1
|
Wu J, Tao Y, Deng D, Meng Z, Zhao Y. The applications of CRISPR/Cas-mediated genome editing in genetic hearing loss. Cell Biosci 2023; 13:93. [PMID: 37210555 DOI: 10.1186/s13578-023-01021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/25/2023] [Indexed: 05/22/2023] Open
Abstract
Hearing loss (HL) can be caused by a number of different genetic factors. Non-syndromic HL refers that HL occurs as an isolated symptom in an individual, whereas syndromic HL refers that HL is associated with other symptoms or abnormalities. To date, more than 140 genes have been identified as being associated with non-syndromic HL, and approximately 400 genetic syndromes can include HL as one of the clinical symptoms. However, no gene therapeutic approaches are currently available to restore or improve hearing. Therefore, there is an urgent necessity to elucidate the possible pathogenesis of specific mutations in HL-associated genes and to investigate the promising therapeutic strategies for genetic HL. The development of the CRISPR/Cas system has revolutionized the field of genome engineering, which has become an efficacious and cost-effective tool to foster genetic HL research. Moreover, several in vivo studies have demonstrated the therapeutic efficacy of the CRISPR/Cas-mediated treatments for specific genetic HL. In this review, we briefly introduce the progress in CRISPR/Cas technique as well as the understanding of genetic HL, and then we detail the recent achievements of CRISPR/Cas technique in disease modeling and therapeutic strategies for genetic HL. Furthermore, we discuss the challenges for the application of CRISPR/Cas technique in future clinical treatments.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Tao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Di Deng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhaoli Meng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Babu K, Amrani N, Jiang W, Yogesha S, Nguyen R, Qin PZ, Rajan R. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance. Biochemistry 2019; 58:1905-1917. [PMID: 30916546 PMCID: PMC6496953 DOI: 10.1021/acs.biochem.8b01241] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas systems are RNA-guided nucleases that provide adaptive immune protection for bacteria and archaea against intruding genomic materials. The programmable nature of CRISPR-targeting mechanisms has enabled their adaptation as powerful genome engineering tools. Cas9, a type II CRISPR effector protein, has been widely used for gene-editing applications owing to the fact that a single-guide RNA can direct Cas9 to cleave desired genomic targets. An understanding of the role of different domains of the protein and guide RNA-induced conformational changes of Cas9 in selecting target DNA has been and continues to enable development of Cas9 variants with reduced off-targeting effects. It has been previously established that an arginine-rich bridge helix (BH) present in Cas9 is critical for its activity. In the present study, we show that two proline substitutions within a loop region of the BH of Streptococcus pyogenes Cas9 impair the DNA cleavage activity by accumulating nicked products and reducing target DNA linearization. This in turn imparts a higher selectivity in DNA targeting. We discuss the probable mechanisms by which the BH-loop contributes to target DNA recognition.
Collapse
Affiliation(s)
- Kesavan Babu
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Sherman Center, AS5.2007, Worcester MA 01605, USA
| | - Wei Jiang
- Department of Chemistry, University of Southern California, 3430 S. Vermont Ave., Los Angeles, CA, 90089, USA
| | - S.D. Yogesha
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
- Current Address: Krystal Biotech, Inc. 2100 Wharton Street, Suite 701 Pittsburgh, PA, 15203, USA
| | - Richard Nguyen
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
- Current Address: College of Medicine, University of Oklahoma, Stanton L Young Blvd, Oklahoma City, OK 73117
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, 3430 S. Vermont Ave., Los Angeles, CA, 90089, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| |
Collapse
|
3
|
Burnight ER, Giacalone JC, Cooke JA, Thompson JR, Bohrer LR, Chirco KR, Drack AV, Fingert JH, Worthington KS, Wiley LA, Mullins RF, Stone EM, Tucker BA. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Prog Retin Eye Res 2018; 65:28-49. [PMID: 29578069 PMCID: PMC8210531 DOI: 10.1016/j.preteyeres.2018.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/18/2022]
Abstract
Gene correction is a valuable strategy for treating inherited retinal degenerative diseases, a major cause of irreversible blindness worldwide. Single gene defects cause the majority of these retinal dystrophies. Gene augmentation holds great promise if delivered early in the course of the disease, however, many patients carry mutations in genes too large to be packaged into adeno-associated viral vectors and some, when overexpressed via heterologous promoters, induce retinal toxicity. In addition to the aforementioned challenges, some patients have sustained significant photoreceptor cell loss at the time of diagnosis, rendering gene replacement therapy insufficient to treat the disease. These patients will require cell replacement to restore useful vision. Fortunately, the advent of induced pluripotent stem cell and CRISPR-Cas9 gene editing technologies affords researchers and clinicians a powerful means by which to develop strategies to treat patients with inherited retinal dystrophies. In this review we will discuss the current developments in CRISPR-Cas9 gene editing in vivo in animal models and in vitro in patient-derived cells to study and treat inherited retinal degenerative diseases.
Collapse
Affiliation(s)
- Erin R Burnight
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Joseph C Giacalone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Jessica A Cooke
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Jessica R Thompson
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Laura R Bohrer
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Kathleen R Chirco
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Arlene V Drack
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - John H Fingert
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States; Department of Biochemical Engineering, University of Iowa, Iowa City, IA, United States
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
4
|
Jeong M, Kim I, Kim G, Ka D, Kim NK, Bae E, Ryu KS, Suh JY. Solution structure and dynamics of Xanthomonas albilineans
Cas2 provide mechanistic insight on nuclease activity. FEBS Lett 2018; 592:147-155. [DOI: 10.1002/1873-3468.12942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/30/2017] [Accepted: 12/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Migyeong Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - Iktae Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - Gowoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - Donghyun Ka
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - Nak-Kyun Kim
- Advanced Analysis Center; Korea Institute of Science and Technology; Seoul Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - Kyoung-Seok Ryu
- Protein Structure Research Team; Korea Basic Science Institute; Ochang Chungbuk Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul Korea
- Institute for Biomedical Sciences; Shinshu University; Nagano Japan
| |
Collapse
|
5
|
Van Orden MJ, Klein P, Babu K, Najar FZ, Rajan R. Conserved DNA motifs in the type II-A CRISPR leader region. PeerJ 2017; 5:e3161. [PMID: 28392985 PMCID: PMC5382924 DOI: 10.7717/peerj.3161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3′ end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3′ leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3′ leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci.
Collapse
Affiliation(s)
- Mason J Van Orden
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Peter Klein
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Kesavan Babu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Fares Z Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
6
|
Martinez E, Sanchez L, Vazquez N, Marks R, Cedillo R, Respondek C, Holguin M, Persans MW, Keniry M. A CRISPR View of Biological Mechanisms. Discoveries (Craiova) 2016; 4:e69. [PMID: 32309588 PMCID: PMC7159838 DOI: 10.15190/d.2016.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022] Open
Abstract
A decade ago, only six manuscripts would be found on a PubMed search for "CRISPR," compared to 2,011 manuscripts in 2016. The purpose of this review is to discuss this emergent technology that has revolutionized molecular biological research in just a few years. Endogenous CRISPR mechanisms are harbored by bacteria and archaea as an adaptive defense system that targets foreign DNA from viruses and plasmids. CRISPR has been adapted as a genome editing tool in a plethora of organisms ranging from yeast to humans. This tool has been employed to create loss of function mutations, gain of function mutations, and tagged alleles in a wide range of settings. CRISPR is now extensively employed for genetic screens. CRISPR has also been adapted to study transcriptional regulation. This versatile and relatively facile technique has, and will be, tremendously impactful in research areas such as biomedical sciences, agriculture, and the basic sciences.
Collapse
Affiliation(s)
- Eduardo Martinez
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Lilia Sanchez
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Neftali Vazquez
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Rebecca Marks
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Raechel Cedillo
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Christa Respondek
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Martin Holguin
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Michael W. Persans
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Megan Keniry
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| |
Collapse
|
7
|
Chellapandi P, Ranjani J. Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:97-106. [PMID: 26279704 DOI: 10.1007/s11693-015-9176-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/29/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) are direct features of the prokaryotic genomes involved in resistance to their bacterial viruses and phages. Herein, we have identified CRISPR loci together with CRISPR-associated sequences (CAS) genes to reveal their immunity against genome invaders in the thermophilic archaea and bacteria. Genomic survey of this study implied that genomic distribution of CRISPR-CAS systems was varied from strain to strain, which was determined by the degree of invading mobiloms. Direct repeats found to be equal in some extent in many thermopiles, but their spacers were differed in each strain. Phylogenetic analyses of CAS superfamily revealed that genes cmr, csh, csx11, HD domain, devR were belonged to the subtypes of cas gene family. The members in cas gene family of thermophiles were functionally diverged within closely related genomes and may contribute to develop several defense strategies. Nevertheless, genome dynamics, geological variation and host defense mechanism were contributed to share their molecular functions across the thermophiles. A thermophilic archaean, Thermococcus gammotolerans and thermophilic bacteria, Petrotoga mobilis and Thermotoga lettingae have shown superoperons-like appearance to cluster cas genes, which were typically evolved for their defense pathways. A cmr operon was identified with a specific promoter in a thermophilic archaean, Caldivirga maquilingensis. Overall, we concluded that knowledge-based genomic survey and phylogeny-based functional assignment have suggested for designing a reliable genetic regulatory circuit naturally from CRISPR-CAS systems, acquired defense pathways, to thermophiles in future synthetic biology.
Collapse
Affiliation(s)
- P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
| | - J Ranjani
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
| |
Collapse
|
8
|
Abstract
The CRISPR (clusters of regularly interspaced short palindromic repeats)–Cas adaptive immune system is an important defense system in bacteria, providing targeted defense against invasions of foreign nucleic acids. CRISPR–Cas systems consist of CRISPR loci and cas (CRISPR-associated) genes: sequence segments of invaders are incorporated into host genomes at CRISPR loci to generate specificity, while adjacent cas genes encode proteins that mediate the defense process. We pursued an integrated approach to identifying putative cas genes from genomes and metagenomes, combining similarity searches with genomic neighborhood analysis. Application of our approach to bacterial genomes and human microbiome datasets allowed us to significantly expand the collection of cas genes: the sequence space of the Cas9 family, the key player in the recently engineered RNA-guided platforms for genome editing in eukaryotes, is expanded by at least two-fold with metagenomic datasets. We found genes in cas loci encoding other functions, for example, toxins and antitoxins, confirming the recently discovered potential of coupling between adaptive immunity and the dormancy/suicide systems. We further identified 24 novel Cas families; one novel family contains 20 proteins, all identified from the human microbiome datasets, illustrating the importance of metagenomics projects in expanding the diversity of cas genes.
Collapse
Affiliation(s)
- Quan Zhang
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA, Department of Biology, Indiana University, Bloomington, IN 47405, USA and National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47408, USA
| | | | | |
Collapse
|
9
|
Association between living environment and human oral viral ecology. ISME JOURNAL 2013; 7:1710-24. [PMID: 23598790 DOI: 10.1038/ismej.2013.63] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/16/2013] [Accepted: 03/18/2013] [Indexed: 01/21/2023]
Abstract
The human oral cavity has an indigenous microbiota known to include a robust community of viruses. Very little is known about how oral viruses are spread throughout the environment or to which viruses individuals are exposed. We sought to determine whether shared living environment is associated with the composition of human oral viral communities by examining the saliva of 21 human subjects; 11 subjects from different households and 10 unrelated subjects comprising 4 separate households. Although there were many viral homologues shared among all subjects studied, there were significant patterns of shared homologues in three of the four households that suggest shared living environment affects viral community composition. We also examined CRISPR (clustered regularly interspaced short palindromic repeat) loci, which are involved in acquired bacterial and archaeal resistance against invading viruses by acquiring short viral sequences. We analyzed 2 065 246 CRISPR spacers from 5 separate repeat motifs found in oral bacterial species of Gemella, Veillonella, Leptotrichia and Streptococcus to determine whether individuals from shared living environments may have been exposed to similar viruses. A significant proportion of CRISPR spacers were shared within subjects from the same households, suggesting either shared ancestry of their oral microbiota or similar viral exposures. Many CRISPR spacers matched virome sequences from different subjects, but no pattern specific to any household was found. Our data on viromes and CRISPR content indicate that shared living environment may have a significant role in determining the ecology of human oral viruses.
Collapse
|
10
|
Jore MM, Brouns SJJ, van der Oost J. RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a003657. [PMID: 21441598 DOI: 10.1101/cshperspect.a003657] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The CRISPR/Cas system in prokaryotes provides resistance against invading viruses and plasmids. Three distinct stages in the mechanism can be recognized. Initially, fragments of invader DNA are integrated as new spacers into the repetitive CRISPR locus. Subsequently, the CRISPR is transcribed and the transcript is cleaved by a Cas protein within the repeats, generating short RNAs (crRNAs) that contain the spacer sequence. Finally, crRNAs guide the Cas protein machinery to a complementary invader target, either DNA or RNA, resulting in inhibition of virus or plasmid proliferation. In this article, we discuss our current understanding of this fascinating adaptive and heritable defense system, and describe functional similarities and differences with RNAi in eukaryotes.
Collapse
Affiliation(s)
- Matthijs M Jore
- Laboratory of Microbiology, Wageningen University, Netherlands
| | | | | |
Collapse
|
11
|
Pride DT, Salzman J, Relman DA. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses. Environ Microbiol 2012; 14:2564-76. [PMID: 22583485 DOI: 10.1111/j.1462-2920.2012.02775.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome.
Collapse
Affiliation(s)
- David T Pride
- Departments of Pathology and Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA 92093-0612, USA.
| | | | | |
Collapse
|
12
|
Abstract
The recently discovered CRISPR-Cas adaptive immune system is present in almost all archaea and many bacteria. It consists of cassettes of CRISPR repeats that incorporate spacers homologous to fragments of viral or plasmid genomes that are employed as guide RNAs in the immune response, along with numerous CRISPR-associated (cas) genes that encode proteins possessing diverse, only partially characterized activities required for the action of the system. Here, we investigate the evolution of the cas genes and show that they evolve under purifying selection that is typically much weaker than the median strength of purifying selection affecting genes in the respective genomes. The exceptions are the cas1 and cas2 genes that typically evolve at levels of purifying selection close to the genomic median. Thus, although these genes are implicated in the acquisition of spacers from alien genomes, they do not appear to be directly involved in an arms race between bacterial and archaeal hosts and infectious agents. These genes might possess functions distinct from and additional to their role in the CRISPR-Cas-mediated immune response. Taken together with evidence of the frequent horizontal transfer of cas genes reported previously and with the wide-spread microscale recombination within these genes detected in this work, these findings reveal the highly dynamic evolution of cas genes. This conclusion is in line with the involvement of CRISPR-Cas in antiviral immunity that is likely to entail a coevolutionary arms race with rapidly evolving viruses. However, we failed to detect evidence of strong positive selection in any of the cas genes.
Collapse
|
13
|
Makarova KS, Aravind L, Wolf YI, Koonin EV. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 2011; 6:38. [PMID: 21756346 PMCID: PMC3150331 DOI: 10.1186/1745-6150-6-38] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/14/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The CRISPR-Cas adaptive immunity systems that are present in most Archaea and many Bacteria function by incorporating fragments of alien genomes into specific genomic loci, transcribing the inserts and using the transcripts as guide RNAs to destroy the genome of the cognate virus or plasmid. This RNA interference-like immune response is mediated by numerous, diverse and rapidly evolving Cas (CRISPR-associated) proteins, several of which form the Cascade complex involved in the processing of CRISPR transcripts and cleavage of the target DNA. Comparative analysis of the Cas protein sequences and structures led to the classification of the CRISPR-Cas systems into three Types (I, II and III). RESULTS A detailed comparison of the available sequences and structures of Cas proteins revealed several unnoticed homologous relationships. The Repeat-Associated Mysterious Proteins (RAMPs) containing a distinct form of the RNA Recognition Motif (RRM) domain, which are major components of the CRISPR-Cas systems, were classified into three large groups, Cas5, Cas6 and Cas7. Each of these groups includes many previously uncharacterized proteins now shown to adopt the RAMP structure. Evidence is presented that large subunits contained in most of the CRISPR-Cas systems could be homologous to Cas10 proteins which contain a polymerase-like Palm domain and are predicted to be enzymatically active in Type III CRISPR-Cas systems but inactivated in Type I systems. These findings, the fact that the CRISPR polymerases, RAMPs and Cas2 all contain core RRM domains, and distinct gene arrangements in the three types of CRISPR-Cas systems together provide for a simple scenario for origin and evolution of the CRISPR-Cas machinery. Under this scenario, the CRISPR-Cas system originated in thermophilic Archaea and subsequently spread horizontally among prokaryotes. CONCLUSIONS Because of the extreme diversity of CRISPR-Cas systems, in-depth sequence and structure comparison continue to reveal unexpected homologous relationship among Cas proteins. Unification of Cas protein families previously considered unrelated provides for improvement in the classification of CRISPR-Cas systems and a reconstruction of their evolution. OPEN PEER REVIEW This article was reviewed by Malcolm White (nominated by Purficacion Lopez-Garcia), Frank Eisenhaber and Igor Zhulin. For the full reviews, see the Reviewers' Comments section.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
14
|
Abadia E, Zhang J, Ritacco V, Kremer K, Ruimy R, Rigouts L, Gomes HM, Elias AR, Fauville-Dufaux M, Stoffels K, Rasolofo-Razanamparany V, Garcia de Viedma D, Herranz M, Al-Hajoj S, Rastogi N, Garzelli C, Tortoli E, Suffys PN, van Soolingen D, Refrégier G, Sola C. The use of microbead-based spoligotyping for Mycobacterium tuberculosis complex to evaluate the quality of the conventional method: providing guidelines for Quality Assurance when working on membranes. BMC Infect Dis 2011; 11:110. [PMID: 21527037 PMCID: PMC3107175 DOI: 10.1186/1471-2334-11-110] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/28/2011] [Indexed: 11/25/2022] Open
Abstract
Background The classical spoligotyping technique, relying on membrane reverse line-blot hybridization of the spacers of the Mycobacterium tuberculosis CRISPR locus, is used world-wide (598 references in Pubmed on April 8th, 2011). However, until now no inter-laboratory quality control study had been undertaken to validate this technique. We analyzed the quality of membrane-based spoligotyping by comparing it to the recently introduced and highly robust microbead-based spoligotyping. Nine hundred and twenty-seven isolates were analyzed totaling 39,861 data points. Samples were received from 11 international laboratories with a worldwide distribution. Methods The high-throughput microbead-based Spoligotyping was performed on CTAB and thermolyzate DNA extracted from isolated Mycobacterium tuberculosis complex (MTC) strains coming from the genotyping participating centers. Information regarding how the classical Spoligotyping method was performed by center was available. Genotype discriminatory analyses were carried out by comparing the spoligotypes obtained by both methods. The non parametric U-Mann Whitney homogeneity test and the Spearman rank correlation test were performed to validate the observed results. Results Seven out of the 11 laboratories (63 %), perfectly typed more than 90% of isolates, 3 scored between 80-90% and a single center was under 80% reaching 51% concordance only. However, this was mainly due to discordance in a single spacer, likely having a non-functional probe on the membrane used. The centers using thermolyzate DNA performed as well as centers using the more extended CTAB extraction procedure. Few centers shared the same problematic spacers and these problematic spacers were scattered over the whole CRISPR locus (Mostly spacers 15, 14, 18, 37, 39, 40). Conclusions We confirm that classical spoligotyping is a robust method with generally a high reliability in most centers. The applied DNA extraction procedure (CTAB or thermolyzate) did not affect the results in this study. However performance was center-dependent, suggesting that training is a key component in quality assurance of spoligotyping. Overall, no particular spacer yielded a higher degree of deviating results, suggesting that errors occur randomly either in the process of re-using membranes, or during the reading of the results and transferring of data from the film to a digital file. Last, the performance of the microbead-based method was excellent as previously shown by Cowan et al. (J. Clin. Microbiol. 2004) and Zhang et al. (J. Med. Microbiol. 2009) and demonstrated the proper detection of spacer 15 that is known to occasionally give weak signals in the classical spoligotyping.
Collapse
Affiliation(s)
- Edgar Abadia
- Institute of Genetics and Microbiology UMR8621, CNRS Université Paris-Sud 11 Universud, Campus d'Orsay, F-91405 Orsay-Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Collins LJ. The RNA infrastructure: an introduction to ncRNA networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:1-19. [PMID: 21915779 DOI: 10.1007/978-1-4614-0332-6_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RNA infrastructure connects RNA-based functions. With transcription-to-translation processing forming the core of the network, we can visualise how RNA-based regulation, cleavage and modification are the backbone of cellular function. The key to interpreting the RNA-infrastructure is in understanding how core RNAs (tRNA, mRNA and rRNA) and other ncRNAs operate in a spatial-temporal manner, moving around the nucleus, cytoplasm and organelles during processing, or in response to environmental cues. This chapter summarises the concept of the RNA-infrastructure, and highlights examples of RNA-based networking within prokaryotes and eukaryotes. It describes how transcription-to-translation processes are tightly connected, and explores some similarities and differences between prokaryotic and eukaryotic RNA networking.
Collapse
Affiliation(s)
- Lesley J Collins
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
16
|
Romby P, Charpentier E. An overview of RNAs with regulatory functions in gram-positive bacteria. Cell Mol Life Sci 2010; 67:217-37. [PMID: 19859665 PMCID: PMC11115938 DOI: 10.1007/s00018-009-0162-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/07/2009] [Accepted: 09/23/2009] [Indexed: 11/26/2022]
Abstract
During the last decade, RNA molecules with regulatory functions on gene expression have benefited from a renewed interest. In bacteria, recent high throughput computational and experimental approaches have led to the discovery that 10-20% of all genes code for RNAs with critical regulatory roles in metabolic, physiological and pathogenic processes. The trans-acting RNAs comprise the noncoding RNAs, RNAs with a short open reading frame and antisense RNAs. Many of these RNAs act through binding to their target mRNAs while others modulate protein activity or target DNA. The cis-acting RNAs include regulatory regions of mRNAs that can respond to various signals. These RNAs often provide the missing link between sensing changing conditions in the environment and fine-tuning the subsequent biological responses. Information on their various functions and modes of action has been well documented for gram-negative bacteria. Here, we summarize the current knowledge of regulatory RNAs in gram-positive bacteria.
Collapse
Affiliation(s)
- Pascale Romby
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| | - Emmanuelle Charpentier
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
17
|
Sharma CM, Vogel J. Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol 2009; 12:536-46. [PMID: 19758836 DOI: 10.1016/j.mib.2009.07.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 01/27/2023]
Abstract
Following the pioneering screens for small regulatory RNAs (sRNAs) in Escherichia coli in 2001, sRNAs are now being identified in almost every branch of the eubacterial kingdom. Experimental strategies have become increasingly important for sRNA discovery, thanks to increased availability of tiling arrays and fast progress in the development of high-throughput cDNA sequencing (RNA-Seq). The new technologies also facilitate genome-wide discovery of potential target mRNAs by sRNA pulse-expression coupled to transcriptomics, and immunoprecipitation with RNA-binding proteins such as Hfq. Moreover, the staggering rate of new sRNAs demands mechanistic analysis of target regulation. We will also review the available toolbox for wet lab-based research, including in vivo and in vitro reporter systems, genetic methods and biochemical co-purification of sRNA interaction partners.
Collapse
Affiliation(s)
- Cynthia Mira Sharma
- RNA Biology Group, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | |
Collapse
|