1
|
Gonçalves C, Steenwyk JL, Rinker DC, Opulente DA, LaBella AL, Harrison MC, Wolters JF, Zhou X, Shen XX, Covo S, Groenewald M, Hittinger CT, Rokas A. Stable hypermutators revealed by the genomic landscape of DNA repair genes among yeast species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643480. [PMID: 40166188 PMCID: PMC11957042 DOI: 10.1101/2025.03.15.643480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mutator phenotypes are short-lived due to the rapid accumulation of deleterious mutations. Yet, recent observations reveal that certain fungi can undergo prolonged accelerated evolution after losing DNA repair genes. Here, we surveyed 1,154 yeast genomes representing nearly all known yeast species of the subphylum Saccharomycotina to examine the relationship between reduced DNA repair repertoires and elevated evolutionary rates. We identified three distantly related lineages-encompassing 12% of species-with substantially reduced sets of DNA repair genes and the highest evolutionary rates in the entire subphylum. Two of these "faster-evolving lineages" (FELs)-a subclade within the order Pichiales and the Wickerhamiella/Starmerella (W/S) clade (order Dipodascales)-are described here for the first time, while the third corresponds to a previously documented Hanseniaspora FEL. Examination of DNA repair gene repertoires revealed a set of genes predominantly absent in these three FELs, suggesting a potential role in the observed acceleration of evolutionary rates. Genomic signatures in the W/S clade are consistent with a substantial mutational burden, including pronounced A|T bias and signatures of endogenous DNA damage. The W/S clade appears to mitigate UV-induced damage through horizontal acquisition of a bacterial photolyase gene, underscoring how gene loss may be offset by nonvertical evolution. These findings highlight how the loss of DNA repair genes gave rise to hypermutators that persist across macroevolutionary timescales, with horizontal gene transfer as an avenue for partial functional compensation.
Collapse
Affiliation(s)
- Carla Gonçalves
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - David C. Rinker
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Abigail L. LaBella
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, North Carolina Research Center, University of North Carolina at Charlotte, Kannapolis NC 28223
| | - Marie-Claire Harrison
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xiaofan Zhou
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Cai G, Yang Q, Sun W. RSF1 in cancer: interactions and functions. Cancer Cell Int 2021; 21:315. [PMID: 34147108 PMCID: PMC8214769 DOI: 10.1186/s12935-021-02012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
RSF1, remodelling and spacing factor 1, is an important interphase centromere protein and is overexpressed in many types of cancers and correlated with poor overall survival. RSF1 has functions mainly in maintaining chromosome stability, facilitating DNA repair, maintaining the protein homeostasis of RSF1 and suppressing the transcription of some oncogenes when RSF1 protein is expressed at an optimal level; however, RSF1 overexpression facilitates drug resistance and cell cycle checkpoint inhibition to prompt cancer proliferation and survival. The RSF1 expression level and gene background are crucial for RSF1 functions, which may explain why RSF1 has different functions in different cancer types. This review summarizes the functional domains of RSF1, the overexpression status of RSF1 and SNF2H in cancer based on the TCGA and GTEX databases, the cancer-related functions of RSF1 in interacting with H2Aub, HDAC1, CENP-A, PLK1, ATM, CENP-S, SNF2H, HBX, BubR1, cyclin E1, CBP and NF-κB and the potential clinical value of RSF1, which will lay a theoretical foundation for the structural biology study of RSF1 and application of RSF1 inhibitors, truncated RSF1 proteins and SNF2H inhibitors in the treatment of RSF1-overexpressing tumours.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Wei Sun
- Department of Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Kumar A, Yadav G. Shared ancestry of core-histone subunits and non-histone plant proteins containing the Histone Fold Motif (HFM). J Bioinform Comput Biol 2021; 19:2140001. [PMID: 33888032 DOI: 10.1142/s0219720021400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The three helical Histone Fold Motif (HFM) of core histone proteins provides an evolutionarily favored site for the protein-DNA interface. Despite significant variation in sequence, the HFM retains a distinctive structural fold that has diversified into several non-histone protein families. In this work, we explore the ancestry of non-histone HFM containing families in the plant kingdom. A sequence search algorithm was developed using iterative profile Hidden Markov Models to identify remote homologs of core-histone proteins. The resulting hits were functionally annotated, classified into families, and subjected to comprehensive phylogenetic analyses via Maximum likelihood and Bayesian methods. We have identified 4390 HFM containing proteins in the plant kingdom that are not histones, mostly existing as diverse transcription factor families, distributed widely within and across taxonomic groups. Patterns of homology suggest that core histone subunit H2A has evolved into newer families like NF-YC and DRAP1, whereas the H2B subunit of core histones shares a common ancestry with NF-YB and DR1 class of TFs. Core histone subunits H3 and H4 were found to have evolved into DPE and TAF proteins, respectively. Taken together these results provide insights into diversification events during the evolution of the HFM, including sub-functionalization and neo-functionalization of the HFM.
Collapse
Affiliation(s)
- Amish Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Sciences, University of Cambridge, U.K
| |
Collapse
|
4
|
Wong IN, Neo JPS, Oehler J, Schafhauser S, Osman F, Carr SB, Whitby MC. The Fml1-MHF complex suppresses inter-fork strand annealing in fission yeast. eLife 2019; 8:e49784. [PMID: 31855181 PMCID: PMC6952179 DOI: 10.7554/elife.49784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Previously we reported that a process called inter-fork strand annealing (IFSA) causes genomic deletions during the termination of DNA replication when an active replication fork converges on a collapsed fork (Morrow et al., 2017). We also identified the FANCM-related DNA helicase Fml1 as a potential suppressor of IFSA. Here, we confirm that Fml1 does indeed suppress IFSA, and show that this function depends on its catalytic activity and ability to interact with Mhf1-Mhf2 via its C-terminal domain. Finally, a plausible mechanism of IFSA suppression is demonstrated by the finding that Fml1 can catalyse regressed fork restoration in vitro.
Collapse
Affiliation(s)
- Io Nam Wong
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | | | - Judith Oehler
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | | | - Fekret Osman
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton LaboratoryHarwellUnited Kingdom
| | - Matthew C Whitby
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
5
|
Zafar F, Okita AK, Onaka AT, Su J, Katahira Y, Nakayama JI, Takahashi TS, Masukata H, Nakagawa T. Regulation of mitotic recombination between DNA repeats in centromeres. Nucleic Acids Res 2017; 45:11222-11235. [PMID: 28977643 PMCID: PMC5737691 DOI: 10.1093/nar/gkx763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Centromeres that are essential for faithful segregation of chromosomes consist of unique DNA repeats in many eukaryotes. Although recombination is under-represented around centromeres during meiosis, little is known about recombination between centromere repeats in mitotic cells. Here, we compared spontaneous recombination that occurs between ade6B/ade6X inverted repeats integrated at centromere 1 (cen1) or at a non-centromeric ura4 locus in fission yeast. Remarkably, distinct mechanisms of homologous recombination (HR) were observed in centromere and non-centromere regions. Rad51-dependent HR that requires Rad51, Rad54 and Rad52 was predominant in the centromere, whereas Rad51-independent HR that requires Rad52 also occurred in the arm region. Crossovers between inverted repeats (i.e. inversions) were under-represented in the centromere as compared to the arm region. While heterochromatin was dispensable, Mhf1/CENP–S, Mhf2/CENP–X histone-fold proteins and Fml1/FANCM helicase were required to suppress crossovers. Furthermore, Mhf1 and Fml1 were found to prevent gross chromosomal rearrangements mediated by centromere repeats. These data uncovered the regulation of mitotic recombination between DNA repeats in centromeres and its physiological role in maintaining genome integrity.
Collapse
Affiliation(s)
- Faria Zafar
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Atsushi T Onaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiro Katahira
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 44-8585, Japan
| | - Tatsuro S Takahashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hisao Masukata
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
6
|
Abstract
Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. In this review, Xue et al. provide an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
7
|
Zhao Q, Saro D, Sachpatzidis A, Singh TR, Schlingman D, Zheng XF, Mack A, Tsai MS, Mochrie S, Regan L, Meetei AR, Sung P, Xiong Y. The MHF complex senses branched DNA by binding a pair of crossover DNA duplexes. Nat Commun 2015; 5:2987. [PMID: 24390579 DOI: 10.1038/ncomms3987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 11/21/2013] [Indexed: 01/07/2023] Open
Abstract
The conserved MHF1-MHF2 (MHF) complex functions in the activation of the Fanconi anaemia pathway of the DNA damage response, in regulating homologous recombination, and in DNA replication fork maintenance. MHF facilitates the processing of multiple types of branched DNAs by the DNA translocase FANCM. Here we report the crystal structure of a human MHF-DNA complex that reveals the DNA-binding mode of MHF. The structure suggests that MHF prefers branched DNA over double-stranded DNA because it engages two duplex arms. Biochemical analyses verify that MHF preferentially engages DNA forks or various four-way junctions independent of the junction-site structure. Furthermore, genetic experiments provide evidence that the observed DNA-binding interface of MHF is important for cellular resistance to DNA damage. These results offer insights into how the MHF complex recognizes branched DNA and stimulates FANCM activity at such a structure to promote genome maintenance.
Collapse
Affiliation(s)
- Qi Zhao
- 1] Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2]
| | - Dorina Saro
- 1] Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2]
| | - Aristidis Sachpatzidis
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Thiyam Ramsing Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | - Daniel Schlingman
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiao-Feng Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Andrew Mack
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Miaw-Sheue Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Simon Mochrie
- 1] Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA [2] Department of Physics, Yale University, New Haven, Connecticut 06511, USA
| | - Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
8
|
Xue X, Choi K, Bonner JN, Szakal B, Chen YH, Papusha A, Saro D, Niu H, Ira G, Branzei D, Sung P, Zhao X. Selective modulation of the functions of a conserved DNA motor by a histone fold complex. Genes Dev 2015; 29:1000-5. [PMID: 25956905 PMCID: PMC4441048 DOI: 10.1101/gad.259143.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/14/2015] [Indexed: 01/10/2023]
Abstract
Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Here, Xue et al. show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Elucidating the mechanisms that regulate these motor proteins is central to understanding genome maintenance processes. Here, we show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Mechanistically, scMHF relieves the inhibition imposed by the structural maintenance of chromosome protein Smc5 on Mph1 activities relevant to replication-associated repair through binding to Mph1 but not DNA. Thus, scMHF is a function-specific enhancer of Mph1 that enables flexible response to different genome repair situations.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Barnabas Szakal
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Yu-Hung Chen
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Alma Papusha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dorina Saro
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dana Branzei
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA;
| |
Collapse
|
9
|
Elg1, a central player in genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:267-79. [PMID: 25795125 DOI: 10.1016/j.mrrev.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022]
Abstract
ELG1 is a conserved gene uncovered in a number of genetic screens in yeast aimed at identifying factors important in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice, acts as a tumor suppressor in mice and humans, exhibits physical interactions with components of the human Fanconi Anemia pathway and may be responsible for some of the phenotypes associated with neurofibromatosis. In this review, we summarize the information available on Elg1-related activities in yeast and mammals, and present models to explain how the different phenotypes observed in the absence of Elg1 activity are related.
Collapse
|
10
|
Emerging roles for centromere-associated proteins in DNA repair and genetic recombination. Biochem Soc Trans 2014; 41:1726-30. [PMID: 24256282 DOI: 10.1042/bst20130200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Centromere proteins CENP-S and CENP-X are members of the constitutive centromere-associated network, which is a conserved group of proteins that are needed for the assembly and function of kinetochores at centromeres. Intriguingly CENP-S and CENP-X have alter egos going by the names of MHF1 (FANCM-associated histone-fold protein 1) and MHF2 respectively. In this guise they function with a DNA translocase called FANCM (Fanconi's anemia complementation group M) to promote DNA repair and homologous recombination. In the present review we discuss current knowledge of the biological roles of CENP-S and CENP-X and how their dual existence may be a common feature of CCAN (constitutive centromere-associated network) proteins.
Collapse
|
11
|
Talbert PB, Henikoff S. Environmental responses mediated by histone variants. Trends Cell Biol 2014; 24:642-50. [PMID: 25150594 DOI: 10.1016/j.tcb.2014.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023]
Abstract
Fluctuations in the ambient environment can trigger chromatin disruptions, involving replacement of nucleosomes or exchange of their histone subunits. Unlike canonical histones, which are available only during S-phase, replication-independent histone variants are present throughout the cell cycle and are adapted for chromatin repair. The H2A.Z variant mediates responses to environmental perturbations including fluctuations in temperature and seasonal variation. Phosphorylation of histone H2A.X rapidly marks double-strand DNA breaks for chromatin repair, which is mediated by both H2A and H3 histone variants. Other histones are used as weapons in conflicts between parasites and their hosts, which suggests broad involvement of histone variants in environmental responses beyond chromatin repair.
Collapse
Affiliation(s)
- Paul B Talbert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
12
|
Girard C, Crismani W, Froger N, Mazel J, Lemhemdi A, Horlow C, Mercier R. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res 2014; 42:9087-95. [PMID: 25038251 PMCID: PMC4132730 DOI: 10.1093/nar/gku614] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetic recombination is important for generating diversity and to ensure faithful segregation of chromosomes at meiosis. However, few crossovers (COs) are formed per meiosis despite an excess of DNA double-strand break precursors. This reflects the existence of active mechanisms that limit CO formation. We previously showed that AtFANCM is a meiotic anti-CO factor. The same genetic screen now identified AtMHF2 as another player of the same anti-CO pathway. FANCM and MHF2 are both Fanconi Anemia (FA) associated proteins, prompting us to test the other FA genes conserved in Arabidopsis for a role in CO control at meiosis. This revealed that among the FA proteins tested, only FANCM and its two DNA-binding co-factors MHF1 and MHF2 limit CO formation at meiosis.
Collapse
Affiliation(s)
- Chloe Girard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Wayne Crismani
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Nicole Froger
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Julien Mazel
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Afef Lemhemdi
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Christine Horlow
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Raphael Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| |
Collapse
|
13
|
Yamagishi Y, Sakuno T, Goto Y, Watanabe Y. Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 2014; 38:185-200. [PMID: 24666101 DOI: 10.1111/1574-6976.12049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 12/16/2022] Open
Abstract
Proper chromosome segregation during cell division is essential for proliferation, and this is facilitated by kinetochores, large protein complexes assembled on the centromeric region of the chromosomes. Although the sequences of centromeric DNA differ totally among organisms, many components of the kinetochores assembled on centromeres are very well conserved among eukaryotes. To define the identity of centromeres, centromere protein A (CENP-A), which is homologous to canonical histone H3, acts as a landmark for kinetochore assembly. Kinetochores mediate spindle–microtubule attachment and control the movement of chromosomes during mitosis and meiosis. To conduct faithful chromosome segregation, kinetochore assembly and microtubule attachment are elaborately regulated. Here we review the current understanding of the composition, assembly, functions and regulation of kinetochores revealed mainly through studies on fission and budding yeasts. Moreover, because recent cumulative evidence suggests the importance of the regulation of the orientation of kinetochore–microtubule attachment, which differs distinctly between mitosis and meiosis, we focus especially on the molecular mechanisms underlying this regulation.
Collapse
|
14
|
Pessina F, Lowndes NF. The RSF1 histone-remodelling factor facilitates DNA double-strand break repair by recruiting centromeric and Fanconi Anaemia proteins. PLoS Biol 2014; 12:e1001856. [PMID: 24800743 PMCID: PMC4011676 DOI: 10.1371/journal.pbio.1001856] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/28/2014] [Indexed: 01/18/2023] Open
Abstract
ATM is a central regulator of the cellular responses to DNA double-strand breaks (DSBs). Here we identify a biochemical interaction between ATM and RSF1 and we characterise the role of RSF1 in this response. The ATM-RSF1 interaction is dependent upon both DSBs and ATM kinase activity. Together with SNF2H/SMARCA5, RSF1 forms the RSF chromatin-remodelling complex. Although RSF1 is specific to the RSF complex, SNF2H/SMARCA5 is a catalytic subunit of several other chromatin-remodelling complexes. Although not required for checkpoint signalling, RSF1 is required for efficient repair of DSBs via both end-joining and homology-directed repair. Specifically, the ATM-dependent recruitment to sites of DSBs of the histone fold proteins CENPS/MHF1 and CENPX/MHF2, previously identified at centromeres, is RSF1-dependent. In turn these proteins recruit and regulate the mono-ubiquitination of the Fanconi Anaemia proteins FANCD2 and FANCI. We propose that by depositing CENPS/MHF1 and CENPX/MHF2, the RSF complex either directly or indirectly contributes to the reorganisation of chromatin around DSBs that is required for efficient DNA repair.
Collapse
Affiliation(s)
- Fabio Pessina
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Ireland
| | - Noel F. Lowndes
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Ireland
| |
Collapse
|
15
|
The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability. Cell Res 2014; 24:560-75. [PMID: 24699063 DOI: 10.1038/cr.2014.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 01/19/2023] Open
Abstract
Histone-fold proteins typically assemble in multiprotein complexes to bind duplex DNA. However, one histone-fold complex, MHF, associates with Fanconi anemia (FA) protein FANCM to form a branched DNA remodeling complex that senses and repairs stalled replication forks and activates FA DNA damage response network. How the FANCM-MHF complex recognizes branched DNA is unclear. Here, we solved the crystal structure of MHF and its complex with the MHF-interaction domain (referred to as MID) of FANCM, and performed structure-guided mutagenesis. We found that the MID-MHF complex consists of one histone H3-H4-like MHF heterotetramer wrapped by a single polypeptide of MID. We identified a zinc atom-liganding structure at the central interface between MID and MHF that is critical for stabilization of the complex. Notably, the DNA-binding surface of MHF was altered by MID in both electrostatic charges and allosteric conformation. This leads to a switch in the DNA-binding preference - from duplex DNA by MHF alone, to branched DNA by the MID-MHF complex. Mutations that disrupt either the composite DNA-binding surface or the protein-protein interface of the MID-MHF complex impaired activation of the FA network and genome stability. Our data provide the structural basis of how FANCM and MHF work together to recognize branched DNA, and suggest a novel mechanism by which histone-fold complexes can be remodeled by their partners to bind special DNA structures generated during DNA metabolism.
Collapse
|
16
|
Yang H, Zhang T, Tao Y, Wang F, Tong L, Ding J. Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair. Nucleic Acids Res 2013; 41:10573-83. [PMID: 24003026 PMCID: PMC3905867 DOI: 10.1093/nar/gkt788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous disorder associated with deficiencies in the FA complementation group network. FA complementation group M (FANCM) and FA-associated protein 24 kDa (FAAP24) form a stable complex to anchor the FA core complex to chromatin in repairing DNA interstrand crosslinks. Here, we report the first crystal structure of the C-terminal segment of FANCM in complex with FAAP24. The C-terminal segment of FANCM and FAAP24 both consist of a nuclease domain at the N-terminus and a tandem helix-hairpin-helix (HhH)2 domain at the C-terminus. The FANCM-FAAP24 complex exhibits a similar architecture as that of ApXPF. However, the variations of several key residues and the electrostatic property at the active-site region render a catalytically inactive nuclease domain of FANCM, accounting for the lack of nuclease activity. We also show that the first HhH motif of FAAP24 is a potential binding site for DNA, which plays a critical role in targeting FANCM-FAAP24 to chromatin. These results reveal the mechanistic insights into the functions of FANCM-FAAP24 in DNA repair.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, Graduate School of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China and Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
17
|
Westermann S, Schleiffer A. Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol 2013; 23:260-9. [DOI: 10.1016/j.tcb.2013.01.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/22/2013] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
|
18
|
Singh S, Shemesh K, Liefshitz B, Kupiec M. Genetic and physical interactions between the yeast ELG1 gene and orthologs of the Fanconi anemia pathway. Cell Cycle 2013; 12:1625-36. [PMID: 23624835 PMCID: PMC3680542 DOI: 10.4161/cc.24756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fanconi anemia (FA) is a human syndrome characterized by genomic instability and increased incidence of cancer. FA is a genetically heterogeneous disease caused by mutations in at least 15 different genes; several of these genes are conserved in the yeast Saccharomyces cerevisiae. Elg1 is also a conserved protein that forms an RFC-like complex, which interacts with SUMOylated PCNA. The mammalian Elg1 protein has been recently found to interact with the FA complex. Here we analyze the genetic interactions between elg1Δand mutants of the yeast FA-like pathway. We show that Elg1 physically contacts the Mhf1/Mhf2 histone-like complex and genetically interacts with MPH1 (ortholog of the FANCM helicase) and CHL1 (ortholog of the FANCJ helicase) genes. We analyze the sensitivity of double, triple, quadruple and quintuple mutants to methylmethane sulfonate (MMS) and to hydroxyurea (HU). Our results show that genetic interactions depend on the type of DNA damaging agent used and show a hierarchy: Chl1 and Elg1 play major roles in the survival to these genotoxins and exhibit synthetic fitness reduction. Mph1 plays a lesser role, and the effect of the Mhf1/2 complex is seen only in the absence of Elg1 on HU-containing medium. Finally, we dissect the relationship between yeast FA-like mutants and the replication clamp, PCNA. Our results point to an intricate network of interactions rather than a single, linear repair pathway.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
19
|
McHugh PJ, Ward TA, Chovanec M. A prototypical Fanconi anemia pathway in lower eukaryotes? Cell Cycle 2012; 11:3739-44. [PMID: 22895051 DOI: 10.4161/cc.21727] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA interstrand cross-links (ICLs) present a major challenge to cells, preventing separation of the two strands of duplex DNA and blocking major chromosome transactions, including transcription and replication. Due to the complexity of removing this form of DNA damage, no single DNA repair pathway has been shown to be capable of eradicating ICLs. In eukaryotes, ICL repair is a complex process, principally because several repair pathways compete for ICL repair intermediates in a strictly cell cycle-dependent manner. Yeast cells require a combination of nucleotide excision repair, homologous recombination repair and postreplication repair/translesion DNA synthesis to remove ICLs. There are also a number of additional ICL repair factors originally identified in the budding yeast Saccharomyces cerevisiae, called Pso1 though 10, of which Pso2 has an apparently dedicated role in ICL repair. Mammalian cells respond to ICLs by a complex network guided by factors mutated in the inherited cancer-prone disorder Fanconi anemia (FA). Although enormous progress has been made over recent years in identifying and characterizing FA factors as well as in elucidating certain aspects of the biology of FA, the mechanistic details of the ICL repair defects in FA patients remain unknown. Dissection of the FA DNA damage response pathway has, in part, been limited by the absence of FA-like pathways in highly tractable model organisms, such as yeast. Although S. cerevisiae possesses putative homologs of the FA factors FANCM, FANCJ and FANCP (Mph1, Chl1 and Slx4, respectively) as well as of the FANCM-associated proteins MHF1 and MHF2 (Mhf1 and Mhf2), the corresponding mutants display no significant increase in sensitivity to ICLs. Nevertheless, we and others have recently shown that these FA homologs, along with several other factors, control an ICL repair pathway, which has an overlapping or redundant role with a Pso2-controlled pathway. This pathway acts in S-phase and serves to prevent ICL-stalled replication forks from collapsing into DNA double-strand breaks.
Collapse
Affiliation(s)
- Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
20
|
Towards a molecular understanding of the fanconi anemia core complex. Anemia 2012; 2012:926787. [PMID: 22675617 PMCID: PMC3364535 DOI: 10.1155/2012/926787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/21/2012] [Indexed: 11/17/2022] Open
Abstract
Fanconi Anemia (FA) is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs). The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC), required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI.
Collapse
|