1
|
Mars JC, Culjkovic-Kraljacic B, Borden KL. eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. Nucleus 2024; 15:2360196. [PMID: 38880976 PMCID: PMC11185188 DOI: 10.1080/19491034.2024.2360196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Katherine L.B. Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Ojha M, Vogt J, Das NK, Redmond E, Singh K, Banna HA, Sadat T, Koirala D. Structure of saguaro cactus virus 3' translational enhancer mimics 5' cap for eIF4E binding. Proc Natl Acad Sci U S A 2024; 121:e2313677121. [PMID: 38241435 PMCID: PMC10823258 DOI: 10.1073/pnas.2313677121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
The genomes of several plant viruses contain RNA structures at their 3' ends called cap-independent translation enhancers (CITEs) that bind the host protein factors such as mRNA 5' cap-binding protein eIF4E for promoting cap-independent genome translation. However, the structural basis of such 5' cap-binding protein recognition by the uncapped RNA remains largely unknown. Here, we have determined the crystal structure of a 3' CITE, panicum mosaic virus-like translation enhancer (PTE) from the saguaro cactus virus (SCV), using a Fab crystallization chaperone. The PTE RNA folds into a three-way junction architecture with a pseudoknot between the purine-rich R domain and pyrimidine-rich Y domain, which organizes the overall structure to protrude out a specific guanine nucleotide, G18, from the R domain that comprises a major interaction site for the eIF4E binding. The superimposable crystal structures of the wild-type, G18A, G18C, and G18U mutants suggest that the PTE scaffold is preorganized with the flipped-out G18 ready to dock into the eIF4E 5' cap-binding pocket. The binding studies with wheat and human eIF4Es using gel electrophoresis and isothermal titration calorimetry, and molecular docking computation for the PTE-eIF4E complex demonstrated that the PTE structure essentially mimics the mRNA 5' cap for eIF4E binding. Such 5' cap mimicry by the uncapped and structured viral RNA highlights how viruses can exploit RNA structures to mimic the host protein-binding partners and bypass the canonical mechanisms for their genome translation, providing opportunities for a better understanding of virus-host interactions and non-canonical translation mechanisms found in many pathogenic RNA viruses.
Collapse
Affiliation(s)
- Manju Ojha
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD21250
| | - Jeff Vogt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD21250
| | - Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD21250
| | - Emily Redmond
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD21250
| | - Karndeep Singh
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD21250
- HHMI, University of Maryland Baltimore County, Baltimore, MD21250
| | - Hasan Al Banna
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD21250
| | - Tasnia Sadat
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD21250
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD21250
| |
Collapse
|
3
|
Lewicka A, Roman C, Jones S, Disare M, Rice P, Piccirilli J. Crystal structure of a cap-independent translation enhancer RNA. Nucleic Acids Res 2023; 51:8891-8907. [PMID: 37548413 PMCID: PMC10484670 DOI: 10.1093/nar/gkad649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
In eukaryotic messenger RNAs, the 5' cap structure binds to the translation initiation factor 4E to facilitate early stages of translation. Although many plant viruses lack the 5' cap structure, some contain cap-independent translation elements (CITEs) in their 3' untranslated region. The PTE (Panicum mosaic virus translation element) class of CITEs contains a G-rich asymmetric bulge and a C-rich helical junction that were proposed to interact via formation of a pseudoknot. SHAPE analysis of PTE homologs reveals a highly reactive guanosine residue within the G-rich region proposed to mediate eukaryotic initiation factor 4E (eIF4E) recognition. Here we have obtained the crystal structure of the PTE from Pea enation mosaic virus 2 (PEMV2) RNA in complex with our structural chaperone, Fab BL3-6. The structure reveals that the G-rich and C-rich regions interact through a complex network of interactions distinct from those expected for a pseudoknot. The motif, which contains a short parallel duplex, provides a structural mechanism for how the guanosine is extruded from the core stack to enable eIF4E recognition. Homologous PTE elements harbor a G-rich bulge and a three-way junction and exhibit covariation at crucial positions, suggesting that the PEMV2 tertiary architecture is conserved among these homologs.
Collapse
Affiliation(s)
- Anna Lewicka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Christina Roman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Stacey Jones
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Disare
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Bera S, Ilyas M, Mikkelsen AA, Simon AE. Conserved Structure Associated with Different 3′CITEs Is Important for Translation of Umbraviruses. Viruses 2023; 15:v15030638. [PMID: 36992347 PMCID: PMC10051134 DOI: 10.3390/v15030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The cap-independent translation of plus-strand RNA plant viruses frequently depends on 3′ structures to attract translation initiation factors that bind ribosomal subunits or bind directly to ribosomes. Umbraviruses are excellent models for studying 3′ cap-independent translation enhancers (3′CITEs), as umbraviruses can have different 3′CITEs in the central region of their lengthy 3′UTRs, and most also have a particular 3′CITE (the T-shaped structure or 3′TSS) near their 3′ ends. We discovered a novel hairpin just upstream of the centrally located (known or putative) 3′CITEs in all 14 umbraviruses. These CITE-associated structures (CASs) have conserved sequences in their apical loops and at the stem base and adjacent positions. In 11 umbraviruses, CASs are preceded by two small hairpins joined by a putative kissing loop interaction (KL). Converting the conserved 6-nt apical loop to a GNRA tetraloop in opium poppy mosaic virus (OPMV) and pea enation mosaic virus 2 (PEMV2) enhanced translation of genomic (g)RNA, but not subgenomic (sg)RNA reporter constructs, and significantly repressed virus accumulation in Nicotiana benthamiana. Other alterations throughout OPMV CAS also repressed virus accumulation and only enhanced sgRNA reporter translation, while mutations in the lower stem repressed gRNA reporter translation. Similar mutations in the PEMV2 CAS also repressed accumulation but did not significantly affect gRNA or sgRNA reporter translation, with the exception of deletion of the entire hairpin, which only reduced translation of the gRNA reporter. OPMV CAS mutations had little effect on the downstream BTE 3′CITE or upstream KL element, while PEMV2 CAS mutations significantly altered KL structures. These results introduce an additional element associated with different 3′CITEs that differentially affect the structure and translation of different umbraviruses.
Collapse
|
5
|
Novel 3' Proximal Replication Elements in Umbravirus Genomes. Viruses 2022; 14:v14122615. [PMID: 36560619 PMCID: PMC9780821 DOI: 10.3390/v14122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The 3' untranslated regions (UTRs) of positive-strand RNA plant viruses commonly contain elements that promote viral replication and translation. The ~700 nt 3'UTR of umbravirus pea enation mosaic virus 2 (PEMV2) contains three 3' cap-independent translation enhancers (3'CITEs), including one (PTE) found in members of several genera in the family Tombusviridae and another (the 3'TSS) found in numerous umbraviruses and several carmoviruses. In addition, three 3' terminal replication elements are found in nearly every umbravirus and carmovirus. For this report, we have identified a set of three hairpins and a putative pseudoknot, collectively termed "Trio", that are exclusively found in a subset of umbraviruses and are located just upstream of the 3'TSS. Modification of these elements had no impact on viral translation in wheat germ extracts or in translation of luciferase reporter constructs in vivo. In contrast, Trio hairpins were critical for viral RNA accumulation in Arabidopsis thaliana protoplasts and for replication of a non-autonomously replicating replicon using a trans-replication system in Nicotiana benthamiana leaves. Trio and other 3' terminal elements involved in viral replication are highly conserved in umbraviruses possessing different classes of upstream 3'CITEs, suggesting conservation of replication mechanisms among umbraviruses despite variation in mechanisms for translation enhancement.
Collapse
|
6
|
Identification of Novel 5' and 3' Translation Enhancers in Umbravirus-Like Coat Protein-Deficient RNA Replicons. J Virol 2022; 96:e0173621. [PMID: 35297668 DOI: 10.1128/jvi.01736-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translation of plant plus-strand RNA viral genomes that lack a 5' cap frequently requires the use of cap-independent translation enhancers (CITEs) located in or near the 3' untranslated region (UTR). 3'CITEs are grouped based on secondary structure and ability to interact with different translation initiation factors or ribosomal subunits, which assemble a complex at the 3' end that is nearly always transferred to the 5' end via a long-distance kissing-loop interaction between sequences in the 3'CITE and 5' hairpins. We report here the identification of a novel 3'CITE in coat protein-deficient RNA replicons that are related to umbraviruses. Umbra-like associated RNAs (ulaRNAs), such as citrus yellow vein-associated virus (CYVaV), are a new type of subviral RNA that do not encode movement proteins, coat proteins, or silencing suppressors but can independently replicate using their encoded RNA-dependent RNA polymerase. An extended hairpin structure containing multiple internal loops in the 3' UTR of CYVaV is strongly conserved in the most closely related ulaRNAs and structurally resembles an I-shaped structure (ISS) 3'CITE. However, unlike ISS, the CYVaV structure binds to eIF4G and no long-distance interaction is discernible between the CYVaV ISS-like structure and sequences at or near the 5' end. We also report that the ∼30-nucleotide (nt) 5' terminal hairpin of CYVaV and related ulaRNAs can enhance translation of reporter constructs when associated with either the CYVaV 3'CITE or the 3'CITEs of umbravirus pea enation mosaic virus (PEMV2) and even independent of a 3'CITE. These findings introduce a new type of 3'CITE and provide the first information on translation of ulaRNAs. IMPORTANCE Umbra-like associated RNAs (ulaRNAs) are a recently discovered type of subviral RNA that use their encoded RNA-dependent RNA polymerase for replication but do not encode any coat proteins, movement proteins, or silencing suppressors yet can be found in plants in the absence of any discernible helper virus. We report the first analysis of their translation using class 2 ulaRNA citrus yellow vein-associated virus (CYVaV). CYVaV uses a novel eIF4G-binding I-shaped structure as its 3' cap-independent translation enhancer (3'CITE), which does not connect with the 5' end by a long-distance RNA:RNA interaction that is typical of 3'CITEs. ulaRNA 5' terminal hairpins can also enhance translation in association with cognate 3'CITEs or those of related ulaRNAs and, to a lesser extent, with 3'CITEs of umbraviruses, or even independent of a 3'CITE. These findings introduce a new type of 3'CITE and provide the first information on translation of ulaRNAs.
Collapse
|
7
|
Johnson PZ, Kasprzak WK, Shapiro BA, Simon AE. Structural characterization of a new subclass of panicum mosaic virus-like 3' cap-independent translation enhancer. Nucleic Acids Res 2022; 50:1601-1619. [PMID: 35104872 PMCID: PMC8860577 DOI: 10.1093/nar/gkac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/29/2021] [Accepted: 01/29/2022] [Indexed: 11/29/2022] Open
Abstract
Canonical eukaryotic mRNA translation requires 5'cap recognition by initiation factor 4E (eIF4E). In contrast, many positive-strand RNA virus genomes lack a 5'cap and promote translation by non-canonical mechanisms. Among plant viruses, PTEs are a major class of cap-independent translation enhancers located in/near the 3'UTR that recruit eIF4E to greatly enhance viral translation. Previous work proposed a single form of PTE characterized by a Y-shaped secondary structure with two terminal stem-loops (SL1 and SL2) atop a supporting stem containing a large, G-rich asymmetric loop that forms an essential pseudoknot (PK) involving C/U residues located between SL1 and SL2. We found that PTEs with less than three consecutive cytidylates available for PK formation have an upstream stem-loop that forms a kissing loop interaction with the apical loop of SL2, important for formation/stabilization of PK. PKs found in both subclasses of PTE assume a specific conformation with a hyperreactive guanylate (G*) in SHAPE structure probing, previously found critical for binding eIF4E. While PTE PKs were proposed to be formed by Watson-Crick base-pairing, alternative chemical probing and 3D modeling indicate that the Watson-Crick faces of G* and an adjacent guanylate have high solvent accessibilities. Thus, PTE PKs are likely composed primarily of non-canonical interactions.
Collapse
Affiliation(s)
- Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD 20742, USA
| | - Wojciech K Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD 20742, USA
| |
Collapse
|
8
|
Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1060-1094. [PMID: 34565312 PMCID: PMC8436584 DOI: 10.1134/s0006297921090042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia O Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vadim I Agol
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Poliomyelitis, Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
9
|
Opium Poppy Mosaic Virus Has an Xrn-Resistant, Translated Subgenomic RNA and a BTE 3' CITE. J Virol 2021; 95:JVI.02109-20. [PMID: 33597210 DOI: 10.1128/jvi.02109-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Opium poppy mosaic virus (OPMV) is a recently discovered umbravirus in the family Tombusviridae OPMV has a plus-sense genomic RNA (gRNA) of 4,241 nucleotides (nt) from which replication protein p35 and p35 extension product p98, the RNA-dependent RNA polymerase (RdRp), are expressed. Movement proteins p27 (long distance) and p28 (cell to cell) are expressed from a 1,440-nt subgenomic RNA (sgRNA2). A highly conserved structure was identified just upstream from the sgRNA2 transcription start site in all umbraviruses, which includes a carmovirus consensus sequence, denoting generation by an RdRp-mediated mechanism. OPMV also has a second sgRNA of 1,554 nt (sgRNA1) that starts just downstream of a canonical exoribonuclease-resistant sequence (xrRNAD). sgRNA1 codes for a 30-kDa protein in vitro that is in frame with p28 and cannot be synthesized in other umbraviruses. Eliminating sgRNA1 or truncating the p30 open reading frame (ORF) without affecting p28 substantially reduced accumulation of OPMV gRNA, suggesting a functional role for the protein. The 652-nt 3' untranslated region of OPMV contains two 3' cap-independent translation enhancers (3' CITEs), a T-shaped structure (TSS) near its 3' end, and a Barley yellow dwarf virus-like translation element (BTE) in the central region. Only the BTE is functional in luciferase reporter constructs containing gRNA or sgRNA2 5' sequences in vivo, which differs from how umbravirus 3' CITEs were used in a previous study. Similarly to most 3' CITEs, the OPMV BTE links to the 5' end via a long-distance RNA-RNA interaction. Analysis of 14 BTEs revealed additional conserved sequences and structural features beyond the previously identified 17-nt conserved sequence.IMPORTANCE Opium poppy mosaic virus (OPMV) is an umbravirus in the family Tombusviridae We determined that OPMV accumulates two similarly sized subgenomic RNAs (sgRNAs), with the smaller known to code for proteins expressed from overlapping open reading frames. The slightly larger sgRNA1 has a 5' end just upstream from a previously predicted xrRNAD site, identifying this sgRNA as an unusually long product produced by exoribonuclease trimming. Although four umbraviruses have similar predicted xrRNAD sites, only sgRNA1 of OPMV can code for a protein that is an extension product of umbravirus ORF4. Inability to generate the sgRNA or translate this protein was associated with reduced gRNA accumulation in vivo We also characterized the OPMV BTE structure, a 3' cap-independent translation enhancer (3' CITE). Comparisons of 13 BTEs with the OPMV BTE revealed additional stretches of sequence similarity beyond the 17-nt signature sequence, as well as conserved structural features not previously recognized in these 3' CITEs.
Collapse
|
10
|
Carino EJ, Scheets K, Miller WA. The RNA of Maize Chlorotic Mottle Virus, an Obligatory Component of Maize Lethal Necrosis Disease, Is Translated via a Variant Panicum Mosaic Virus-Like Cap-Independent Translation Element. J Virol 2020; 94:e01005-20. [PMID: 32847851 PMCID: PMC7592216 DOI: 10.1128/jvi.01005-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
Maize chlorotic mottle virus (MCMV) combines with a potyvirus in maize lethal necrosis disease (MLND), a serious emerging disease worldwide. To inform resistance strategies, we characterized the translation initiation mechanism of MCMV. We report that MCMV RNA contains a cap-independent translation element (CITE) in its 3' untranslated region (UTR). The MCMV 3' CITE (MTE) was mapped to nucleotides 4164 to 4333 in the genomic RNA. 2'-Hydroxyl acylation analyzed by primer extension (SHAPE) probing revealed that the MTE is a distinct variant of the panicum mosaic virus-like 3' CITE (PTE). Like the PTE, electrophoretic mobility shift assays (EMSAs) indicated that eukaryotic translation initiation factor 4E (eIF4E) binds the MTE despite the absence of an m7GpppN cap structure, which is normally required for eIF4E to bind RNA. Using a luciferase reporter system, mutagenesis to disrupt and restore base pairing revealed that the MTE interacts with the 5' UTRs of both genomic RNA and subgenomic RNA1 via long-distance kissing stem-loop interaction to facilitate translation. The MTE stimulates a relatively low level of translation and has a weak, if any, pseudoknot, which is present in the most active PTEs, mainly because the MTE lacks the pyrimidine-rich tract that base pairs to a G-rich bulge to form the pseudoknot. However, most mutations designed to form a pseudoknot decreased translation activity. Mutations in the viral genome that reduced or restored translation prevented and restored virus replication, respectively, in maize protoplasts and in plants. In summary, the MTE differs from the canonical PTE but falls into a structurally related class of 3' CITEs.IMPORTANCE In the past decade, maize lethal necrosis disease has caused massive crop losses in East Africa. It has also emerged in China and parts of South America. Maize chlorotic mottle virus (MCMV) infection is required for this disease. While some tolerant maize lines have been identified, there are no known resistance genes that confer immunity to MCMV. In order to improve resistance strategies against MCMV, we focused on how the MCMV genome is translated, the first step of gene expression by all positive-strand RNA viruses. We identified a structure (cap-independent translation element) in the 3' untranslated region of the viral RNA genome that allows the virus to usurp a host translation initiation factor, eIF4E, in a way that differs from host mRNA interactions with the translational machinery. This difference indicates eIF4E may be a soft target for engineering of-or breeding for-resistance to MCMV.
Collapse
Affiliation(s)
- Elizabeth J Carino
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, Iowa, USA
| | - Kay Scheets
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
11
|
Borden KLB, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol 2020; 17:1239-1251. [PMID: 32496897 PMCID: PMC7549709 DOI: 10.1080/15476286.2020.1766179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Translation initiation is a critical facet of gene expression with important impacts that underlie cellular responses to stresses and environmental cues. Its dysregulation in many diseases position this process as an important area for the development of new therapeutics. The gateway translation factor eIF4E is typically considered responsible for ‘global’ or ‘canonical’ m7G cap-dependent translation. However, eIF4E impacts translation of specific transcripts rather than the entire translatome. There are many alternative cap-dependent translation mechanisms that also contribute to the translation capacity of the cell. We review the diversity of these, juxtaposing more recently identified mechanisms with eIF4E-dependent modalities. We also explore the multiplicity of functions played by translation factors, both within and outside protein synthesis, and discuss how these differentially contribute to their ultimate physiological impacts. For comparison, we discuss some modalities for cap-independent translation. In all, this review highlights the diverse mechanisms that engage and control translation in eukaryotes.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| | - Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
12
|
Abstract
Viruses must co-opt the cellular translation machinery to produce progeny virions. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus, in many cases using elegant RNA-centred strategies. Viral RNAs can alter or control every phase of protein synthesis and have diverse targets, mechanisms and structures. In addition, as cells attempt to limit infection by downregulating translation, some of these viral RNAs enable the virus to overcome this response or even take advantage of it to promote viral translation over cellular translation. In this Review, we present important examples of viral RNA-based strategies to exploit the cellular translation machinery. We describe what is understood of the structures and mechanisms of diverse viral RNA elements that alter or regulate translation, the advantages that are conferred to the virus and some of the major unknowns that provide motivation for further exploration. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus. In this Review, Jaafar and Kieft present important examples of viral RNA-based strategies to exploit the cellular translation machinery.
Collapse
Affiliation(s)
- Zane A Jaafar
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA. .,RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
13
|
He L, Wang Q, Gu Z, Liao Q, Palukaitis P, Du Z. A conserved RNA structure is essential for a satellite RNA-mediated inhibition of helper virus accumulation. Nucleic Acids Res 2019; 47:8255-8271. [PMID: 31269212 PMCID: PMC6735963 DOI: 10.1093/nar/gkz564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
As a class of parasitic, non-coding RNAs, satellite RNAs (satRNAs) have to compete with their helper virus for limited amounts of viral and/or host resources for efficient replication, by which they usually reduce viral accumulation and symptom expression. Here, we report a cucumber mosaic virus (CMV)-associated satRNA (sat-T1) that ameliorated CMV-induced symptoms, accompanied with a significant reduction in the accumulation of viral genomic RNAs 1 and 2, which encode components of the viral replicase. Intrans replication assays suggest that the reduced accumulation is the outcome of replication competition. The structural basis of sat-T1 responsible for the inhibition of viral RNA accumulation was determined to be a three-way branched secondary structure that contains two biologically important hairpins. One is indispensable for the helper virus inhibition, and the other engages in formation of a tertiary pseudoknot structure that is essential for sat-T1 survival. The secondary structure containing the pseudoknot is the first RNA element with a biological phenotype experimentally identified in CMV satRNAs, and it is structurally conserved in most CMV satRNAs. Thus, this may be a generic method for CMV satRNAs to inhibit the accumulation of the helper virus via the newly-identified RNA structure.
Collapse
Affiliation(s)
- Lu He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qian Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Zhouhang Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Nowon-gu, Seoul 01797, Republic of Korea
| | - Zhiyou Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
14
|
Ozturk S. The translational functions of embryonic poly(A)‐binding protein during gametogenesis and early embryo development. Mol Reprod Dev 2019; 86:1548-1560. [DOI: 10.1002/mrd.23253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Saffet Ozturk
- Department of Histology and EmbryologyAkdeniz University School of MedicineAntalya Turkey
| |
Collapse
|
15
|
Koirala D, Shao Y, Koldobskaya Y, Fuller JR, Watkins AM, Shelke SA, Pilipenko EV, Das R, Rice PA, Piccirilli JA. A conserved RNA structural motif for organizing topology within picornaviral internal ribosome entry sites. Nat Commun 2019; 10:3629. [PMID: 31399592 PMCID: PMC6689051 DOI: 10.1038/s41467-019-11585-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/09/2019] [Indexed: 12/30/2022] Open
Abstract
Picornaviral IRES elements are essential for initiating the cap-independent viral translation. However, three-dimensional structures of these elements remain elusive. Here, we report a 2.84-Å resolution crystal structure of hepatitis A virus IRES domain V (dV) in complex with a synthetic antibody fragment-a crystallization chaperone. The RNA adopts a three-way junction structure, topologically organized by an adenine-rich stem-loop motif. Despite no obvious sequence homology, the dV architecture shows a striking similarity to a circularly permuted form of encephalomyocarditis virus J-K domain, suggesting a conserved strategy for organizing the domain architecture. Recurrence of the motif led us to use homology modeling tools to compute a 3-dimensional structure of the corresponding domain of foot-and-mouth disease virus, revealing an analogous domain organizing motif. The topological conservation observed among these IRESs and other viral domains implicates a structured three-way junction as an architectural scaffold to pre-organize helical domains for recruiting the translation initiation machinery.
Collapse
Affiliation(s)
- Deepak Koirala
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Yaming Shao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Yelena Koldobskaya
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - James R Fuller
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sandip A Shelke
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Evgeny V Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
16
|
Petersen NP, Ort T, Torda AE. Improving the Numerical Stability of the NAST Force Field for RNA Simulations. J Chem Theory Comput 2019; 15:3402-3409. [DOI: 10.1021/acs.jctc.9b00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nils P. Petersen
- Centre for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Thomas Ort
- Laboratory Automation and Biomanufacturing Engineering, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstrasse 12, 70569 Stuttgart, Germany
| | - Andrew E. Torda
- Centre for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| |
Collapse
|
17
|
Kwan T, Thompson SR. Noncanonical Translation Initiation in Eukaryotes. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032672. [PMID: 29959190 DOI: 10.1101/cshperspect.a032672] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vast majority of eukaryotic messenger RNAs (mRNAs) initiate translation through a canonical, cap-dependent mechanism requiring a free 5' end and 5' cap and several initiation factors to form a translationally active ribosome. Stresses such as hypoxia, apoptosis, starvation, and viral infection down-regulate cap-dependent translation during which alternative mechanisms of translation initiation prevail to express proteins required to cope with the stress, or to produce viral proteins. The diversity of noncanonical initiation mechanisms encompasses a broad range of strategies and cellular cofactors. Herein, we provide an overview and, whenever possible, a mechanistic understanding of the various noncanonical mechanisms of initiation used by cells and viruses. Despite many unanswered questions, recent advances have propelled our understanding of the scope, diversity, and mechanisms of alternative initiation.
Collapse
Affiliation(s)
- Thaddaeus Kwan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
18
|
Kraft JJ, Peterson MS, Cho SK, Wang Z, Hui A, Rakotondrafara AM, Treder K, Miller CL, Miller WA. The 3' Untranslated Region of a Plant Viral RNA Directs Efficient Cap-Independent Translation in Plant and Mammalian Systems. Pathogens 2019; 8:E28. [PMID: 30823456 PMCID: PMC6471432 DOI: 10.3390/pathogens8010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/03/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022] Open
Abstract
Many plant viral RNA genomes lack a 5' cap, and instead are translated via a cap-independent translation element (CITE) in the 3' untranslated region (UTR). The panicum mosaic virus-like CITE (PTE), found in many plant viral RNAs, binds and requires the cap-binding translation initiation factor eIF4E to facilitate translation. eIF4E is structurally conserved between plants and animals, so we tested cap-independent translation efficiency of PTEs of nine plant viruses in plant and mammalian systems. The PTE from thin paspalum asymptomatic virus (TPAV) facilitated efficient cap-independent translation in wheat germ extract, rabbit reticulocyte lysate, HeLa cell lysate, and in oat and mammalian (BHK) cells. Human eIF4E bound the TPAV PTE but not a PTE that did not stimulate cap-independent translation in mammalian extracts or cells. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) footprinting revealed that both human and wheat eIF4E protected the conserved guanosine (G)-rich domain in the TPAV PTE pseudoknot. The central G plays a key role, as it was found to be required for translation and protection from SHAPE modification by eIF4E. These results provide insight on how plant viruses gain access to the host's translational machinery, an essential step in infection, and raise the possibility that similar PTE-like mechanisms may exist in mRNAs of mammals or their viruses.
Collapse
Affiliation(s)
- Jelena J Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | - Mariko S Peterson
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Yerkes National Primate Research Center, Emory Vaccine Center 2009, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | - Sung Ki Cho
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Dura-Line, 1355 Carden Farm Dr., Clinton, TN 37716, USA.
| | - Zhaohui Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Alice Hui
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| | | | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute⁻National Research Institute, 76-009 Bonin, Poland.
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA.
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
- Interdepartmental Plant Biology Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
19
|
Ozturk S, Uysal F. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Reprod Fertil Dev 2018; 29:1890-1901. [PMID: 28103468 DOI: 10.1071/rd16283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Poly(A)-binding proteins (PABPs) function in the timely regulation of gene expression during oocyte maturation, fertilisation and early embryo development in vertebrates. To this end, PABPs bind to poly(A) tails or specific sequences of maternally stored mRNAs to protect them from degradation and to promote their translational activities. To date, two structurally different PABP groups have been identified: (1) cytoplasmic PABPs, including poly(A)-binding protein, cytoplasmic 1 (PABPC1), embryonic poly(A)-binding protein (EPAB), induced PABP and poly(A)-binding protein, cytoplasmic 3; and (2) nuclear PABPs, namely embryonic poly(A)-binding protein 2 and nuclear poly(A)-binding protein 1. Many studies have been undertaken to characterise the spatial and temporal expression patterns and subcellular localisations of PABPC1 and EPAB in vertebrate oocytes and early embryos. In the present review, we comprehensively evaluate and discuss the expression patterns and particular functions of the EPAB and PABPC1 genes, especially in mouse and human oocytes and early embryos.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| |
Collapse
|
20
|
Ozturk S, Uysal F. Potential roles of the poly(A)-binding proteins in translational regulation during spermatogenesis. J Reprod Dev 2018; 64:289-296. [PMID: 29780056 PMCID: PMC6105736 DOI: 10.1262/jrd.2018-026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is briefly defined as the production of mature spermatozoa from spermatogonial stem cells at the end of a strictly regulated process. It is well known that, to a large
extent, transcriptional activity ceases at mid-spermiogenesis. Several mRNAs transcribed during early stages of spermatogenesis are stored as ribonucleoproteins (RNPs). During the later
stages, translational control of these mRNAs is mainly carried out in a time dependent-manner by poly(A)-binding proteins (PABPs) in cooperation with other RNA-binding proteins and
translation-related factors. Conserved PABPs specifically bind to poly(A) tails at the 3′ ends of mRNAs to regulate their translational activity in spermatogenic cells. Studies in this field
have revealed that PABPs, particularly poly(A)-binding protein cytoplasmic 1 (Pabpc1), Pabpc2, and the embryonic poly(A)-binding protein (Epab), play roles in the translational regulation of
mRNAs required at later stages of spermatogenesis. In this review article, we evaluated the spatial and temporal expression patterns and potential functions of these PABPs in spermatogenic
cells during spermatogenesis. The probable relationship between alterations in PABP expression and the development of male infertility is also reviewed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
21
|
Miras M, Rodríguez-Hernández AM, Romero-López C, Berzal-Herranz A, Colchero J, Aranda MA, Truniger V. A Dual Interaction Between the 5'- and 3'-Ends of the Melon Necrotic Spot Virus (MNSV) RNA Genome Is Required for Efficient Cap-Independent Translation. FRONTIERS IN PLANT SCIENCE 2018; 9:625. [PMID: 29868081 PMCID: PMC5954562 DOI: 10.3389/fpls.2018.00625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/20/2018] [Indexed: 02/05/2023]
Abstract
In eukaryotes, the formation of a 5'-cap and 3'-poly(A) dependent protein-protein bridge is required for translation of its mRNAs. In contrast, several plant virus RNA genomes lack both of these mRNA features, but instead have a 3'-CITE (for cap-independent translation enhancer), a RNA element present in their 3'-untranslated region that recruits translation initiation factors and is able to control its cap-independent translation. For several 3'-CITEs, direct RNA-RNA long-distance interactions based on sequence complementarity between the 5'- and 3'-ends are required for efficient translation, as they bring the translation initiation factors bound to the 3'-CITE to the 5'-end. For the carmovirus melon necrotic spot virus (MNSV), a 3'-CITE has been identified, and the presence of its 5'-end in cis has been shown to be required for its activity. Here, we analyze the secondary structure of the 5'-end of the MNSV RNA genome and identify two highly conserved nucleotide sequence stretches that are complementary to the apical loop of its 3'-CITE. In in vivo cap-independent translation assays with mutant constructs, by disrupting and restoring sequence complementarity, we show that the interaction between the 3'-CITE and at least one complementary sequence in the 5'-end is essential for virus RNA translation, although efficient virus translation and multiplication requires both connections. The complementary sequence stretches are invariant in all MNSV isolates, suggesting that the dual 5'-3' RNA:RNA interactions are required for optimal MNSV cap-independent translation and multiplication.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | - Ana M. Rodríguez-Hernández
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
- Centro de Investigación en Química Aplicada, Consejo Nacional de Ciencia y Tecnología (CONACYT), Saltillo, Mexico
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Jaime Colchero
- Departamento de Física, Edificio CIOyN, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
22
|
Lim CS, Brown CM. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs. Front Microbiol 2018; 8:2582. [PMID: 29354101 PMCID: PMC5758548 DOI: 10.3389/fmicb.2017.02582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Du Z, Alekhina OM, Vassilenko KS, Simon AE. Concerted action of two 3' cap-independent translation enhancers increases the competitive strength of translated viral genomes. Nucleic Acids Res 2017; 45:9558-9572. [PMID: 28934492 PMCID: PMC5766195 DOI: 10.1093/nar/gkx643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
Several families of plant viruses evolved cap-independent translation enhancers (3'CITE) in the 3' untranslated regions of their genomic (g)RNAs to compete with ongoing cap-dependent translation of cellular mRNAs. Umbravirus Pea enation mosaic virus (PEMV)2 is the only example where three 3'CITEs enhance translation: the eIF4E-binding Panicum mosaic virus-like translational enhancer (PTE) and ribosome-binding 3' T-shaped structure (TSS) have been found in viruses of different genera, while the ribosome-binding kl-TSS that provides a long-distance interaction with the 5' end is unique. We report that the PTE is the key translation promoting element, but inhibits translation in cis and in trans in the absence of the kl-TSS by sequestering initiation factor eIF4G. PEMV2 strongly outcompeted a cellular mRNA mimic for translation, indicating that the combination of kl-TSS and PTE is highly efficient. Transferring the 3'-5' interaction from the kl-TSS to the PTE (to fulfill its functionality as found in other viruses) supported translationin vitro, but gRNA did not accumulate to detectable levels in protoplasts in the absence of the kl-TSS. It was shown that the PTE in conjunction with the kl-TSS did not markedly affect the translation initiation rate but rather increased the number of gRNAs available for translation. A model is proposed to explain how 3'CITE-based regulation of ribosome recruitment enhances virus fitness.
Collapse
Affiliation(s)
- Zhiyou Du
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Olga M Alekhina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
24
|
Miras M, Truniger V, Querol‐Audi J, Aranda MA. Analysis of the interacting partners eIF4F and 3'-CITE required for Melon necrotic spot virus cap-independent translation. MOLECULAR PLANT PATHOLOGY 2017; 18:635-648. [PMID: 27145354 PMCID: PMC6638222 DOI: 10.1111/mpp.12422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 05/17/2023]
Abstract
We have shown previously that the translation of Melon necrotic spot virus (MNSV, family Tombusviridae, genus Carmovirus) RNAs is controlled by a 3'-cap-independent translation enhancer (CITE), which is genetically and functionally dependent on the eukaryotic translation initiation factor (eIF) 4E. Here, we describe structural and functional analyses of the MNSV-Mα5 3'-CITE and its translation initiation factor partner. We first mapped the minimal 3'-CITE (Ma5TE) to a 45-nucleotide sequence, which consists of a stem-loop structure with two internal loops, similar to other I-shaped 3'-CITEs. UV crosslinking, followed by gel retardation assays, indicated that Ma5TE interacts in vitro with the complex formed by eIF4E + eIF4G980-1159 (eIF4Fp20 ), but not with each subunit alone or with eIF4E + eIF4G1003-1092 , suggesting binding either through interaction with eIF4E following a conformational change induced by its binding to eIF4G980-1159 , or through a double interaction with eIF4E and eIF4G980-1159 . Critical residues for this interaction reside in an internal bulge of Ma5TE, so that their mutation abolished binding to eIF4E + eIF4G1003-1092 and cap-independent translation. We also developed an in vivo system to test the effect of mutations in eIF4E in Ma5TE-driven cap-independent translation, showing that conserved amino acids in a positively charged RNA-binding motif around amino acid position 228, implicated in eIF4E-eIF4G binding or belonging to the cap-recognition pocket, are essential for cap-independent translation controlled by Ma5TE, and thus for the multiplication of MNSV.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura (CEBAS) ‐ CSICApdo. correos 164, 30100 EspinardoMurciaSpain
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS) ‐ CSICApdo. correos 164, 30100 EspinardoMurciaSpain
| | - Jordi Querol‐Audi
- Molecular Biology Institute of Barcelona (IBMB‐CSIC)Parc Científic de Barcelona, Baldiri i Reixac 10Barcelona08028Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS) ‐ CSICApdo. correos 164, 30100 EspinardoMurciaSpain
| |
Collapse
|
25
|
Miras M, Miller WA, Truniger V, Aranda MA. Non-canonical Translation in Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2017; 8:494. [PMID: 28428795 PMCID: PMC5382211 DOI: 10.3389/fpls.2017.00494] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
Viral protein synthesis is completely dependent upon the host cell's translational machinery. Canonical translation of host mRNAs depends on structural elements such as the 5' cap structure and/or the 3' poly(A) tail of the mRNAs. Although many viral mRNAs are devoid of one or both of these structures, they can still translate efficiently using non-canonical mechanisms. Here, we review the tools utilized by positive-sense single-stranded (+ss) RNA plant viruses to initiate non-canonical translation, focusing on cis-acting sequences present in viral mRNAs. We highlight how these elements may interact with host translation factors and speculate on their contribution for achieving translational control. We also describe other translation strategies used by plant viruses to optimize the usage of the coding capacity of their very compact genomes, including leaky scanning initiation, ribosomal frameshifting and stop-codon readthrough. Finally, future research perspectives on the unusual translational strategies of +ssRNA viruses are discussed, including parallelisms between viral and host mRNAs mechanisms of translation, particularly for host mRNAs which are translated under stress conditions.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State UniversityAmes, IA, USA
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
- *Correspondence: Miguel A. Aranda
| |
Collapse
|
26
|
Truniger V, Miras M, Aranda MA. Structural and Functional Diversity of Plant Virus 3'-Cap-Independent Translation Enhancers (3'-CITEs). FRONTIERS IN PLANT SCIENCE 2017; 8:2047. [PMID: 29238357 PMCID: PMC5712577 DOI: 10.3389/fpls.2017.02047] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 05/12/2023]
Abstract
Most of the positive-strand RNA plant viruses lack the 5'-cap and/or the poly(A)-tail that act synergistically to stimulate canonical translation of cellular mRNAs. However, they have RNA elements in the 5'- or 3'-untranslated regions of their RNAs that are required for their cap-independent translation. Cap-independent translation enhancers (CITEs) have been identified in the genomic 3'-end of viruses belonging to the family Tombusviridae and the genus Luteovirus. Seven classes of 3'-CITEs have been described to date based on their different RNA structures. They generally control the efficient formation of the translation initiation complex by varying mechanisms. Some 3'-CITEs bind eukaryotic translation initiation factors, others ribosomal subunits, bridging these to the 5'-end by different mechanisms, often long-distance RNA-RNA interactions. As previously proposed and recently found in one case in nature, 3'-CITEs are functionally independent elements that are transferable through recombination between viral genomes, leading to potential advantages for virus multiplication. In this review, the knowledge on 3'-CITEs and their functioning is updated. We also suggest that there is local structural conservation in the regions interacting with eIF4E of 3'-CITEs belonging to different classes.
Collapse
|
27
|
Filbin ME, Kieft JS. Linking Α to Ω: diverse and dynamic RNA-based mechanisms to regulate gene expression by 5'-to-3' communication. F1000Res 2016; 5. [PMID: 27610229 PMCID: PMC4995689 DOI: 10.12688/f1000research.7913.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
Communication between the 5′ and 3′ ends of a eukaryotic messenger RNA (mRNA) or viral genomic RNA is a ubiquitous and important strategy used to regulate gene expression. Although the canonical interaction between initiation factor proteins at the 5′ end of an mRNA and proteins bound to the polyadenylate tail at the 3′ end is well known, in fact there are many other strategies used in diverse ways. These strategies can involve “non-canonical” proteins, RNA structures, and direct RNA-RNA base-pairing between distal elements to achieve 5′-to-3′ communication. Likewise, the communication induced by these interactions influences a variety of processes linked to the use and fate of the RNA that contains them. Recent studies are revealing how dynamic these interactions are, possibly changing in response to cellular conditions or to link various phases of the mRNA’s life, from translation to decay. Thus, 5′-to-3′ communication is about more than just making a closed circle; the RNA elements and associated proteins are key players in controlling gene expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Megan E Filbin
- Department of Chemistry, Metropolitan State University of Denver, Denver, Colorado, 80217, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
28
|
Borden KLB. The eukaryotic translation initiation factor eIF4E wears a "cap" for many occasions. ACTA ACUST UNITED AC 2016; 4:e1220899. [PMID: 28090419 PMCID: PMC5173310 DOI: 10.1080/21690731.2016.1220899] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 01/11/2023]
Abstract
The eukaryotic translation initiation factor eIF4E plays important roles in controlling the composition of the proteome. Indeed, dysregulation of eIF4E is associated with poor prognosis cancers. The traditional view has been that eIF4E acts solely in translation. However, over the last ∼25 years, eIF4E was found in the nucleus where it acts in mRNA export and in the last ∼10 years, eIF4E was found in cytoplasmic processing bodies (P-bodies) where it functions in mRNA sequestration and stability. The common biochemical thread for these activities is the ability of eIF4E to bind the 7-methylguanosine cap on the 5′ end of mRNAs. Recently, the possibility that eIF4E directly binds some mRNA elements independently of the cap has also been raised. Importantly, the effects of eIF4E are not genome-wide with a subset of transcripts targeted depending on the presence of specific mRNA elements and context-dependent regulatory factors. Indeed, eIF4E governs RNA regulons through co-regulating the expression of groups of transcripts acting in the same biochemical pathways. In addition, studies over the past ∼15 years indicate that there are multiple strategies that regulatory factors employ to modulate eIF4E activities in context-dependent manners. This perspective focuses on these new findings and incorporates them into a broader model for eIF4E function.
Collapse
Affiliation(s)
- Katherine L B Borden
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer (IRIC), Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
29
|
Kim YM, Choi WY, Oh CM, Han GH, Kim YJ. Secondary structure of the Irf7 5'-UTR, analyzed using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension). BMB Rep 2015; 47:558-62. [PMID: 24393529 PMCID: PMC4261513 DOI: 10.5483/bmbrep.2014.47.10.281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 01/09/2023] Open
Abstract
OASL1 is a member of the 2’-5’-oligoadenylate synthetase (OAS) family and promotes viral clearance by activating RNase L. OASL1 interacts with the 5’-untranslated region (UTR) of interferon regulatory factor 7 (Irf7) and inhibits its translation. To identify the secondary structure required for OASL1 binding, we examined the 5’-UTR of the Irf7 transcript using “selective 2’-hydroxyl acylation analyzed by primer extension” (SHAPE). SHAPE takes advantage of the selective acylation of residues in single-stranded regions by 1-methyl-7-nitroisatoic anhydride (1M7). We found five major acylation sites located in, or next to, predicted single-stranded regions of the Irf7 5’-UTR. These results demonstrate the involvement of the stem structure of the Irf7 5’-UTR in the regulation of Irf7 translation, mediated by OASL1. [BMB Reports 2014; 47(10): 558-562]
Collapse
Affiliation(s)
- Yun-Mi Kim
- Departments of Integrated OMICs for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Won-Young Choi
- Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Chang-Mok Oh
- Departments of Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Gyoon-Hee Han
- Departments of Integrated OMICs for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| | - Young-Joon Kim
- Departments of Integrated OMICs for Biomedical Science, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
30
|
Miller WA, Jackson J, Feng Y. Cis- and trans-regulation of luteovirus gene expression by the 3' end of the viral genome. Virus Res 2015; 206:37-45. [PMID: 25858272 DOI: 10.1016/j.virusres.2015.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Translation of the 5.7 kb luteovirus genome is controlled by the 3' untranslated region (UTR). Base pairing between regions of the 3' UTR and sequences kilobases upstream is required for cap-independent translation and ribosomal frameshifting needed to synthesize the viral replicase. Luteoviruses produce subgenomic RNAs, which can serve as mRNA, but one sgRNA also regulates translation initiation in trans. As on all viruses, the 3' and 5' ends contain structures that are presumed to facilitate RNA synthesis. This review describes the structures and interactions of barley yellow dwarf virus RNA that facilitate the complex interplay between the above events and result in a successful virus infection. We also present surprising results on the apparent lack of need for some subgenomic RNAs for the virus to infect cells or whole plants. In summary, the UTRs of luteoviruses are highly complex entities that control and fine-tune many key events of the virus replication cycle.
Collapse
Affiliation(s)
- W Allen Miller
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA 50011, United States; Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011, United States; Bioinformatics & Computational Biology Program, Iowa State University, Ames, IA 50011, United States.
| | - Jacquelyn Jackson
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA 50011, United States; Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011, United States
| | - Ying Feng
- Plant Pathology & Microbiology Department, Iowa State University, Ames, IA 50011, United States; Bioinformatics & Computational Biology Program, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
31
|
Sharma SD, Kraft JJ, Miller WA, Goss DJ. Recruitment of the 40S ribosome subunit to the 3'-untranslated region (UTR) of a viral mRNA, via the eIF4 complex, facilitates cap-independent translation. J Biol Chem 2015; 290:11268-81. [PMID: 25792742 DOI: 10.1074/jbc.m115.645002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Barley yellow dwarf virus mRNA, which lacks both cap and poly(A) tail, has a translation element (3'-BTE) in its 3'-UTR essential for efficient translation initiation at the 5'-proximal AUG. This mechanism requires eukaryotic initiation factor 4G (eIF4G), subunit of heterodimer eIF4F (plant eIF4F lacks eIF4A), and 3'-BTE-5'-UTR interaction. Using fluorescence anisotropy, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) analysis, and toeprinting, we found that (i) 40S subunits bind to BTE (Kd = 350 ± 30 nm), (ii) the helicase complex eIF4F-eIF4A-eIF4B-ATP increases 40S subunit binding (Kd = 120 ± 10 nm) to the conserved stem-loop I of the 3'-BTE by exposing more unpaired bases, and (iii) long distance base pairing transfers this complex to the 5'-end of the mRNA, where translation initiates. Although 3'-5' interactions have been recognized as important in mRNA translation, barley yellow dwarf virus employs a novel mechanism utilizing the 3'-UTR as the primary site of ribosome recruitment.
Collapse
Affiliation(s)
- Sohani Das Sharma
- From the Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York 10065 and
| | | | - W Allen Miller
- the Departments of Plant Pathology and Microbiology and Biochemistry, Biophysics, Molecular Biology, and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Dixie J Goss
- From the Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York 10065 and
| |
Collapse
|
32
|
Newburn LR, White KA. Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology 2015; 479-480:434-43. [PMID: 25759098 DOI: 10.1016/j.virol.2015.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022]
Abstract
Positive-strand RNA viruses are the most common type of plant virus. Many aspects of the reproductive cycle of this group of viruses have been studied over the years and this has led to the accumulation of a significant amount of insightful information. In particular, the identification and characterization of cis-acting RNA elements within these viral genomes have revealed important roles in many fundamental viral processes such as virus disassembly, translation, genome replication, subgenomic mRNA transcription, and packaging. These functional cis-acting RNA elements include primary sequences, secondary and tertiary structures, as well as long-range RNA-RNA interactions, and they typically function by interacting with viral or host proteins. This review provides a general overview and update on some of the many roles played by cis-acting RNA elements in positive-strand RNA plant viruses.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - K Andrew White
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
33
|
Abstract
Carmovirus is a genus of small, single-stranded, positive-strand RNA viruses in the Tombusviridae. One member of the carmoviruses, Turnip crinkle virus (TCV), has been used extensively as a model for examining the structure and function of RNA elements in 3'UTR as well as in other regions of the virus. Using a variety of genetic, biochemical and computational methods, a structure for the TCV 3'UTR has emerged where secondary structures and tertiary interactions combine to adopt higher order 3-D structures including an internal, ribosome-binding tRNA-shaped configuration that functions as a 3' cap-independent translation enhancer (3'CITE). The TCV 3'CITE also serves as a scaffold for non-canonical interactions throughout the 3'UTR and extending into the upstream open reading frame, interactions that are significantly disrupted upon binding by the RNA-dependent RNA polymerase. Long-distance interactions that connect elements in the 3'UTR with both the 5' end and the internal ribosome recoding site suggest that 3'UTR of carmoviruses are intimately involved in multiple functions in the virus life cycle. Although carmoviruses share very similar genome organizations, lengths of 5' and 3'UTRs, and structural features at the 3' end, the similarity rapidly breaks down the further removed from the 3' terminus revealing different 3'CITEs and unique virus-specific structural features. This review summarizes 20 years of work dissecting the structure and function of the 3'UTR of TCV and other carmoviruses. The astonishing structural complexity of the 3'UTRs of these simple carmoviruses provides lessons that are likely applicable to many other plant and animal RNA viruses.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, United States.
| |
Collapse
|
34
|
Cantara WA, Olson ED, Musier-Forsyth K. Progress and outlook in structural biology of large viral RNAs. Virus Res 2014; 193:24-38. [PMID: 24956407 PMCID: PMC4252365 DOI: 10.1016/j.virusres.2014.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 02/05/2023]
Abstract
The field of viral molecular biology has reached a precipice for which pioneering studies on the structure of viral RNAs are beginning to bridge the gap. It has become clear that viral genomic RNAs are not simply carriers of hereditary information, but rather are active players in many critical stages during replication. Indeed, functions such as cap-independent translation initiation mechanisms are, in some cases, primarily driven by RNA structural determinants. Other stages including reverse transcription initiation in retroviruses, nuclear export and viral packaging are specifically dependent on the proper 3-dimensional folding of multiple RNA domains to recruit necessary viral and host factors required for activity. Furthermore, a large-scale conformational change within the 5'-untranslated region of HIV-1 has been proposed to regulate the temporal switch between viral protein synthesis and packaging. These RNA-dependent functions are necessary for replication of many human disease-causing viruses such as severe acute respiratory syndrome (SARS)-associated coronavirus, West Nile virus, and HIV-1. The potential for antiviral development is currently hindered by a poor understanding of RNA-driven molecular mechanisms, resulting from a lack of structural information on large RNAs and ribonucleoprotein complexes. Herein, we describe the recent progress that has been made on characterizing these large RNAs and provide brief descriptions of the techniques that will be at the forefront of future advances. Ongoing and future work will contribute to a more complete understanding of the lifecycles of retroviruses and RNA viruses and potentially lead to novel antiviral strategies.
Collapse
Affiliation(s)
| | | | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
35
|
Othman Z, Sulaiman MK, Willcocks MM, Ulryck N, Blackbourn DJ, Sargueil B, Roberts LO, Locker N. Functional analysis of Kaposi's sarcoma-associated herpesvirus vFLIP expression reveals a new mode of IRES-mediated translation. RNA (NEW YORK, N.Y.) 2014; 20:1803-1814. [PMID: 25246653 PMCID: PMC4201831 DOI: 10.1261/rna.045328.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus, the etiological agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). One of the key viral proteins that contributes to tumorigenesis is vFLIP, a viral homolog of the FLICE inhibitory protein. This KSHV protein interacts with the NFκB pathway to trigger the expression of antiapoptotic and proinflammatory genes and ultimately leads to tumor formation. The expression of vFLIP is regulated at the translational level by an internal ribosomal entry site (IRES) element. However, the precise mechanism by which ribosomes are recruited internally and the exact location of the IRES has remained elusive. Here we show that a 252-nt fragment directly upstream of vFLIP, within a coding region, directs translation. We have established its RNA structure and demonstrate that IRES activity requires the presence of eIF4A and an intact eIF4G. Furthermore, and unusually for an IRES, eIF4E is part of the complex assembled onto the vFLIP IRES to direct translation. These molecular interactions define a new paradigm for IRES-mediated translation.
Collapse
Affiliation(s)
- Zulkefley Othman
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Mariam K Sulaiman
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, 75270 Paris, France
| | - David J Blackbourn
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, 75270 Paris, France
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| |
Collapse
|
36
|
Nicholson BL, White KA. Functional long-range RNA-RNA interactions in positive-strand RNA viruses. Nat Rev Microbiol 2014; 12:493-504. [PMID: 24931042 PMCID: PMC7097572 DOI: 10.1038/nrmicro3288] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long-range RNA–RNA interactions, many of which span several thousands of nucleotides, have been discovered within the genomes of positive-strand RNA viruses. These interactions mediate fundamental viral processes, including translation, replication and transcription. In certain plant viruses that have uncapped, non-polyadenylated RNA genomes, translation initiation is facilitated by 3′ cap-independent translational enhancers (3′ CITEs) that are located in or near to their 3′ UTRs. These RNA elements function by binding to either the ribosome-recruiting eukaryotic translation initiation factor 4F (eIF4F) complex or ribosomal subunits, and they enhance translation initiation by engaging the 5′ end of the genome via a 5′-to-3′ RNA-based bridge. The activities of the internal ribosome entry sites (IRESs) in the 5′ UTRs of various viruses are modulated by RNA-based interactions between the IRESs and elements near to the 3′ ends of their genomes. In several plant viruses, translational recoding events, including ribosomal frameshifting and stop codon readthrough, have been found to rely on long-range RNA–RNA interactions. Multiple 5′-to-3′ base-pairing interactions facilitate genome circularization in flaviviruses, which has been proposed to reposition the 5′-bound RNA-dependent RNA polymerase (RdRp) to the initiation site of negative-strand synthesis at the 3′ terminus. The long-distance interaction between two cis-acting replication elements in tombusviruses generates a bipartite RNA platform for the assembly of the replicase complex and repositions the internally bound RdRp to the 3′ terminus. Tombusviruses also rely on several long-range interactions that mediate the premature termination of the RdRp during negative-strand synthesis that leads to transcription of subgenomic mRNAs (sgmRNAs). In a coronavirus, an exceptionally long-range interaction, which spans ∼26,000 nucleotides, promotes polymerase repriming during the discontinuous template synthesis step of sgmRNA-N transcription. A challenge for the future will be to determine how these long-range interactions are integrated and regulated in the complex context of viral RNA genomes.
Long-range intragenomic RNA–RNA interactions in the genomes of positive-strand RNA viruses involve direct nucleotide base pairing and can span distances of thousands of nucleotides. In this Review, Nicholson and White discuss recent insights into the structure and function of these genomic features and highlight their diverse roles in the gene expression and genome replication of positive-strand RNA viruses. Positive-strand RNA viruses are important human, animal and plant pathogens that are defined by their single-stranded positive-sense RNA genomes. In recent years, it has become increasingly evident that interactions that occur between distantly positioned RNA sequences within these genomes can mediate important viral activities. These long-range intragenomic RNA–RNA interactions involve direct nucleotide base pairing and can span distances of thousands of nucleotides. In this Review, we discuss recent insights into the structure and function of these intriguing genomic features and highlight their diverse roles in the gene expression and genome replication of positive-strand RNA viruses.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
37
|
Ogawa A, Tabuchi J, Doi Y. Identification of short untranslated regions that sufficiently enhance translation in high-quality wheat germ extract. Bioorg Med Chem Lett 2014; 24:3724-7. [PMID: 25037913 DOI: 10.1016/j.bmcl.2014.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
High-quality wheat germ extract (hqWGE) is very useful for the high-yield production of various types of protein. The most important key to high productivity is the design of mRNA templates. Although the design has been refined for straightforward and efficient translation in hqWGE, there is still room for improvement in untranslated regions (UTRs), especially the 3' UTR length, because a long, cumbersome 3' UTR is commonly used for translation enhancement. Here we examined some short viral 3' cap-independent translation enhancers (3' CITEs) to identify effective ones for efficient translation in hqWGE. We then combined the most effective 3' CITE and a 5' enhancer to further increase the translation efficiency. mRNA with the optimal short 3' and 5' UTRs, both of whose length was less than 150 nt, exhibited a productivity of 1.4 mg/mL in prolonged large-scale protein synthesis in hqWGE, which was comparable to that of control mRNA with a commonly-used long 3' UTR (∼1200 nt).
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Junichiro Tabuchi
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yasunori Doi
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
38
|
Position of the kissing-loop interaction associated with PTE-type 3'CITEs can affect enhancement of cap-independent translation. Virology 2014; 458-459:43-52. [PMID: 24928038 DOI: 10.1016/j.virol.2014.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/27/2014] [Accepted: 03/23/2014] [Indexed: 01/28/2023]
Abstract
The Panicum mosaic virus-like translation enhancer (PTE) functions as a cap-independent translation enhancer (3'CITE) in members of several Tombusviridae genera including 7/19 carmoviruses. For nearly all PTE, a kissing-loop connects the element with a hairpin found in several conserved locations in the genomic RNA (5' terminal hairpin or ~100 nt from the 5' end) and small subgenomic RNA (~63 nt from the 5' end). Moving the interaction closer to the 5' end in reporter mRNAs using Saguaro cactus virus (SCV) sequences had either a minimal or substantial negative effect on translation. Movement of the kissing loop from position 104 to the SCV 5' terminal hairpin also reduced translation by 4-fold. These results suggest that relocating the PTE kissing loop closer to the 5' end reduces PTE efficiency, in contrast to results for the Barley yellow dwarf BTE and Tomato bushy stunt virus Y-shaped 3'CITEs, suggesting that different 3'CITEs have different bridging requirements.
Collapse
|
39
|
Miras M, Sempere RN, Kraft JJ, Miller WA, Aranda MA, Truniger V. Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking. THE NEW PHYTOLOGIST 2014; 202:233-246. [PMID: 24372390 PMCID: PMC4337425 DOI: 10.1111/nph.12650] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
Many plant viruses depend on functional RNA elements, called 3'-UTR cap-independent translation enhancers (3'-CITEs), for translation of their RNAs. In this manuscript we provide direct proof for the existing hypothesis that 3'-CITEs are modular and transferable by recombination in nature, and that this is associated with an advantage for the created virus. By characterizing a newly identified Melon necrotic spot virus (MNSV; Tombusviridae) isolate, which is able to overcome eukaryotic translation initiation factor 4E (eIF4E)-mediated resistance, we found that it contains a 55 nucleotide insertion in its 3'-UTR. We provide strong evidence that this insertion was acquired by interfamilial recombination with the 3'-UTR of an Asiatic Cucurbit aphid-borne yellows virus (CABYV; Luteoviridae). By constructing chimeric viruses, we showed that this recombined sequence is responsible for resistance breaking. Analysis of the translational efficiency of reporter constructs showed that this sequence functions as a novel 3'-CITE in both resistant and susceptible plants, being essential for translation control in resistant plants. In conclusion, we showed that a recombination event between two clearly identified viruses from different families led to the transfer of exactly the sequence corresponding to a functional RNA element, giving rise to a new isolate with the capacity to infect an otherwise nonsusceptible host.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Raquel N. Sempere
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Jelena J. Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, 351 Bessey Hall, Ames, IA 50011, USA
| | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, 351 Bessey Hall, Ames, IA 50011, USA
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - Veronica Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
40
|
Seetin MG, Kladwang W, Bida JP, Das R. Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. Methods Mol Biol 2014; 1086:95-117. [PMID: 24136600 DOI: 10.1007/978-1-62703-667-2_6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chemical mapping methods probe RNA structure by revealing and leveraging correlations of a nucleotide's structural accessibility or flexibility with its reactivity to various chemical probes. Pioneering work by Lucks and colleagues has expanded this method to probe hundreds of molecules at once on an Illumina sequencing platform, obviating the use of slab gels or capillary electrophoresis on one molecule at a time. Here, we describe optimizations to this method from our lab, resulting in the MAP-seq protocol (Multiplexed Accessibility Probing read out through sequencing), version 1.0. The protocol permits the quantitative probing of thousands of RNAs at once, by several chemical modification reagents, on the time scale of a day using a tabletop Illumina machine. This method and a software package MAPseeker ( http://simtk.org/home/map_seeker ) address several potential sources of bias, by eliminating PCR steps, improving ligation efficiencies of ssDNA adapters, and avoiding problematic heuristics in prior algorithms. We hope that the step-by-step description of MAP-seq 1.0 will help other RNA mapping laboratories to transition from electrophoretic to next-generation sequencing methods and to further reduce the turnaround time and any remaining biases of the protocol.
Collapse
Affiliation(s)
- Matthew G Seetin
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
41
|
Gao F, Gulay SP, Kasprzak W, Dinman JD, Shapiro BA, Simon AE. The kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5' proximal hairpin. J Virol 2013; 87:11987-2002. [PMID: 23986599 PMCID: PMC3807929 DOI: 10.1128/jvi.02005-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/23/2013] [Indexed: 01/01/2023] Open
Abstract
The Pea enation mosaic virus (PEMV) 3' translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5'-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5' and 3' PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3' translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2'-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5' hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5' end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Suna P. Gulay
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Wojciech Kasprzak
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| |
Collapse
|
42
|
Scheets K. Infectious transcripts of an asymptomatic panicovirus identified from a metagenomic survey. Virus Res 2013; 176:161-8. [DOI: 10.1016/j.virusres.2013.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022]
|
43
|
Bai Y, Zhou K, Doudna JA. Hepatitis C virus 3'UTR regulates viral translation through direct interactions with the host translation machinery. Nucleic Acids Res 2013; 41:7861-74. [PMID: 23783572 PMCID: PMC3763534 DOI: 10.1093/nar/gkt543] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The 3′ untranslated region (3′UTR) of hepatitis C virus (HCV) messenger RNA stimulates viral translation by an undetermined mechanism. We identified a high affinity interaction, conserved among different HCV genotypes, between the HCV 3′UTR and the host ribosome. The 3′UTR interacts with 40S ribosomal subunit proteins residing primarily in a localized region on the 40S solvent-accessible surface near the messenger RNA entry and exit sites. This region partially overlaps with the site where the HCV internal ribosome entry site was found to bind, with the internal ribosome entry site-40S subunit interaction being dominant. Despite its ability to bind to 40S subunits independently, the HCV 3′UTR only stimulates translation in cis, without affecting the first round translation rate. These observations support a model in which the HCV 3′UTR retains ribosome complexes during translation termination to facilitate efficient initiation of subsequent rounds of translation.
Collapse
Affiliation(s)
- Yun Bai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA, Department of Chemistry, University of California, Berkeley, CA 94720, USA and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
44
|
Abstract
In the absence of a 5' cap, plant positive-strand RNA viruses have evolved a number of different elements in their 3' untranslated region (UTR) to attract initiation factors and/or ribosomes to their templates. These 3' cap-independent translational enhancers (3' CITEs) take different forms, such as I-shaped, Y-shaped, T-shaped, or pseudoknotted structures, or radiate multiple helices from a central hub. Common features of most 3' CITEs include the ability to bind a component of the translation initiation factor eIF4F complex and to engage in an RNA-RNA kissing-loop interaction with a hairpin loop located at the 5' end of the RNA. The two T-shaped structures can bind to ribosomes and ribosomal subunits, with one structure also able to engage in a simultaneous long-distance RNA-RNA interaction. Several of these 3' CITEs are interchangeable and there is evidence that natural recombination allows exchange of modular CITE units, which may overcome genetic resistance or extend the virus's host range.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742;
| | | |
Collapse
|
45
|
Nicholson BL, Zaslaver O, Mayberry LK, Browning KS, White KA. Tombusvirus Y-shaped translational enhancer forms a complex with eIF4F and can be functionally replaced by heterologous translational enhancers. J Virol 2013; 87:1872-83. [PMID: 23192876 PMCID: PMC3554133 DOI: 10.1128/jvi.02711-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/21/2012] [Indexed: 01/03/2023] Open
Abstract
Certain plus-strand RNA plant viruses that are uncapped and nonpolyadenylated rely on RNA elements in their 3' untranslated region, termed 3'-cap-independent translational enhancers (3'CITEs), for efficient translation of their proteins. Here, we have investigated the properties of the Y-shaped class of 3'CITE present in the tombusvirus Carnation Italian ringspot virus (CIRV). While some types of 3'CITE have been found to function through recruitment of translation initiation factors to the viral genome, no trans-acting translation-related factors have yet been identified for the Y-shaped 3'CITE. Our results indicate that the CIRV 3'CITE complexes with eIF4F and eIFiso4F, with the former mediating translation more efficiently than the latter. In nature, some classes of 3'CITE are present in several different viral genera, suggesting that these elements hold a high degree of modularity. Here, we test this concept by engineering chimeric viruses containing heterologous 3'CITEs and show that the Y-shaped class of 3'CITE in CIRV can be replaced by two alternative types of 3'CITE, i.e., a Panicum mosaic virus-like 3'CITE or an I-shaped 3'CITE, without any major loss in in vitro translation or replication efficiency in protoplasts. The heterologous 3'CITEs also mediated whole-plant infections of Nicotiana benthamiana, where distinct symptoms were observed for each of the alternative 3'CITEs and 3'CITE evolution occurred during serial passaging. Our results supply new information on Y-shaped 3'CITE function and provide insights into 3'CITE virus-host compatibilities.
Collapse
Affiliation(s)
| | - Olga Zaslaver
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Laura K. Mayberry
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - Karen S. Browning
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, USA
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Kraft JJ, Treder K, Peterson MS, Miller WA. Cation-dependent folding of 3' cap-independent translation elements facilitates interaction of a 17-nucleotide conserved sequence with eIF4G. Nucleic Acids Res 2013; 41:3398-413. [PMID: 23361463 PMCID: PMC3597692 DOI: 10.1093/nar/gkt026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The 3′-untranslated regions of many plant viral RNAs contain cap-independent translation elements (CITEs) that drive translation initiation at the 5′-end of the mRNA. The barley yellow dwarf virus-like CITE (BTE) stimulates translation by binding the eIF4G subunit of translation initiation factor eIF4F with high affinity. To understand this interaction, we characterized the dynamic structural properties of the BTE, mapped the eIF4G-binding sites on the BTE and identified a region of eIF4G that is crucial for BTE binding. BTE folding involves cooperative uptake of magnesium ions and is driven primarily by charge neutralization. Footprinting experiments revealed that functional eIF4G fragments protect the highly conserved stem–loop I and a downstream bulge. The BTE forms a functional structure in the absence of protein, and the loop that base pairs the 5′-untranslated region (5′-UTR) remains solvent-accessible at high eIF4G concentrations. The region in eIF4G between the eIF4E-binding site and the MIF4G region is required for BTE binding and translation. The data support the model in which the eIF4F complex binds directly to the BTE which base pairs simultaneously to the 5′-UTR, allowing eIF4F to recruit the 40S ribosomal subunit to the 5′-end.
Collapse
Affiliation(s)
- Jelena J Kraft
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
47
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
48
|
Gao F, Kasprzak W, Stupina VA, Shapiro BA, Simon AE. A ribosome-binding, 3' translational enhancer has a T-shaped structure and engages in a long-distance RNA-RNA interaction. J Virol 2012; 86:9828-42. [PMID: 22761367 PMCID: PMC3446580 DOI: 10.1128/jvi.00677-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/25/2012] [Indexed: 12/23/2022] Open
Abstract
Many plant RNA viruses contain elements in their 3' untranslated regions (3' UTRs) that enhance translation. The PTE (Panicum mosaic virus-like translational enhancer) of Pea enation mosaic virus (PEMV) binds to eukaryotic initiation factor 4E (eIF4E), but how this affects translation from the 5' end is unknown. We have discovered a three-way branched element just upstream of the PEMV PTE that engages in a long-distance kissing-loop interaction with a coding sequence hairpin that is critical for the translation of a reporter construct and the accumulation of the viral genome in vivo. Loss of the long-distance interaction was more detrimental than elimination of the adjacent PTE, indicating that the RNA-RNA interaction supports additional translation functions besides relocating the PTE to the 5' end. The branched element is predicted by molecular modeling and molecular dynamics to form a T-shaped structure (TSS) similar to the ribosome-binding TSS of Turnip crinkle virus (TCV). The PEMV element binds to plant 80S ribosomes with a K(d) (dissociation constant) of 0.52 μM and to 60S subunits with a K(d) of 0.30 μM. Unlike the TCV TSS, the PEMV element also binds 40S subunits (K(d), 0.36 μM). Mutations in the element that suppressed translation reduced either ribosome binding or the RNA-RNA interaction, suggesting that ribosome binding is important for function. This novel, multifunctional element is designated a kl-TSS (kissing-loop T-shaped structure) to distinguish it from the TCV TSS. The kl-TSS has sequence and structural features conserved with the upper portion of most PTE-type elements, which, with the exception of the PEMV PTE, can engage in similar long-distance RNA-RNA interactions.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, Maryland, USA
| | - Wojciech Kasprzak
- Basic Science Program, SAIC—Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vera A. Stupina
- Department of Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, Maryland, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, Maryland, USA
| |
Collapse
|
49
|
Poly(A)-binding protein facilitates translation of an uncapped/nonpolyadenylated viral RNA by binding to the 3' untranslated region. J Virol 2012; 86:7836-49. [PMID: 22593149 DOI: 10.1128/jvi.00538-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5' cap and a 3' poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3' untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3'CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3'CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3'CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3' UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3'CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3'CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3' UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3'CITE as substitutes for the 3' poly(A) tail and the 5' cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA.
Collapse
|
50
|
Parisien M, Yi C, Pan T. Rationalization and prediction of selective decoding of pseudouridine-modified nonsense and sense codons. RNA (NEW YORK, N.Y.) 2012; 18:355-367. [PMID: 22282339 PMCID: PMC3285925 DOI: 10.1261/rna.031351.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
A stop or nonsense codon is an in-frame triplet within a messenger RNA that signals the termination of translation. One common feature shared among all three nonsense codons (UAA, UAG, and UGA) is a uridine present at the first codon position. It has been recently shown that the conversion of this uridine into pseudouridine (Ψ) suppresses translation termination, both in vitro and in vivo. Furthermore, decoding of the pseudouridylated nonsense codons is accompanied by the incorporation of two specific amino acids in a nonsense codon-dependent fashion. Ψ differs from uridine by a single N¹H group at the C5 position; how Ψ suppresses termination and, more importantly, enables selective decoding is poorly understood. Here, we provide molecular rationales for how pseudouridylated stop codons are selectively decoded. Our analysis applies crystal structures of ribosomes in varying states of translation to consider weakened interaction of Ψ with release factor; thermodynamic and geometric considerations of the codon-anticodon base pairs to rank and to eliminate mRNA-tRNA pairs; the mechanism of fidelity check of the codon-anticodon pairing by the ribosome to evaluate noncanonical codon-anticodon base pairs and the role of water. We also consider certain tRNA modifications that interfere with the Ψ-coordinated water in the major groove of the codon-anticodon mini-helix. Our analysis of nonsense codons enables prediction of potential decoding properties for Ψ-modified sense codons, such as decoding ΨUU potentially as Cys and Tyr. Our results provide molecular rationale for the remarkable dynamics of ribosome decoding and insights on possible reprogramming of the genetic code using mRNA modifications.
Collapse
Affiliation(s)
| | - Chengqi Yi
- Department of Biochemistry and Molecular Biology
| | - Tao Pan
- Department of Biochemistry and Molecular Biology
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|