1
|
Hamamoto H. Silkworm model of bacterial infection facilitates the identification of lysocin E, a potent, ultra-rapid bactericidal antibiotic. J Antibiot (Tokyo) 2024; 77:477-485. [PMID: 38773231 DOI: 10.1038/s41429-024-00739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
The development of novel antimicrobial agents is required to solve the problem of antimicrobial resistance. We established a quantitative method for evaluating the therapeutic efficacy of antimicrobial agents in a silkworm bacterial infection model. Pharmacokinetic factors are present in the silkworm as well as in mice, and evaluating the therapeutic efficacy of antimicrobial agents is possible in a silkworm infection model, comparable to that in a mammalian model. This silkworm model was used to screen for novel antimicrobial agents with therapeutic efficacy as an indicator. As a result, a new antibiotic, lysocin E, was discovered. Lysocin E has a completely different mechanism of action from existing antimicrobial agents, and its potent bactericidal activity leads to remarkable therapeutic efficacy in a mouse model. In this review, I describe the features of the silkworm model that have contributed to the discovery of lysocin E and its mechanisms of action.
Collapse
Affiliation(s)
- Hiroshi Hamamoto
- Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
2
|
Zhong X, Ma J, Bai Q, Zhu Y, Zhang Y, Gu Q, Pan Z, Liu G, Wu Z, Yao H. Identification of the RNA-binding domain-containing protein RbpA that acts as a global regulator of the pathogenicity of Streptococcus suis serotype 2. Virulence 2022; 13:1304-1314. [PMID: 35903019 PMCID: PMC9341378 DOI: 10.1080/21505594.2022.2103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2), an emerging zoonotic pathogen, causes swine diseases and human cases of streptococcal toxic shock syndrome. RNA-binding proteins (RBPs) can modulate gene expression through post-transcriptional regulation. In this study, we identified an RBP harbouring an S1 domain, named RbpA, which facilitated SS2 adhesion to host epithelial cells and contributed to bacterial pathogenicity. Comparative proteomic analysis identified 145 proteins that were expressed differentially between ΔrbpA strain and wild-type strain, including several virulence-associated factors, such as the extracellular protein factor (EF), SrtF pilus, IgA1 protease, SBP2 pilus, and peptidoglycan-binding LysM’ proteins. The mechanisms underlying the regulatory effects of RbpA on their encoding genes were explored, and it was found that RbpA regulates gene expression through diverse mechanisms, including post-transcriptional regulation, and thus acts as a global regulator. These results partly reveal the pathogenic mechanism mediated by RbpA, improving our understanding of the regulatory systems of S. suis and providing new insights into bacterial pathogenicity.
Collapse
Affiliation(s)
- Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Jiale Ma
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiankun Bai
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yinchu Zhu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Zhang
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qibing Gu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zihao Pan
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
S1 Domain RNA-Binding Protein CvfD Is a New Posttranscriptional Regulator That Mediates Cold Sensitivity, Phosphate Transport, and Virulence in Streptococcus pneumoniae D39. J Bacteriol 2020; 202:JB.00245-20. [PMID: 32601068 DOI: 10.1128/jb.00245-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Posttranscriptional gene regulation often involves RNA-binding proteins that modulate mRNA translation and/or stability either directly through protein-RNA interactions or indirectly by facilitating the annealing of small regulatory RNAs (sRNAs). The human pathogen Streptococcus pneumoniae D39 (pneumococcus) does not encode homologs to RNA-binding proteins known to be involved in promoting sRNA stability and function, such as Hfq or ProQ, even though it contains genes for at least 112 sRNAs. However, the pneumococcal genome contains genes for other RNA-binding proteins, including at least six S1 domain proteins: ribosomal protein S1 (rpsA), polynucleotide phosphorylase (pnpA), RNase R (rnr), and three proteins with unknown functions. Here, we characterize the function of one of these conserved, yet uncharacterized, S1 domain proteins, SPD_1366, which we have renamed CvfD (conserved virulence factor D), since loss of the protein results in attenuation of virulence in a murine pneumonia model. We report that deletion of cvfD impacts the expression of 144 transcripts, including the pst1 operon, encoding phosphate transport system 1 in S. pneumoniae We further show that CvfD posttranscriptionally regulates the PhoU2 master regulator of the pneumococcal dual-phosphate transport system by binding phoU2 mRNA and impacting PhoU2 translation. CvfD not only controls expression of phosphate transporter genes but also functions as a pleiotropic regulator that impacts cold sensitivity and the expression of sRNAs and genes involved in diverse cellular functions, including manganese uptake and zinc efflux. Together, our data show that CvfD exerts a broad impact on pneumococcal physiology and virulence, partly by posttranscriptional gene regulation.IMPORTANCE Recent advances have led to the identification of numerous sRNAs in the major human respiratory pathogen S. pneumoniae However, little is known about the functions of most sRNAs or RNA-binding proteins involved in RNA biology in pneumococcus. In this paper, we characterize the phenotypes and one target of the S1 domain RNA-binding protein CvfD, a homolog of general stress protein 13 identified, but not extensively characterized, in other Firmicutes species. Pneumococcal CvfD is a broadly pleiotropic regulator, whose absence results in misregulation of divalent cation homeostasis, reduced translation of the PhoU2 master regulator of phosphate uptake, altered metabolism and sRNA amounts, cold sensitivity, and attenuation of virulence. These findings underscore the critical roles of RNA biology in pneumococcal physiology and virulence.
Collapse
|
4
|
Fanelli F, Chieffi D, Di Pinto A, Mottola A, Baruzzi F, Fusco V. Phenotype and genomic background of Arcobacter butzleri strains and taxogenomic assessment of the species. Food Microbiol 2020; 89:103416. [PMID: 32138986 DOI: 10.1016/j.fm.2020.103416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Abstract
In this study the phenotypic and genomic characterization of two Arcobacter butzleri (Ab) strains (Ab 34_O and Ab 39_O) isolated from pre-cut ready-to-eat vegetables were performed. Results provided useful data about their taxonomy and their overall virulence potential with particular reference to the antibiotic and heavy metal susceptibility. These features were moreover compared with those of two Ab strains isolated from shellfish and a genotaxonomic assessment of the Ab species was performed. The two Ab isolated from vegetables were confirmed to belong to the Aliarcobacter butzleri species by 16S rRNA gene sequence analysis, MLST and genomic analyses. The genome-based taxonomic assessment of the Ab species brought to the light the possibility to define different subspecies reflecting the source of isolation, even though further genomes from different sources should be available to support this hypothesis. The strains isolated from vegetables in the same geographic area shared the same distribution of COGs with a prevalence of the cluster "inorganic ion transport and metabolism", consistent with the lithotrophic nature of Arcobacter spp. None of the Ab strains (from shellfish and from vegetables) metabolized carbohydrates but utilized organic acids and amino acids as carbon sources. The metabolic fingerprinting of Ab resulted less discriminatory than the genome-based approach. The Ab strains isolated from vegetables and those isolated from shellfish endowed multiple resistance to several antibiotics and heavy metals.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, 70010, Italy
| | - Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, 70010, Italy
| | - Federico Baruzzi
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production of the National Research Council of Italy (CNR-ISPA), Bari, 70126, Italy.
| |
Collapse
|
5
|
Fanelli F, Di Pinto A, Mottola A, Mule G, Chieffi D, Baruzzi F, Tantillo G, Fusco V. Genomic Characterization of Arcobacter butzleri Isolated From Shellfish: Novel Insight Into Antibiotic Resistance and Virulence Determinants. Front Microbiol 2019; 10:670. [PMID: 31057492 PMCID: PMC6477937 DOI: 10.3389/fmicb.2019.00670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Arcobacter (A.) butzleri is an emerging pathogenic microorganism, whose taxonomy has been recently suggested to be emended to the Aliarcobacter (Al.) butzleri comb. nov. Despite extensive taxonomic analysis, only few fragmented studies have investigated the occurrence and the prevalence of virulence and antibiotic resistance determinants of this species in strains isolated from shellfish. Herein we report for the first time the whole genome sequencing and genomic characterization of two A. butzleri strains isolated from shellfish, with particular reference to the antibiotic, heavy metals and virulence determinants. This study supported the taxonomic assignment of these strains to the Al. butzleri species, and allowed us to identify antibiotic and metal resistance along with virulence determinants, also additional to those previously reported for the only two A. butzleri strains from different environments genomically characterized. Moreover, both strains showed resistance to β-lactams, vanocomycin, tetracycline and erythromycin and susceptibility to aminoglycosides and ciprofloxacin. Beside enlarging the availability of genomic data to perform comparative studies aimed at correlating phenotypic differences associated with ecological niche and geographic distribution with the genetic diversity of A. butzleri spp., this study reports the endowment of antibiotic and heavy metal resistance and virulence determinants of these shellfish-isolated strains. This leads to hypothesize a relatively high virulence of A. butzleri isolated from shellfish and prompt the need for a wider genomic analysis and for in vitro and in vivo studies of more strains isolated from this and other ecological niches, to unravel the mechanism of pathogenicity of this species, and the potential risk associated to their consumption.
Collapse
Affiliation(s)
- Francesca Fanelli
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppina Mule
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (CNR-IBIOM), National Research Council of Italy, Bari, Italy
| | - Daniele Chieffi
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Federico Baruzzi
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| | - Giuseppina Tantillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, Bari, Italy
| |
Collapse
|
6
|
Liang BS, Huang YM, Chen YS, Dong H, Mai JL, Xie YQ, Zhong HM, Deng QL, Long Y, Yang YY, Gong ST, Zhou ZW. Antimicrobial resistance and prevalence of CvfB, SEK and SEQ genes among Staphylococcus aureus isolates from paediatric patients with bloodstream infections. Exp Ther Med 2017; 14:5143-5148. [PMID: 29201229 PMCID: PMC5704349 DOI: 10.3892/etm.2017.5199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/28/2017] [Indexed: 11/05/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most frequently isolated pathogens in neonatal cases of early and late-onset sepsis. Drug resistance profiles and carriage of toxin genes may affect the treatment and outcome of an infection. The present study aimed to determine the antimicrobial resistance patterns and frequencies of the toxin-associated genes conserved virulence factor B (CvfB), staphylococcal enterotoxin Q (SEQ) and staphylococcal enterotoxin K (SEK) among S. aureus isolates recovered from paediatric patients with bloodstream infections (BSIs) in Guangzhou (China). Of the 53 isolates, 43.4% were methicillin-resistant S. aureus (MRSA), and resistance rates to penicillin, erythromycin, clindamycin, trimethoprim/sulfamethoxazole, tetracycline, and ciprofloxacin of 92.5, 66.0, 62.3, 13.2, 20.8 and 1.9% were recorded, respectively. However, no resistance to nitrofurantoin, dalfopristin/quinupristin, rifampicin, gentamicin, linezolid or vancomycin was detected. Resistance to erythromycin, clindamycin and tetracycline in the MRSA group was significantly higher than that in the methicillin-susceptible S. aureus (MSSA) group. No significant differences in antimicrobial resistance patterns were noted between two age groups (≤1 year and >1 year). The proportion of S. aureus isolates positive for CvfB, SEQ and SEK was 100, 34.0 and 35.8%, respectively, with 24.5% (13/53) of strains carrying all three genes. Compared with those in MSSA isolates, the rates of SEK, SEQ and SEK + SEQ carriage among MRSA isolates were significantly higher. Correlations were identified between the carriage of SEQ, SEK and SEQ + SEK genes and MRSA (contingency coefficient 0.500, 0.416, 0.546, respectively; P<0.01). In conclusion, MRSA isolated from the blood of paediatric patients with BSIs not only exhibited higher rates of antimicrobial resistance than MSSA from the same source, but also more frequently harboured SEK and SEQ genes. The combination of the two aspects influenced the dissemination of MRSA among children. The present study clarified the characteristics of BSI-associated S. aureus and enhanced the current understanding of the pathogenicity and treatment of MRSA.
Collapse
Affiliation(s)
- Bing-Shao Liang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yan-Mei Huang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yin-Shuang Chen
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Hui Dong
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Jia-Liang Mai
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yong-Qiang Xie
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Hua-Min Zhong
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Qiu-Lian Deng
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yan Long
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yi-Yu Yang
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Si-Tang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhen-Wen Zhou
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
7
|
Sekimizu K. The Usefulness of Silkworms as a Model Animal for Evaluating the Effectiveness of Medicine and Food. YAKUGAKU ZASSHI 2017; 137:551-562. [DOI: 10.1248/yakushi.16-00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Imae K, Saito Y, Kizaki H, Ryuno H, Mao H, Miyashita A, Suzuki Y, Sekimizu K, Kaito C. Novel Nucleoside Diphosphatase Contributes to Staphylococcus aureus Virulence. J Biol Chem 2016; 291:18608-18619. [PMID: 27422825 DOI: 10.1074/jbc.m116.721845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 11/06/2022] Open
Abstract
We identified SA1684 as a Staphylococcus aureus virulence gene using a silkworm infection model. The SA1684 gene product carried the DUF402 domain, which is found in RNA-binding proteins, and had amino acid sequence similarity with a nucleoside diphosphatase, Streptomyces coelicolor SC4828 protein. The SA1684-deletion mutant exhibited drastically decreased virulence, in which the LD50 against silkworms was more than 10 times that of the parent strain. The SA1684-deletion mutant also exhibited decreased exotoxin production and colony-spreading ability. Purified SA1684 protein had Mn(2+)- or Co(2+)-dependent hydrolyzing activity against nucleoside diphosphates. Alanine substitutions of Tyr-88, Asp-106, and Asp-123/Glu-124, which are conserved between SA1684 and SC4828, diminished the nucleoside diphosphatase activity. Introduction of the wild-type SA1684 gene restored the hemolysin production of the SA1684-deletion mutant, whereas none of the alanine-substituted SA1684 mutant genes restored the hemolysin production. RNA sequence analysis revealed that SA1684 is required for the expression of the virulence regulatory genes agr, sarZ, and sarX, as well as metabolic genes involved in glycolysis and fermentation pathways. These findings suggest that the novel nucleoside diphosphatase SA1684 links metabolic pathways and virulence gene expression and plays an important role in S. aureus virulence.
Collapse
Affiliation(s)
- Kenta Imae
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Yuki Saito
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Hayato Kizaki
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Hiroki Ryuno
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Han Mao
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Atsushi Miyashita
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Yutaka Suzuki
- the Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kazuhisa Sekimizu
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| | - Chikara Kaito
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033 and
| |
Collapse
|
9
|
Kaito C. Understanding of bacterial virulence using the silkworm infection model. Drug Discov Ther 2016; 10:30-3. [DOI: 10.5582/ddt.2016.01020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
10
|
Schuetz A, Murakawa Y, Rosenbaum E, Landthaler M, Heinemann U. Roquin binding to target mRNAs involves a winged helix-turn-helix motif. Nat Commun 2014; 5:5701. [PMID: 25504471 DOI: 10.1038/ncomms6701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/29/2014] [Indexed: 01/31/2023] Open
Abstract
Roquin proteins mediate mRNA deadenylation by recognizing a conserved class of stem-loop RNA degradation motifs via their Roquin domain. Here we present the crystal structure of a Roquin domain, revealing a mostly helical protein fold bearing a winged helix-turn-helix motif. By combining structural, biochemical and mutation analyses, we gain insight into the mode of RNA binding. We show that the winged helix-turn-helix motif is involved in the binding of constitutive decay elements-containing stem-loop mRNAs. Moreover, we provide biochemical evidence that Roquin proteins are additionally able to bind to duplex RNA and have the potential to be functional in different oligomeric states.
Collapse
Affiliation(s)
- Anja Schuetz
- Helmholtz Protein Sample Production Facility, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Yasuhiro Murakawa
- Laboratory for RNA Biology and Posttranscriptional Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Eva Rosenbaum
- Structure and Membrane Interaction of G-Proteins, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Markus Landthaler
- Laboratory for RNA Biology and Posttranscriptional Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Udo Heinemann
- 1] Helmholtz Protein Sample Production Facility, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany [2] Chemistry and Biochemistry Institute, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
11
|
Miyashita A, Iyoda S, Ishii K, Hamamoto H, Sekimizu K, Kaito C. Lipopolysaccharide O-antigen of enterohemorrhagic Escherichia coli O157:H7 is required for killing both insects and mammals. FEMS Microbiol Lett 2012; 333:59-68. [DOI: 10.1111/j.1574-6968.2012.02599.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/14/2012] [Indexed: 01/08/2023] Open
Affiliation(s)
- Atsushi Miyashita
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| | - Sunao Iyoda
- Department of Bacteriology; National Institute of Infectious Diseases; Shinjuku-ku; Tokyo; Japan
| | - Kenichi Ishii
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| | - Hiroshi Hamamoto
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| | - Chikara Kaito
- Laboratory of Microbiology; Graduate School of Pharmaceutical Sciences; The University of Tokyo; Hongo; Bunkyo-ku; Tokyo; Japan
| |
Collapse
|
12
|
Schmier BJ, Seetharaman J, Deutscher MP, Hunt JF, Malhotra A. The structure and enzymatic properties of a novel RNase II family enzyme from Deinococcus radiodurans. J Mol Biol 2012; 415:547-59. [PMID: 22133431 PMCID: PMC3269974 DOI: 10.1016/j.jmb.2011.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 01/07/2023]
Abstract
Exoribonucleases are vital in nearly all aspects of RNA metabolism, including RNA maturation, end-turnover, and degradation. RNase II and RNase R are paralogous members of the RNR superfamily of nonspecific, 3'→5', processive exoribonucleases. In Escherichia coli, RNase II plays a primary role in mRNA decay and has a preference for unstructured RNA. RNase R, in contrast, is capable of digesting structured RNA and plays a role in the degradation of both mRNA and stable RNA. Deinococcus radiodurans, a radiation-resistant bacterium, contains two RNR family members. The shorter of these, DrR63, includes a sequence signature typical of RNase R, but we show here that this enzyme is an RNase II-type exonuclease and cannot degrade structured RNA. We also report the crystal structure of this protein, now termed DrII. The DrII structure reveals a truncated RNA binding region in which the N-terminal cold shock domains, typical of most RNR family nucleases, are replaced by an unusual winged helix-turn-helix domain, where the "wing" is contributed by the C-terminal S1 domain. Consistent with its truncated RNA binding region, DrII is able to remove 3' overhangs from RNA molecules closer to duplexes than do other RNase II-type enzymes. DrII also displays distinct sensitivity to pyrimidine-rich regions of single-stranded RNA and is able to process tRNA precursors with adenosine-rich 3' extensions in vitro. These data indicate that DrII is the RNase II of D. radiodurans and that its structure and catalytic properties are distinct from those of other related enzymes.
Collapse
Affiliation(s)
- Brad J. Schmier
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, PO Box 016129, Miami, FL, 33101-6129, USA
| | - Jayaraman Seetharaman
- Northeast Structural Genomics Consortium (NESG) & Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, PO Box 016129, Miami, FL, 33101-6129, USA
| | - John F. Hunt
- Northeast Structural Genomics Consortium (NESG) & Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027
| | - Arun Malhotra
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, PO Box 016129, Miami, FL, 33101-6129, USA
| |
Collapse
|
13
|
Matsumoto Y, Miyazaki S, Fukunaga DH, Shimizu K, Kawamoto S, Sekimizu K. Quantitative evaluation of cryptococcal pathogenesis and antifungal drugs using a silkworm infection model with Cryptococcus neoformans. J Appl Microbiol 2011; 112:138-46. [PMID: 22040451 DOI: 10.1111/j.1365-2672.2011.05186.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS To develop an in vivo system that could quantitatively evaluate the therapeutic effects of antifungal drugs using a silkworm infection model with Cryptococcus neoformans. METHODS AND RESULTS Silkworms reared at 37°C died after an injection of viable serotype A C. neoformans fungus into the haemolymph. The serotype A C. neoformans, which is known to have higher mammal pathogenicity than the serotype D, was also more virulent against the silkworm. Furthermore, the deletion mutants of genes gpa1, pka1 and cna1, which are genes known to be necessary for the pathogenesis in mammals, showed an increase in the number of fungal cells necessary to kill half of the silkworm population (LD(50) value). Antifungal drugs, amphotericin B, flucytosine, fluconazole and ketoconazole, showed therapeutic effects in silkworms infected with C. neoformans. However, amphotericin B was not therapeutically effective when injected into the silkworm intestine, comparable to the fact that amphotericin B is not absorbed by the intestine in mammals. CONCLUSIONS The silkworm-C. neoformans infection model is useful for evaluating the therapeutic effects of antifungal drugs. SIGNIFICANCE AND IMPACT OF THE STUDY The silkworm infection model has various advantages for screening antifungal drug candidates. We can also elucidate the cryptococcal pathogenesis and evaluate the in vivo pharmacokinetics and toxicity of each drug.
Collapse
Affiliation(s)
- Y Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Miyazaki S, Matsumoto Y, Sekimizu K, Kaito C. Evaluation of Staphylococcus aureus virulence factors using a silkworm model. FEMS Microbiol Lett 2011; 326:116-24. [PMID: 22092964 DOI: 10.1111/j.1574-6968.2011.02439.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/29/2011] [Accepted: 10/17/2011] [Indexed: 02/04/2023] Open
Abstract
Previous studies have indicated that the silkworm model is useful for identifying virulence genes of Staphylococcus aureus, a human pathogenic bacterium. Here we examined the scope of S. aureus virulence factors that can be evaluated using the silkworm model. Gene-disrupted mutants of the agr locus, arlS gene and saeS gene, which regulate the expression of cell surface adhesins and hemolysins, exhibited attenuated virulence in silkworms. Mutants of the hla gene encoding α-hemolysin, the hlb gene encoding β-hemolysin, and the psmα and psmβ operons encoding cytolysins, however, showed virulence in silkworms indistinguishable from that of the parent strain. Thus, these S. aureus cytolysins are not required for virulence in silkworms. In contrast, the gene-disrupted mutants of clfB, fnbB and sdrC, which encode cell-wall-anchored proteins, attenuated S. aureus virulence in silkworms. In addition, the mutant of the srtA gene encoding sortase A, which anchors cell-wall proteins, showed attenuated virulence in silkworms. These findings suggest that the silkworm model can be used to evaluate S. aureus cell-wall proteins and regulatory proteins as virulence factors.
Collapse
Affiliation(s)
- Shinya Miyazaki
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Hanada Y, Sekimizu K, Kaito C. Silkworm apolipophorin protein inhibits Staphylococcus aureus virulence. J Biol Chem 2011; 286:39360-9. [PMID: 21937431 DOI: 10.1074/jbc.m111.278416] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Silkworm hemolymph inhibits hemolysin production by Staphylococcus aureus. We purified a factor in the silkworm hemolymph responsible for this inhibitory activity. The final fraction with the greatest specific activity contained 220- and 74-kDa proteins. Determination of the N-terminal amino acid sequence revealed that the 220- and 74-kDa proteins were apolipophorin I and apolipophorin II, respectively, indicating that the factor was apolipophorin (ApoLp). The purified ApoLp fraction showed decreased expression of S. aureus hla encoding α-hemolysin, hlb encoding β-hemolysin, saeRS, and RNAIII, which activate the expression of these hemolysin genes. Injection of an anti-ApoLp antibody into the hemolymph increased the sensitivity of silkworms to the lethal effect of S. aureus. Hog gastric mucin, a mammalian homologue of ApoLp, decreased the expression of S. aureus hla and hlb. These findings suggest that ApoLp in the silkworm hemolymph inhibits S. aureus virulence and contributes to defense against S. aureus infection and that its activity is conserved in mammalian mucin.
Collapse
Affiliation(s)
- Yuichi Hanada
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
16
|
Young CL, Karbstein K. The roles of S1 RNA-binding domains in Rrp5's interactions with pre-rRNA. RNA (NEW YORK, N.Y.) 2011; 17:512-521. [PMID: 21233221 PMCID: PMC3039150 DOI: 10.1261/rna.2458811] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/09/2010] [Indexed: 05/27/2023]
Abstract
RNA-binding proteins mediate the function of all RNAs. Since few distinct RNA-binding domains (RBDs) exist, with most RBDs contacting only a few nucleotides, RNA-binding proteins often combine multiple RNA-binding motifs to achieve a higher affinity and selectivity for their targets. Rrp5, a ribosome assembly factor essential for both 40S and 60S ribosome maturation, is an extreme example as it contains 12 tandem S1 RNA-binding domains. In this study, we use a combination of RNA binding and DMS probing experiments to probe interactions of Rrp5 with pre-rRNA mimics. Our data localize Rrp5's binding site to three distinct regions within internal transcribed spacer 1 (ITS1), the sequence between 18S and 5.8S rRNAs. One of these regions is directly adjacent to a recently uncovered helical structure, which prevents premature cleavage at the 3'-end of 18S rRNA. This finding, together with previous results, suggests a role for Rrp5 in regulating the above-mentioned helical element. Furthermore, we have produced two truncated forms of the protein, Rrp5N and Rrp5C, which together encompass the entire protein and fully restore growth. Quantitative analysis of the RNA affinity of these Rrp5 fragments indicates that the first nine S1 motifs contribute much of Rrp5's RNA affinity, while the last three domains alone provide its specificity for the pre-rRNA. This surprising division of labor is unique, as it suggests that S1 domains can bind RNA both specifically as well as nonspecifically with high affinity; this has important implications for the molecular details of the Rrp5•pre-rRNA complex.
Collapse
Affiliation(s)
- Crystal L Young
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
17
|
Kaito C, Usui K, Kyuma T, Sekimizu K. Isolation of mammalian pathogenic bacteria using silkworms. Drug Discov Ther 2011; 5:66-70. [DOI: 10.5582/ddt.2011.v5.2.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kimihito Usui
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Tatsuhiko Kyuma
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|