1
|
Ding C, Ding Z, Liu Q, Liu W, Chai L. Advances in mechanism for the microbial transformation of heavy metals: implications for bioremediation strategies. Chem Commun (Camb) 2024; 60:12315-12332. [PMID: 39364540 DOI: 10.1039/d4cc03722g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Heavy metals are extensively discharged through various anthropogenic activities, resulting in an environmental risk on a global scale. In this case, microorganisms can survive in an extreme heavy metal-contaminated environment via detoxification or resistance, playing a pivotal role in the speciation, bioavailability, and mobility of heavy metals. Therefore, studies on the mechanism for the microbial transformation of heavy metals are of great importance and can provide guidance for heavy metal bioremediation. Current research studies on the microbial transformation of heavy metals mainly focus on the single oxidation, reduction and methylation pathways. However, complex microbial transformation processes and corresponding bioremediation strategies have never been clarified, which may involve the inherent physicochemical properties of heavy metals. To uncover the underlying mechanism, we reclassified heavy metals into three categories based on their biological transformation pathways, namely, metals that can be chelated, reduced or oxidized, and methylated. Firstly, we comprehensively characterized the difference in transmembrane pathways between heavy metal cations and anions. Further, biotransformation based on chelation by low-molecular-weight organic complexes is thoroughly discussed. Moreover, the progress and knowledge gaps in the microbial redox and (de)methylation mechanisms are discussed to establish a connection linking theoretical advancements with solutions to the heavy metal contamination problem. Finally, several efficient bioremediation strategies for heavy metals and the limitations of bioremediation are proposed. This review presents a solid contribution to the design of efficient microbial remediation strategies applied in the real environment.
Collapse
Affiliation(s)
- Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Zihan Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Qingcai Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Weizao Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
2
|
A fluorescent probe based on a phenylalanine derivative is capable of sequential detection of Zn 2+ and Cys/His. J Biol Inorg Chem 2023; 28:205-211. [PMID: 36652011 DOI: 10.1007/s00775-022-01984-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023]
Abstract
A facile and dual fluorescent chemosensor (named 7-IDF) based on a phenylalanine derivative with an indole group was designed and synthesized. 7-IDF can selectively and sensitively detect Zn2+ via obvious fluorescence enhancement in an aqueous solution. Remarkably, the 7-IDF-Zn complex with blue luminescence has higher selectivity toward cysteine (Cys) and histidine (His) than for other amino acids. Intriguingly, 7-IDF can also be used as an excellent probe to detect Zn2+ in real water samples. Moreover, 7-IDF and 7-IDF-Zn possess excellent biocompatibility and cell permeability, and 7-IDF can consecutively detect Zn2+ and Cys/His in Hela cells through fluorescence imaging experiments. This study suggests that the phenylalanine-based chemosensor possesses great potential applications for the sequential detection of Zn2+ and Cys/His in biosystems.
Collapse
|
3
|
Wu N, Wang X, Yan Z, Xu X, Xie S, Liang J. Transformation of pig manure by passage through the gut of black soldier fly larvae (Hermetia illucens): Metal speciation, potential pathogens and metal-related functional profiling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111925. [PMID: 33465627 DOI: 10.1016/j.ecoenv.2021.111925] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Black soldier fly larvae (BSFL) have great potential in livestock manure disposal. However, the changes in metal speciation, microbial communities, potential pathogens during the manure transformation process by BSFL is still largely uncharacterized, as well as the underlying metal tolerance mechanism of larval gut microbiome. Here we used BSFL to convert pig manure (PM) into larval feces (BF), and investigated the metal and microbial changes in the conversion process. Physicochemical parameters (e.g. pH, electrical conductivity, total nitrogen, total phosphorus and total potassium) in PM were significantly altered compared to BF. After conversion, less than 10% of Cu and Zn were accumulated in larval bodies. The bioavailable fraction of Cu (88.3%-86.2%) and Zn (80.6%-82.3%) occupied as the primary form in PM and BF. Genera Enterococcus, Clostridium_sensu_stricto_1, Terrisporobacter and Romboutsia were substantially enriched in the final BSFL gut (GF) compared with initial gut (GI). BSFL transformation substantially reduced pathogen abundances (decreased by 89%) derived from pig manure. Functional genes involved in metal homeostasis and resistance (e.g. CutC, pcoC, cusR, zurR and zntB) were obviously strengthened (by 2.3-7.7 folds) in GF than in GI, which might partly explain the metal tolerance ability of BSFL during the livestock manure transformation process.
Collapse
Affiliation(s)
- Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China
| | - Zechuan Yan
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China.
| | - Shiyu Xie
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
4
|
Abstract
CorA proteins belong to 2-TM-GxN family of membrane proteins, and play a major role in Mg2+ transport in prokaryotes and eukaryotic mitochondria. The selection of substrate is believed to occur via the signature motif GxN, however there is no consensus how strict this selection within the family. To answer this question, we employed fluorescence-based transport assays on three different family members, namely CorA from bacterium Thermotoga maritima, CorA from the archeon Methanocaldococcus jannaschii and ZntB from bacterium Escherichia coli, reconstituted into proteoliposomes. Our results show that all three proteins readily transport Mg2+, Co2+, Ni2+ and Zn2+, but not Al3+. Despite the similarity in cation specificity, ZntB differs from the CorA proteins, as in the former transport is stimulated by a proton gradient, but in the latter by the membrane potential, confirming the hypothesis that CorA and ZntB proteins diverged to different transport mechanisms within the same protein scaffold.
Collapse
|
5
|
Rensing C, Moodley A, Cavaco LM, McDevitt SF. Resistance to Metals Used in Agricultural Production. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0025-2017. [PMID: 29676247 PMCID: PMC11633777 DOI: 10.1128/microbiolspec.arba-0025-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Metals and metalloids have been used alongside antibiotics in livestock production for a long time. The potential and acute negative impact on the environment and human health of these livestock feed supplements has prompted lawmakers to ban or discourage the use of some or all of these supplements. This article provides an overview of current use in the European Union and the United States, detected metal resistance determinants, and the proteins and mechanisms responsible for conferring copper and zinc resistance in bacteria. A detailed description of the most common copper and zinc metal resistance determinants is given to illustrate not only the potential danger of coselecting antibiotic resistance genes but also the potential to generate bacterial strains with an increased potential to be pathogenic to humans. For example, the presence of a 20-gene copper pathogenicity island is highlighted since bacteria containing this gene cluster could be readily isolated from copper-fed pigs, and many pathogenic strains, including Escherichia coli O104:H4, contain this potential virulence factor, suggesting a potential link between copper supplements in livestock and the evolution of pathogens.
Collapse
Affiliation(s)
- Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Arshnee Moodley
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Lina M Cavaco
- Department for Bacteria, Parasites, and Fungi, Infectious Disease Preparedness, Statens Serum Institut and Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | | |
Collapse
|
6
|
The structural basis of proton driven zinc transport by ZntB. Nat Commun 2017; 8:1313. [PMID: 29101379 PMCID: PMC5670123 DOI: 10.1038/s41467-017-01483-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/18/2017] [Indexed: 01/09/2023] Open
Abstract
Zinc is an essential microelement to sustain all forms of life. However, excess of zinc is toxic, therefore dedicated import, export and storage proteins for tight regulation of the zinc concentration have evolved. In Enterobacteriaceae, several membrane transporters are involved in zinc homeostasis and linked to virulence. ZntB has been proposed to play a role in the export of zinc, but the transport mechanism of ZntB is poorly understood and based only on experimental characterization of its distant homologue CorA magnesium channel. Here, we report the cryo-electron microscopy structure of full-length ZntB from Escherichia coli together with the results of isothermal titration calorimetry, and radio-ligand uptake and fluorescent transport assays on ZntB reconstituted into liposomes. Our results show that ZntB mediates Zn2+ uptake, stimulated by a pH gradient across the membrane, using a transport mechanism that does not resemble the one proposed for homologous CorA channels. The bacterial zinc transporter ZntB is important for maintaining zinc homeostasis and is mechanistically not well understood. Here, the authors present the cryo-EM structure of ZntB at 4.2 Å resolution, perform transport assays and propose a model for its Zn2+ transport mechanism.
Collapse
|
7
|
Hassan KA, Pederick VG, Elbourne LDH, Paulsen IT, Paton JC, McDevitt CA, Eijkelkamp BA. Zinc stress induces copper depletion in Acinetobacter baumannii. BMC Microbiol 2017; 17:59. [PMID: 28284195 PMCID: PMC5346208 DOI: 10.1186/s12866-017-0965-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
Background The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. Results We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Conclusions Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0965-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karl A Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Victoria G Pederick
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Liam D H Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Bart A Eijkelkamp
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Wątły J, Potocki S, Rowińska-Żyrek M. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity. Chemistry 2016; 22:15992-16010. [DOI: 10.1002/chem.201602376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | - Sławomir Potocki
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | | |
Collapse
|
9
|
Kobayashi NI, Tanoi K. Critical Issues in the Study of Magnesium Transport Systems and Magnesium Deficiency Symptoms in Plants. Int J Mol Sci 2015; 16:23076-93. [PMID: 26404266 PMCID: PMC4613352 DOI: 10.3390/ijms160923076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022] Open
Abstract
Magnesium (Mg) is the second most abundant cation in living cells. Over 300 enzymes are known to be Mg-dependent, and changes in the Mg concentration significantly affects the membrane potential. As Mg becomes deficient, starch accumulation and chlorosis, bridged by the generation of reactive oxygen species, are commonly found in Mg-deficient young mature leaves. These defects further cause the inhibition of photosynthesis and finally decrease the biomass. Recently, transcriptome analysis has indicated the transcriptinal downregulation of chlorophyll apparatus at the earlier stages of Mg deficiency, and also the potential involvement of complicated networks relating to hormonal signaling and circadian oscillation. However, the processes of the common symptoms as well as the networks between Mg deficiency and signaling are not yet fully understood. Here, for the purpose of defining the missing pieces, several problems are considered and explained by providing an introduction to recent reports on physiological and transcriptional responses to Mg deficiency. In addition, it has long been unclear whether the Mg deficiency response involves the modulation of Mg2+ transport system. In this review, the current status of research on Mg2+ transport and the relating transporters are also summarized. Especially, the rapid progress in physiological characterization of the plant MRS2 gene family as well as the fundamental investigation about the molecular mechanism of the action of bacterial CorA proteins are described.
Collapse
Affiliation(s)
- Natsuko I Kobayashi
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
10
|
Haley KP, Gaddy JA. Metalloregulation of Helicobacter pylori physiology and pathogenesis. Front Microbiol 2015; 6:911. [PMID: 26388855 PMCID: PMC4557348 DOI: 10.3389/fmicb.2015.00911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori is a Gram-negative spiral-shaped bacterium that colonizes over half of the world's population. Chronic H. pylori infection is associated with increased risk for numerous disease outcomes including gastritis, dysplasia, neoplasia, B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma), and invasive adenocarcinoma. The complex interactions that occur between pathogen and host are dynamic and exquisitely regulated, and the relationship between H. pylori and its human host are no exception. To successfully colonize, and subsequently persist, within the human stomach H. pylori must temporally regulate numerous genes to ensure localization to the gastric lumen and coordinated expression of virulence factors to subvert the host's innate and adaptive immune response. H. pylori achieves this precise gene regulation by sensing subtle environmental changes including host-mediated alterations in nutrient availability and responding with dramatic global changes in gene expression. Recent studies revealed that the presence or absence of numerous metal ions encountered in the lumen of the stomach, or within host tissues, including nickel, iron, copper and zinc, can influence regulatory networks to alter gene expression in H. pylori. These expression changes modulate the deployment of bacterial virulence factors that can ultimately influence disease outcome. In this review we will discuss the environmental stimuli that are detected by H. pylori as well as the trans regulatory elements, specifically the transcription regulators and transcription factors, that allow for these significant transcriptional shifts.
Collapse
Affiliation(s)
- Kathryn P Haley
- Tennessee Valley Healthcare Services, Department of Veterans Affairs Nashville, TN, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA ; Tennessee Valley Healthcare Services, Department of Veterans Affairs Nashville, TN, USA
| |
Collapse
|
11
|
Chaoprasid P, Nookabkaew S, Sukchawalit R, Mongkolsuk S. Roles of Agrobacterium tumefaciens C58 ZntA and ZntB and the transcriptional regulator ZntR in controlling Cd2+/Zn2+/Co2+ resistance and the peroxide stress response. Microbiology (Reading) 2015; 161:1730-1740. [DOI: 10.1099/mic.0.000135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Paweena Chaoprasid
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Sumontha Nookabkaew
- Laboratory of Pharmacology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Rojana Sukchawalit
- Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok 10210, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Boudker O, Oh S. Isothermal titration calorimetry of ion-coupled membrane transporters. Methods 2015; 76:171-182. [PMID: 25676707 PMCID: PMC4912014 DOI: 10.1016/j.ymeth.2015.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/17/2022] Open
Abstract
Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding--enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors.
Collapse
Affiliation(s)
- Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medical College, New York 10021, USA.
| | - SeCheol Oh
- Department of Physiology & Biophysics, Weill Cornell Medical College, New York 10021, USA.
| |
Collapse
|
13
|
Blindauer CA. Advances in the molecular understanding of biological zinc transport. Chem Commun (Camb) 2015; 51:4544-63. [DOI: 10.1039/c4cc10174j] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recognition of the importance of zinc homeostasis for health has driven a surge in structural data on major zinc-transporting proteins.
Collapse
|
14
|
Lee C, Bedgar DL, Davin LB, Lewis NG. Assessment of a putative proton relay in Arabidopsis cinnamyl alcohol dehydrogenase catalysis. Org Biomol Chem 2013; 11:1127-34. [PMID: 23296200 DOI: 10.1039/c2ob27189c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extended proton relay systems have been proposed for various alcohol dehydrogenases, including the Arabidopsis thaliana cinnamyl alcohol dehydrogenases (AtCADs). Following a previous structural biology investigation of AtCAD5, the potential roles of three amino acid residues in a putative proton relay system, namely Thr49, His52 and Asp57, in AtCAD5, were investigated herein. Using site-directed mutagenesis, kinetic and isothermal titration calorimetry (ITC) analyses, it was established that the Thr49 residue was essential for overall catalytic conversion, whereas His52 and Asp57 residues were not. Mutation of the Thr49 residue to Ala resulted in near abolition of catalysis, with thermodynamic data indicating a negative enthalpic change (ΔH), as well as a significant decrease in binding affinity with NADPH, in contrast to wild type AtCAD5. Mutation of His52 and Asp57 residues by Ala did not significantly change either catalytic efficiency or thermodynamic parameters. Therefore, only the Thr49 residue is demonstrably essential for catalytic function. ITC analyses also suggested that for AtCAD5 catalysis, NADPH was bound first followed by p-coumaryl aldehyde.
Collapse
Affiliation(s)
- Choonseok Lee
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | |
Collapse
|
15
|
Potocki S, Valensin D, Camponeschi F, Kozlowski H. The extracellular loop of IRT1 ZIP protein — the chosen one for zinc? J Inorg Biochem 2013; 127:246-52. [DOI: 10.1016/j.jinorgbio.2013.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
|
16
|
Kozlowski H, Potocki S, Remelli M, Rowinska-Zyrek M, Valensin D. Specific metal ion binding sites in unstructured regions of proteins. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Schmitz J, Tierbach A, Lenz H, Meschenmoser K, Knoop V. Membrane protein interactions between different Arabidopsis thaliana MRS2-type magnesium transporters are highly permissive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2032-40. [DOI: 10.1016/j.bbamem.2013.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 05/06/2013] [Accepted: 05/22/2013] [Indexed: 12/25/2022]
|
18
|
Khan MB, Sponder G, Sjöblom B, Svidová S, Schweyen RJ, Carugo O, Djinović-Carugo K. Structural and functional characterization of the N-terminal domain of the yeast Mg2+channel Mrs2. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1653-64. [DOI: 10.1107/s0907444913011712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 04/29/2013] [Indexed: 01/08/2023]
|
19
|
Payandeh J, Pfoh R, Pai EF. The structure and regulation of magnesium selective ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2778-92. [PMID: 23954807 DOI: 10.1016/j.bbamem.2013.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
The magnesium ion (Mg(2+)) is the most abundant divalent cation within cells. In man, Mg(2+)-deficiency is associated with diseases affecting the heart, muscle, bone, immune, and nervous systems. Despite its impact on human health, little is known about the molecular mechanisms that regulate magnesium transport and storage. Complete structural information on eukaryotic Mg(2+)-transport proteins is currently lacking due to associated technical challenges. The prokaryotic MgtE and CorA magnesium transport systems have recently succumbed to structure determination by X-ray crystallography, providing first views of these ubiquitous and essential Mg(2+)-channels. MgtE and CorA are unique among known membrane protein structures, each revealing a novel protein fold containing distinct arrangements of ten transmembrane-spanning α-helices. Structural and functional analyses have established that Mg(2+)-selectivity in MgtE and CorA occurs through distinct mechanisms. Conserved acidic side-chains appear to form the selectivity filter in MgtE, whereas conserved asparagines coordinate hydrated Mg(2+)-ions within the selectivity filter of CorA. Common structural themes have also emerged whereby MgtE and CorA sense and respond to physiologically relevant, intracellular Mg(2+)-levels through dedicated regulatory domains. Within these domains, multiple primary and secondary Mg(2+)-binding sites serve to staple these ion channels into their respective closed conformations, implying that Mg(2+)-transport is well guarded and very tightly regulated. The MgtE and CorA proteins represent valuable structural templates to better understand the related eukaryotic SLC41 and Mrs2-Alr1 magnesium channels. Herein, we review the structure, function and regulation of MgtE and CorA and consider these unique proteins within the expanding universe of ion channel and transporter structural biology.
Collapse
Affiliation(s)
- Jian Payandeh
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
20
|
Francis BR. Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. J Mol Evol 2013; 77:134-58. [PMID: 23743924 DOI: 10.1007/s00239-013-9567-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022]
Abstract
Fifty years have passed since the genetic code was deciphered, but how the genetic code came into being has not been satisfactorily addressed. It is now widely accepted that the earliest genetic code did not encode all 20 amino acids found in the universal genetic code as some amino acids have complex biosynthetic pathways and likely were not available from the environment. Therefore, the genetic code evolved as pathways for synthesis of new amino acids became available. One hypothesis proposes that early in the evolution of the genetic code four amino acids-valine, alanine, aspartic acid, and glycine-were coded by GNC codons (N = any base) with the remaining codons being nonsense codons. The other sixteen amino acids were subsequently added to the genetic code by changing nonsense codons into sense codons for these amino acids. Improvement in protein function is presumed to be the driving force behind the evolution of the code, but how improved function was achieved by adding amino acids has not been examined. Based on an analysis of amino acid function in proteins, an evolutionary mechanism for expansion of the genetic code is described in which individual coded amino acids were replaced by new amino acids that used nonsense codons differing by one base change from the sense codons previously used. The improved or altered protein function afforded by the changes in amino acid function provided the selective advantage underlying the expansion of the genetic code. Analysis of amino acid properties and functions explains why amino acids are found in their respective positions in the genetic code.
Collapse
Affiliation(s)
- Brian R Francis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-3944, USA,
| |
Collapse
|
21
|
Maret W. New perspectives of zinc coordination environments in proteins. J Inorg Biochem 2011; 111:110-6. [PMID: 22196021 DOI: 10.1016/j.jinorgbio.2011.11.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/21/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
Abstract
Zinc is more widely used as a cofactor in proteins than any other transition metal ion. In addition to catalytic and structural functions, zinc(II) ions have a role in information transfer and cellular control. They bind transiently when proteins regulate zinc concentrations and re-distribute zinc and when proteins are regulated by zinc. Transient zinc-binding sites employ the same donors of amino acid side chains as catalytic and structural sites but differ in their coordination chemistry that can modulate zinc affinities over at least ten orders of magnitude. Redox activity of the cysteine ligands, multiple binding modes of the oxygen, sulfur and nitrogen donors, and protein conformational changes induce coordination dynamics in zinc sites and zinc ion mobility. Functional annotations of the remarkable variation of coordination environments in zinc proteomes need to consider how the primary coordination spheres interact with protein structure and dynamics, and the adaptation of coordination properties to the biological context in extracellular, cellular, or subcellular locations.
Collapse
Affiliation(s)
- Wolfgang Maret
- Metal Metabolism Group, Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| |
Collapse
|
22
|
Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34. J Bacteriol 2011; 193:4652-63. [PMID: 21742896 DOI: 10.1128/jb.05293-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cupriavidus metallidurans is adapted to high concentrations of transition metal cations and is a model system for studying metal homeostasis in difficult environments. The elemental composition of C. metallidurans cells cultivated under various conditions was determined, revealing the ability of the bacterium to shield homeostasis of one essential metal from the toxic action of another. The contribution of metal uptake systems to this ability was studied. C. metallidurans contains three CorA members of the metal inorganic transport (MIT) protein family of putative magnesium uptake systems, ZupT of the ZRT/IRT protein, or ZIP, family, and PitA, which imports metal phosphate complexes. Expression of the genes for all these transporters was regulated by zinc availability, as shown by reporter gene fusions. While expression of zupT was upregulated under conditions of zinc starvation, expression of the other genes was downregulated at high zinc concentrations. Only corA(1) expression was influenced by magnesium starvation. Deletion mutants were constructed to characterize the contribution of each system to transition metal import. This identified ZupT as the main zinc uptake system under conditions of low zinc availability, CorA(1) as the main secondary magnesium uptake system, and CorA(2) and CorA(3) as backup systems for metal cation import. PitA may function as a cation-phosphate uptake system, the main supplier of divalent metal cations and phosphate in phosphate-rich environments. Thus, metal homeostasis in C. metallidurans is achieved by highly redundant metal uptake systems, which have only minimal cation selectivity and are in combination with efflux systems that "worry later" about surplus cations.
Collapse
|