetic heart valves or vascular grafts. Other biofilm-forming pathogens, such as Staphylococcus aureus, express homologs of Embp and likely deploy the same mechanism for surface colonization. Our results may open for a novel direction in efforts to combat devastating, biofilm-associated infections, as the development of implant materials that steer the conformation of adsorbed proteins is a much more manageable task than avoiding protein adsorption altogether. A usually harmless bacterium called Staphylococcus epidermidis lives on human skin. Sometimes it makes its way into the bloodstream through a cut or surgical procedure, but it rarely causes blood infections. It can, however, cause severe infections when it attaches to the surface of a medical implant like a pacemaker or an artificial replacement joint. It does this by forming a colony of bacteria on the implant’s surface called a biofilm, which protects the bacteria from destruction by the immune system or antibiotics. Understanding how Staphylococcus epidermidis implant infections start is critical to preventing them. This information may help scientists develop infection-resistant implants or new treatments for implant infections. Scientists suspect that Staphylococcus epidermidis attaches to implants by binding to a human protein called fibronectin, which coats medical implants in the human body. Another protein on the surface of the bacteria, called Embp, facilitates the connection. But why the bacteria attach to fibronectin on implants, and not fibronectin molecules in the bloodstream, is unclear. Now, Khan, Aslan et al. show that Embp forms a Velcro-like bond with fibronectin on the surface of implants. In the experiments, Khan and Aslan et al. used powerful microscopes to create 3-dimensional images of the interactions between Embp and fibronectin. The experiments showed that Embp's attachment site is hidden on the globe-shaped form of fibronectin circulating in the blood. But when fibronectin covers an implant surface, it forms a fibrous network, and Embp can attach to it with up to 50 Velcro-like individual connections. These many weak connections form a strong bond that withstands the force of blood pumping past. The experiments show that the fibrous coating of fibronectin on implants makes them a hotspot for Staphylococcus epidermidis infections. Finding ways to block Embp from attaching to fibronectin on implants, or altering the form fibronectin takes on implants, may help prevent these infections. Many bacteria that form biofilms have an Embp-like protein. As a result, these discoveries may also help scientists develop prevention or treatment strategies for other bacterial biofilm infections.
Collapse
Affiliation(s)
- Nasar Khan
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Hüsnü Aslan
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Henning Büttner
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Sander Woutersen
- Van 't Hoff Institute of Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
2
|
Tsugita A, Uehara S, Matsui T, Yokoyama T, Ostash I, Deneka M, Yalamanchili S, Bennett CS, Tanaka Y, Ostash B. The carbohydrate tail of landomycin A is responsible for its interaction with the repressor protein LanK. FEBS J 2022; 289:6038-6057. [DOI: 10.1111/febs.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Atsushi Tsugita
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Shiro Uehara
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Takashi Matsui
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Takeshi Yokoyama
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Iryna Ostash
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| | - Maksym Deneka
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| | | | | | - Yoshikazu Tanaka
- Department of Molecular and Chemical Life Sciences Tohoku University Sendai Japan
| | - Bohdan Ostash
- Department of Genetics and Biotechnology Ivan Franko National University of Lviv Ukraine
| |
Collapse
|
3
|
Yan XF, Yang C, Wang M, Yong Y, Deng Y, Gao YG. Structural analyses of the AAA+ ATPase domain of the transcriptional regulator GtrR in the BDSF quorum-sensing system in Burkholderia cenocepacia. FEBS Lett 2022; 596:71-80. [PMID: 34837384 DOI: 10.1002/1873-3468.14244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/11/2022]
Abstract
Global transcriptional regulator downstream RpfR (GtrR) is a key downstream regulator for quorum-sensing signaling molecule cis-2-dodecenoic acid (BDSF). As a bacterial enhancer-binding protein (bEBP), GtrR is composed of an N-terminal receiver domain, a central ATPases associated with diverse cellular activities (AAA+) ATPase σ54 -interaction domain, and a C-terminal helix-turn-helix DNA-binding domain. In this work, we solved its AAA+ ATPase domain in both apo and GTP-bound forms. The structure revealed how GtrR specifically recognizes GTP. In addition, we also revealed that GtrR has moderate GTPase activity in vitro in the absence of its activation signal. Finally, we found the residues K170, D236, R311, and R357 in GtrR that are crucial to its biological function, any single mutation leading to completely abolishing GtrR activity.
Collapse
Affiliation(s)
- Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chunxi Yang
- Jiangxi provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yonlada Yong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Xie Y, Zhou F, Ma Q, Lu L, Miao Y. A teamwork promotion of formin-mediated actin nucleation by Bud6 and Aip5 in Saccharomyces cerevisiae. Mol Biol Cell 2021; 33:ar19. [PMID: 34818061 PMCID: PMC9236144 DOI: 10.1091/mbc.e21-06-0285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin nucleation is achieved by collaborative teamwork of actin nucleator factors (NFs) and nucleation-promoting factors (NPFs) into functional protein complexes. Selective inter- and intramolecular interactions between the nucleation complex constituents enable diverse modes of complex assembly in initiating actin polymerization on demand. Budding yeast has two formins, Bni1 and Bnr1, which are teamed up with different NPFs. However, the selective pairing between formin NFs and NPFs into the nucleation core for actin polymerization is not completely understood. By examining the functions and interactions of NPFs and NFs via biochemistry, genetics, and mathematical modeling approaches, we found that two NPFs, Aip5 and Bud6, showed joint teamwork effort with Bni1 and Bnr1, respectively, by interacting with the C-terminal intrinsically disordered region (IDR) of formin, in which two NPFs work together to promote formin-mediated actin nucleation. Although the C-terminal IDRs of Bni1 and Bnr1 are distinct in length, each formin IDR orchestrates the recruitment of Bud6 and Aip5 cooperatively by different positioning strategies to form a functional complex. Our study demonstrated the dynamic assembly of the actin nucleation complex by recruiting multiple partners in budding yeast, which may be a general feature for effective actin nucleation by formins.
Collapse
Affiliation(s)
- Ying Xie
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Feng Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
5
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Goh KJ, Ero R, Yan XF, Park JE, Kundukad B, Zheng J, Sze SK, Gao YG. Translational GTPase BipA Is Involved in the Maturation of a Large Subunit of Bacterial Ribosome at Suboptimal Temperature. Front Microbiol 2021; 12:686049. [PMID: 34326822 PMCID: PMC8313970 DOI: 10.3389/fmicb.2021.686049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
BPI-inducible protein A (BipA), a highly conserved paralog of the well-known translational GTPases LepA and EF-G, has been implicated in bacterial motility, cold shock, stress response, biofilm formation, and virulence. BipA binds to the aminoacyl-(A) site of the bacterial ribosome and establishes contacts with the functionally important regions of both subunits, implying a specific role relevant to the ribosome, such as functioning in ribosome biogenesis and/or conditional protein translation. When cultured at suboptimal temperatures, the Escherichia coli bipA genomic deletion strain (ΔbipA) exhibits defects in growth, swimming motility, and ribosome assembly, which can be complemented by a plasmid-borne bipA supplementation or suppressed by the genomic rluC deletion. Based on the growth curve, soft agar swimming assay, and sucrose gradient sedimentation analysis, mutation of the catalytic residue His78 rendered plasmid-borne bipA unable to complement its deletion phenotypes. Interestingly, truncation of the C-terminal loop of BipA exacerbates the aforementioned phenotypes, demonstrating the involvement of BipA in ribosome assembly or its function. Furthermore, tandem mass tag-mass spectrometry analysis of the ΔbipA strain proteome revealed upregulations of a number of proteins (e.g., DeaD, RNase R, CspA, RpoS, and ObgE) implicated in ribosome biogenesis and RNA metabolism, and these proteins were restored to wild-type levels by plasmid-borne bipA supplementation or the genomic rluC deletion, implying BipA involvement in RNA metabolism and ribosome biogenesis. We have also determined that BipA interacts with ribosome 50S precursor (pre-50S), suggesting its role in 50S maturation and ribosome biogenesis. Taken together, BipA demonstrates the characteristics of a bona fide 50S assembly factor in ribosome biogenesis.
Collapse
Affiliation(s)
- Kwok Jian Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jung-Eun Park
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Ero R, Yan XF, Gao YG. Ribosome Protection Proteins-"New" Players in the Global Arms Race with Antibiotic-Resistant Pathogens. Int J Mol Sci 2021; 22:5356. [PMID: 34069640 PMCID: PMC8161019 DOI: 10.3390/ijms22105356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/07/2023] Open
Abstract
Bacteria have evolved an array of mechanisms enabling them to resist the inhibitory effect of antibiotics, a significant proportion of which target the ribosome. Indeed, resistance mechanisms have been identified for nearly every antibiotic that is currently used in clinical practice. With the ever-increasing list of multi-drug-resistant pathogens and very few novel antibiotics in the pharmaceutical pipeline, treatable infections are likely to become life-threatening once again. Most of the prevalent resistance mechanisms are well understood and their clinical significance is recognized. In contrast, ribosome protection protein-mediated resistance has flown under the radar for a long time and has been considered a minor factor in the clinical setting. Not until the recent discovery of the ATP-binding cassette family F protein-mediated resistance in an extensive list of human pathogens has the significance of ribosome protection proteins been truly appreciated. Understanding the underlying resistance mechanism has the potential to guide the development of novel therapeutic approaches to evade or overcome the resistance. In this review, we discuss the latest developments regarding ribosome protection proteins focusing on the current antimicrobial arsenal and pharmaceutical pipeline as well as potential implications for the future of fighting bacterial infections in the time of "superbugs."
Collapse
Affiliation(s)
- Rya Ero
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
8
|
Gaytán MO, Singh AK, Woodiga SA, Patel SA, An SS, Vera-Ponce de León A, McGrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021; 17:e1009222. [PMID: 33465168 PMCID: PMC7846122 DOI: 10.1371/journal.ppat.1009222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target. Infective endocarditis (IE) is typically a bacterial infection of the heart valves that causes high mortality. Infective endocarditis can affect people with preexisting lesions on their heart valves (Subacute IE). These lesions contain platelets and other host factors to which bacteria can bind. Growth of bacteria and accumulation of host factors results in heart failure. Therefore, the ability of bacteria to bind platelets is key to the development of IE. Here, we identified a novel bacterial protein, AsaA, which helps bacteria bind to platelets and contributes to the development of disease. Although this virulence factor was characterized in Streptococcus oralis, a leading cause of IE, we demonstrated that AsaA is also present in several other IE-causing bacterial species and is likely relevant to their ability to cause disease. We showed that AsaA binds to sialic acid, a terminal sugar present on platelets, thereby demonstrating that sialic acid serves as a receptor for a wider range of IE-causing bacteria than previously appreciated, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anirudh K. Singh
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Surina A. Patel
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Arturo Vera-Ponce de León
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sean McGrath
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anthony R. Miller
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jocelyn M. Bush
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Mark van der Linden
- Institute of Medical Microbiology, German National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Vincent Magrini
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard K. Wilson
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
A Giant Extracellular Matrix Binding Protein of Staphylococcus epidermidis Binds Surface-Immobilized Fibronectin via a Novel Mechanism. mBio 2020; 11:mBio.01612-20. [PMID: 33082256 PMCID: PMC7587433 DOI: 10.1128/mbio.01612-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although it is normally an innocuous part of the human skin microbiota, Staphylococcus epidermidis has emerged as a major nosocomial pathogen, and implanted foreign materials are an essential risk factor for the development of an infection. The extraordinary efficiency of S. epidermidis to colonize artificial surfaces is particularly related to the ability to form biofilms. Biofilm formation itself critically depends on stable pathogen binding to extracellular host matrix components, e.g. fibronectin (Fn), covering inserted devices in vast amounts. Extracellular matrix binding protein (Embp) and its subdomains referred to as the F-repeat and the FG-repeat are critical for adherence of S. epidermidis to surface-immobilized Fn. Embp-Fn interactions preferentially occur with surface-bound, but not folded, globular Fn via binding to the F3 domain. High-resolution structure analysis of F- and FG-repeats revealed that both repeats are composed of two tightly connected triple α-helix bundles, exhibiting an elongated but rather rigid structural organization in solution. Both F- and FG-repeat possess Fn-binding capacity via interactions with type III subdomain FN12, involving residues within the C and F β-sheet. FN12 essentially supports stability of the globular Fn state, and thus these findings reasonably explain why Embp-mediated interaction of S. epidermidis necessitates Fn surface immobilization. Thus, Embp employs an uncharacterized bacterial Fn-binding mechanism to promote staphylococcal adherence.IMPORTANCE Staphylococcus epidermidis is a leading pathogen in implant-associated hospital infections. The pathogenesis critically depends on bacterial binding to ECM components, specifically fibronectin (Fn). The cell surface-localized, 1-MDa extracellular matrix binding protein (Embp) is essentially characterized by 10 F- and 40 FG-repeats. These repetitive units, each characterized by two α-helical bundles, organize themselves in a rigid, elongated form. Embp binds preferentially to surface-localized but not soluble Fn, with both F- and FG-repeats being sufficient for Fn binding and resulting bacterial adherence. Binding preferentially involves Fn type III domain, specifically residues of FN12 β-sheets C and F. Both play key role in stabilizing the globular Fn conformation, explaining the necessity of Fn surface immobilization for a subsequent interaction with Embp. In comparison to many other bacterial Fn-binding proteins using the Fn N terminus, Embp employs a previously undescribed mechanism supporting the adhesion of S. epidermidis to surface-immobilized Fn.
Collapse
|
10
|
Kumar A, Ting YP. Presence ofPseudomonas aeruginosainfluences biofilm formation and surface protein expression ofStaphylococcus aureus. Environ Microbiol 2015; 17:4459-68. [DOI: 10.1111/1462-2920.12890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 04/23/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore
| | - Yen Peng Ting
- Department of Chemical and Biomolecular Engineering; National University of Singapore; Singapore
| |
Collapse
|
11
|
Büttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol 2015; 5:14. [PMID: 25741476 PMCID: PMC4330918 DOI: 10.3389/fcimb.2015.00014] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/26/2015] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus epidermidis is a usually harmless commensal bacterium highly abundant on the human skin. Under defined predisposing conditions, most importantly implantation of a medical device, S. epidermidis, however, can switch from a colonizing to an invasive life style. The emergence of S. epidermidis as an opportunistic pathogen is closely linked to the biofilm forming capability of the species. During the past decades, tremendous advance regarding our understanding of molecular mechanisms contributing to surface colonization has been made, and detailed information is available for several factors active during the primary attachment, accumulative or dispersal phase of biofilm formation. A picture evolved in which distinct factors, though appearing to be redundantly organized, take over specific and exclusive functions during biofilm development. In this review, these mechanisms are described in molecular detail, with a highlight on recent insights into multi-functional S. epidermidis cell surface proteins contributing to surface adherence and intercellular adhesion. The integration of distinct biofilm-promoting factors into regulatory networks is summarized, with an emphasis on mechanism that could allow S. epidermidis to flexibly adapt to changing environmental conditions present during colonizing or invasive life-styles.
Collapse
Affiliation(s)
- Henning Büttner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf Hamburg, Germany
| | - Dietrich Mack
- Mikrobiologie/Infektiologie, Bioscientia Labor Ingelheim, Institut für Medizinische Diagnostik GmbH Ingelheim, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
12
|
Gustafson JE, Muthaiyan A, Dupre JM, Ricke SC. WITHDRAWN: Staphylococcus aureus and understanding the factors that impact enterotoxin production in foods: A review. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance. J Bacteriol 2013; 196:971-81. [PMID: 24363342 DOI: 10.1128/jb.01366-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.
Collapse
|
14
|
Walker JN, Crosby HA, Spaulding AR, Salgado-Pabón W, Malone CL, Rosenthal CB, Schlievert PM, Boyd JM, Horswill AR. The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis. PLoS Pathog 2013; 9:e1003819. [PMID: 24367264 PMCID: PMC3868527 DOI: 10.1371/journal.ppat.1003819] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/21/2013] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis. Staphylococcus aureus is a bacterial pathogen that is responsible for causing significant disease in humans. The development of antibiotic resistant strains has made these infections more difficult to treat, and an improved understanding of how this pathogen causes infections will facilitate the development of new tools for treatment. It has long been recognized that S. aureus can bind human matrix proteins to form stable clumps in a process called agglutination, but the importance of agglutination during infection is only just becoming understood. In this work, we developed several techniques to investigate the S. aureus agglutination mechanism. We discovered that the ArlRS two-component regulatory system controls agglutination by regulating the expression of the ebh gene, which encodes the Giant Staphylococcal Surface Protein (GSSP). When ArlRS is non-functional, S. aureus agglutination is prevented through the action of GSSP. These phenotypes were confirmed in a rabbit model of sepsis and infective endocarditis, demonstrating that ArlRS is an important regulator of virulence. Taken together, the identification of ArlRS as a regulator of S. aureus agglutination and pathogenesis may lead to innovative directions for therapeutic development.
Collapse
Affiliation(s)
- Jennifer N Walker
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Heidi A Crosby
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Adam R Spaulding
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Wilmara Salgado-Pabón
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Cheryl L Malone
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Carolyn B Rosenthal
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick M Schlievert
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Alexander R Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
15
|
Nilvebrant J, Hober S. The albumin-binding domain as a scaffold for protein engineering. Comput Struct Biotechnol J 2013; 6:e201303009. [PMID: 24688717 PMCID: PMC3962080 DOI: 10.5936/csbj.201303009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022] Open
Abstract
The albumin-binding domain is a small, three-helical protein domain found in various surface proteins expressed by gram-positive bacteria. Albumin binding is important in bacterial pathogenesis and several homologous domains have been identified. Such albumin-binding regions have been used for protein purification or immobilization. Moreover, improvement of the pharmacokinetics, through the non-covalent association to albumin, by fusing such domains to therapeutic proteins has been shown to be successful. Domains derived from streptococcal protein G and protein PAB from Finegoldia magna, which share a common origin and therefore represent an interesting evolutionary system, have been thoroughly studied structurally and functionally. Their albumin-binding sites have been mapped and these domains form the basis for a wide range of protein engineering approaches. By substitution-mutagenesis they have been engineered to achieve a broader specificity, an increased stability or an improved binding affinity, respectively. Furthermore, novel binding sites have been incorporated either by replacing the original albumin-binding surface, or by complementing it with a novel interaction interface. Combinatorial protein libraries, where several residues have been randomized simultaneously, have generated a large number of new variants with desired binding characteristics. The albumin-binding domain has also been utilized to explore the relationship between three-dimensional structure and amino acid sequence. Proteins with latent structural information built into their sequence, where a single amino acid substitution shifts the equilibrium in favor of a different fold with a new function, have been designed. Altogether, these examples illustrate the versatility of the albumin-binding domain as a scaffold for protein engineering.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Sophia Hober
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Lizcano A, Sanchez CJ, Orihuela CJ. A role for glycosylated serine-rich repeat proteins in gram-positive bacterial pathogenesis. Mol Oral Microbiol 2012; 27:257-69. [PMID: 22759311 DOI: 10.1111/j.2041-1014.2012.00653.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacterial attachment to host surfaces is a pivotal event in the biological and infectious processes of both commensal and pathogenic bacteria, respectively. Serine-rich repeat proteins (SRRPs) are a family of adhesins in Gram-positive bacteria that mediate attachment to a variety of host and bacterial surfaces. As such, they contribute towards a wide-range of diseases including sub-acute bacterial endocarditis, community-acquired pneumonia, and meningitis. SRRPs are unique in that they are glycosylated, require a non-canonical Sec-translocase for transport, and are largely composed of a domain containing hundreds of alternating serine residues. These serine-rich repeats are thought to extend a unique non-repeat (NR) domain outward away from the bacterial surface to mediate adhesion. So far, NR domains have been determined to bind to sialic acid moieties, keratins, or other NR domains of a similar SRRP. This review summarizes how this important family of bacterial adhesins mediates bacterial attachment to host and bacterial cells, contributes to disease pathogenesis, and might be targeted for pharmacological intervention or used as novel protective vaccine antigens. This review also highlights recent structural findings on the NR domains of these proteins.
Collapse
Affiliation(s)
- A Lizcano
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
17
|
WONG WINGCHEONG, MAURER-STROH SEBASTIAN, EISENHABER FRANK. THE JANUS-FACED E-VALUES OF HMMER2: EXTREME VALUE DISTRIBUTION OR LOGISTIC FUNCTION? J Bioinform Comput Biol 2011. [DOI: 10.1142/s0219720011005264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
E-value guided extrapolation of protein domain annotation from libraries such as Pfam with the HMMER suite is indispensable for hypothesizing about the function of experimentally uncharacterized protein sequences. Since the recent release of HMMER3 does not supersede all functions of HMMER2, the latter will remain relevant for ongoing research as well as for the evaluation of annotations that reside in databases and in the literature. In HMMER2, the E-value is computed from the score via a logistic function or via a domain model-specific extreme value distribution (EVD); the lower of the two is returned as E-value for the domain hit in the query sequence. We find that, for thousands of domain models, this treatment results in switching from the EVD to the statistical model with the logistic function when scores grow (for Pfam release 23, 99% in the global mode and 75% in the fragment mode). If the score corresponding to the breakpoint results in an E-value above a user-defined threshold (e.g. 0.1), a critical score region with conflicting E-values from the logistic function (below the threshold) and from EVD (above the threshold) does exist. Thus, this switch will affect E-value guided annotation decisions in an automated mode. To emphasize, switching in the fragment mode is of no practical relevance since it occurs only at E-values far below 0.1. Unfortunately, a critical score region does exist for 185 domain models in the hmmpfam and 1,748 domain models in the hmmsearch global-search mode. For 145 out the respective 185 models, the critical score region is indeed populated by actual sequences. In total, 24.4% of their hits have a logistic function-derived E-value < 0.1 when the EVD provides an E-value > 0.1. We provide examples of false annotations and critically discuss the appropriateness of a logistic function as alternative to the EVD.
Collapse
Affiliation(s)
- WING-CHEONG WONG
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A *STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - SEBASTIAN MAURER-STROH
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A *STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 63755, Singapore
| | - FRANK EISENHABER
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A *STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117597, Singapore
- School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
18
|
Firer-Sherwood MA, Ando N, Drennan CL, Elliott SJ. Solution-based structural analysis of the decaheme cytochrome, MtrA, by small-angle X-ray scattering and analytical ultracentrifugation. J Phys Chem B 2011; 115:11208-14. [PMID: 21838277 PMCID: PMC3178274 DOI: 10.1021/jp203603r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/12/2011] [Indexed: 01/05/2023]
Abstract
The potential exploitation of metal-reducing bacteria as a means for environmental cleanup or alternative fuel is an exciting prospect; however, the cellular processes that would allow for these applications need to be better understood. MtrA is a periplasmic decaheme c-type cytochrome from Shewanella oneidensis involved in the reduction of extracellular iron oxides and therefore is a critical element in Shewanella ability to engage in extracellular charge transfer. As a relatively small 333-residue protein, the heme content is surprisingly high. MtrA is believed to obtain electrons from the inner membrane-bound quinol oxidoreductase, CymA, and shuttle them across the outer membrane to MtrC, another decaheme cytochrome that directly interacts with insoluble metal oxides. How MtrA is able to perform this task is a question of interest. Here through the use of two solution-based techniques, small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC), we present the first structural analysis of MtrA. Our results establish that between 0.5 and 4 mg/mL, MtrA exists as a monomeric protein that is shaped like an extended molecular "wire" with a maximum protein dimension (D(max)) of 104 Å and a rod-like aspect ratio of 2.2 to 2.5. This study contributes to a greater understanding of how MtrA fulfills its role in the redox processes that must occur before electrons reach the outside of the cell.
Collapse
Affiliation(s)
- Mackenzie A. Firer-Sherwood
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Nozomi Ando
- Howard Hughes Medical Institute, Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Howard Hughes Medical Institute, Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sean J. Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
19
|
Kajava AV. Tandem repeats in proteins: from sequence to structure. J Struct Biol 2011; 179:279-88. [PMID: 21884799 DOI: 10.1016/j.jsb.2011.08.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
The bioinformatics analysis of proteins containing tandem repeats requires special computer programs and databases, since the conventional approaches predominantly developed for globular domains have limited success. Here, I survey bioinformatics tools which have been developed recently for identification and proteome-wide analysis of protein repeats. The last few years have also been marked by an emergence of new 3D structures of these proteins. Appraisal of the known structures and their classification uncovers a straightforward relationship between their architecture and the length of the repetitive units. This relationship and the repetitive character of structural folds suggest rules for better prediction of the 3D structures of such proteins. Furthermore, bioinformatics approaches combined with low resolution structural data, from biophysical techniques, especially, the recently emerged cryo-electron microscopy, lead to reliable prediction of the protein repeat structures and their mode of binding with partners within molecular complexes. This hybrid approach can actively be used for structural and functional annotations of proteomes.
Collapse
Affiliation(s)
- Andrey V Kajava
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, Université Montpellier 1 et 2, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France.
| |
Collapse
|
20
|
Ramboarina S, Garnett JA, Zhou M, Li Y, Peng Z, Taylor JD, Lee WC, Bodey A, Murray JW, Alguel Y, Bergeron J, Bardiaux B, Sawyer E, Isaacson R, Tagliaferri C, Cota E, Nilges M, Simpson P, Ruiz T, Wu H, Matthews S. Structural insights into serine-rich fimbriae from Gram-positive bacteria. J Biol Chem 2010; 285:32446-57. [PMID: 20584910 PMCID: PMC2952246 DOI: 10.1074/jbc.m110.128165] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/25/2010] [Indexed: 11/06/2022] Open
Abstract
The serine-rich repeat family of fimbriae play important roles in the pathogenesis of streptococci and staphylococci. Despite recent attention, their finer structural details and precise adhesion mechanisms have yet to be determined. Fap1 (Fimbriae-associated protein 1) is the major structural subunit of serine-rich repeat fimbriae from Streptococcus parasanguinis and plays an essential role in fimbrial biogenesis, adhesion, and the early stages of dental plaque formation. Combining multidisciplinary, high resolution structural studies with biological assays, we provide new structural insight into adhesion by Fap1. We propose a model in which the serine-rich repeats of Fap1 subunits form an extended structure that projects the N-terminal globular domains away from the bacterial surface for adhesion to the salivary pellicle. We also uncover a novel pH-dependent conformational change that modulates adhesion and likely plays a role in survival in acidic environments.
Collapse
Affiliation(s)
- Stéphanie Ramboarina
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - James A. Garnett
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Meixian Zhou
- the Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007
| | - Yuebin Li
- the Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007
| | - Zhixiang Peng
- the Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007
| | - Jonathan D. Taylor
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Wei-chao Lee
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Andrew Bodey
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - James W. Murray
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Yilmaz Alguel
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Julien Bergeron
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
- the Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, United Kingdom
| | - Benjamin Bardiaux
- the Structural Biology Unit, Leibniz Institute for Molecular Pharmacology, FMP Robert-Rossle Strasse 10, 13125 Berlin, Germany
| | - Elizabeth Sawyer
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Rivka Isaacson
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Camille Tagliaferri
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Ernesto Cota
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Michael Nilges
- the Institut Pasteur Unité de Bioinformatique Structurale, 25-28 Rue du Dr Roux, F-75724 Paris Cedex 15, France, and
| | - Peter Simpson
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Teresa Ruiz
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Hui Wu
- the Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007
| | - Stephen Matthews
- From the Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
21
|
Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. BMC Microbiol 2010; 10:173. [PMID: 20550675 PMCID: PMC2905362 DOI: 10.1186/1471-2180-10-173] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/15/2010] [Indexed: 01/22/2023] Open
Abstract
Background S. aureus is a coloniser and pathogen of humans and mammals. Whole genome sequences of 58 strains of S. aureus in the public domain and data from multi-strain microarrays were compared to assess variation in the sequence of proteins known or putatively interacting with host. Results These included 24 surface proteins implicated in adhesion (ClfA, ClfB, Cna, Eap, Ebh, EbpS, FnBPA, FnBPB, IsaB, IsdA, IsdB, IsdH, SasB, SasC, SasD, SasF, SasG, SasH, SasK, SdrC, SdrD, SdrE, Spa and SraP) and 13 secreted proteins implicated in immune response evasion (Coa, Ecb, Efb, Emp, EsaC, EsxA, EssC, FLIPr, FLIPr like, Sbi, SCIN-B, SCIN-C, VWbp) located on the stable core genome. Many surface protein genes were missing or truncated, unlike immune evasion genes, and several distinct variants were identified. Domain variants were lineage specific. Unrelated lineages often possess the same sequence variant domains proving that horizontal transfer and recombination has contributed to their evolution. Surprisingly, sequenced strains from four animal S. aureus strains had surface and immune evasion proteins remarkably similar to those found in human strains, yet putative targets of these proteins vary substantially between different hosts. This suggests these proteins are not essential for virulence. However, the most variant protein domains were the putative functional regions and there is biological evidence that variants can be functional, arguing they do play a role. Conclusion Surface and immune evasion genes are candidates for S. aureus vaccines, and their distribution and functionality is key. Vaccines should contain cocktails of antigens representing all variants or they will not protect against naturally occurring S. aureus populations.
Collapse
|
22
|
Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, Kroll G, Schulze C, Buck F, Mack D, Aepfelbacher M, Rohde H. The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 2009; 75:187-207. [PMID: 19943904 DOI: 10.1111/j.1365-2958.2009.06981.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Virulence of nosocomial pathogen Staphylococcus epidermidis is essentially related to formation of adherent biofilms, assembled by bacterial attachment to an artificial surface and subsequent production of a matrix that mediates interbacterial adhesion. Growing evidence supports the idea that proteins are functionally involved in S. epidermidis biofilm accumulation. We found that in S. epidermidis 1585v overexpression of a 460 kDa truncated isoform of the extracellular matrix-binding protein (Embp) is necessary for biofilm formation. Embp is a giant fibronectin-binding protein harbouring 59 Found In Various Architectures (FIVAR) and 38 protein G-related albumin-binding (GA) domains. Studies using defined Embp-positive and -negative S. epidermidis strains proved that Embp is sufficient and necessary for biofilm formation. Further data showed that the FIVAR domains of Embp mediate binding of S. epidermidis to solid-phase attached fibronectin, constituting the first step of biofilm formation on conditioned surfaces. The binding site in fibronectin was assigned to the fibronectin domain type III12. Embp-mediated biofilm formation also protected S. epidermidis from phagocytosis by macrophages. Thus, Embp is a multifunctional cell surface protein that mediates attachment to host extracellular matrix, biofilm accumulation and escape from phagocytosis, and therefore is well suited for promoting implant-associated infections.
Collapse
Affiliation(s)
- Martin Christner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sakamoto S, Tanaka Y, Tanaka I, Takei T, Yu J, Kuroda M, Yao M, Ohta T, Tsumoto K. Electron microscopy and computational studies of Ebh, a giant cell-wall-associated protein from Staphylococcus aureus. Biochem Biophys Res Commun 2008; 376:261-6. [PMID: 18771657 DOI: 10.1016/j.bbrc.2008.08.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/18/2008] [Indexed: 11/17/2022]
Abstract
Ebh, a giant protein found in staphylococci, contains several domains, including a large central region with 52 imperfect repeats of a domain composed of 126 amino acids. We used electron microscopy to observe the rod-like structure of a partial Ebh protein containing 10 repeating units. This is the first report of the direct observation of an Ebh structure containing a large number of repeating units, although structures containing one, two, or four repeating units have been reported. The observed structure of the partial Ebh protein was distorted and had a length of ca. 520A and a width of ca. 21A. The observed structures were consistent with those deduced from crystal structure analysis, suggesting that the Ebh domains are connected to form a rod-like structure. The crystal structure data revealed distorted, string-like features in the simulated structure of the whole-length Ebh protein. Superposition of fragments of the simulated whole-length structure of the Ebh protein onto each electron micrograph showed a high level of correlation between the observed and calculated structures. These results suggest that Ebh is composed of highly flexible filate molecules. The highly repetitive structure and the associated unique structural flexibility of Ebh support the proposed function of this protein, i.e. binding to sugars in the cell wall. This binding might result in intra-cell-wall cross-linking that contributes to the rigidity of bacterial cells.
Collapse
Affiliation(s)
- Sou Sakamoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 301 FBS-Building, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kuroda M, Tanaka Y, Aoki R, Shu D, Tsumoto K, Ohta T. Staphylococcus aureus giant protein Ebh is involved in tolerance to transient hyperosmotic pressure. Biochem Biophys Res Commun 2008; 374:237-41. [PMID: 18639517 DOI: 10.1016/j.bbrc.2008.07.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus is well known to colonize on human skin where the physiological condition is characterized by hypervariable water activity, i.e., repeated dehydration or rehydration. To determine the facilitating factors for the colonization under hypervariable water activity, we studied the giant protein Ebh (extracellular matrix (ECM)-binding protein homologue). The ebh mutant RAM8 showed invaginated vacuoles along the septum, similar to that found in partial plasmolysis, and the cells burst under osmotic upshift. RAM8 was also relatively susceptible to abrupt hyperosmotic upshift, teicoplanin, and Triton X-100. By using the green fluorescent protein (GFP) as a reporter, Ebh was localized over the entire cell surface. This suggests that Ebh might contribute to structural homeostasis by forming a bridge between the cell-wall and cytoplasmic membrane to avoid plasmolysis under hyperosmotic condition.
Collapse
Affiliation(s)
- Makoto Kuroda
- Laboratory of Bacterial Genomics, Center for Pathogen Genomics, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | |
Collapse
|