1
|
Rahman MA, Dalwani S, Venkatesan R. Structural enzymological studies of the long chain fatty acyl-CoA synthetase FadD5 from the mce1 operon of Mycobacterium tuberculosis. Biochem Biophys Res Commun 2025; 769:151960. [PMID: 40347623 DOI: 10.1016/j.bbrc.2025.151960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/25/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is rich in complex lipids. During intracellular stage, Mtb depends on lipids for its survival. Mammalian cell entry (Mce) 1 complex encoded by the mce1 operon is a mycolic/fatty acid importer. mce1 operon also encodes a putative fatty acyl-CoA synthetase (FadD5; Rv0166), potentially responsible for the activation of fatty acids imported through the Mce1 complex by conjugating them to Coenzyme A. Here, we report that FadD5 is associated to membrane although it can be purified as a soluble dimeric protein. ATP and CoA binding influence FadD5's stability and conformation respectively. Enzymatic studies with fatty acids of varying chain lengths show that FadD5 prefers long chain fatty acids as substrates. X-ray crystallographic studies on FadD5 and its variant reveal that the C-terminal domain (∼100 residues) is cleaved off during crystallization. Noteworthy, deletion of this domain renders FadD5 completely inactive. SAXS studies, however, confirm the presence of full length FadD5 as a dimer in solution. Further structural analysis and comparisons with homologs provide insights on the possible mode of membrane association and fatty acyl tail binding.
Collapse
Affiliation(s)
| | - Subhadra Dalwani
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Lu Y, Zhang X, Guan Z, Ji R, Peng F, Zhao C, Gao W, Gao F. Molecular pathogenesis of Cryptosporidium and advancements in therapeutic interventions. Parasite 2025; 32:7. [PMID: 39902829 PMCID: PMC11792522 DOI: 10.1051/parasite/2025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Cryptosporidiosis, caused by a Cryptosporidium infection, is a serious gastrointestinal disease commonly leading to diarrhea in humans. This disease poses a particular threat to infants, young children, and those with weakened immune systems. The treatment of cryptosporidiosis is challenging due to the current lack of an effective treatment or vaccine. Ongoing research is focused on understanding the molecular pathogenesis of Cryptosporidium and developing pharmacological treatments. In this review, we examine the signaling pathways activated by Cryptosporidium infection within the host and their role in protecting host epithelial cells. Additionally, we also review the research progress of chemotherapeutic targets against cryptosporidia-specific enzymes and anti-Cryptosporidium drugs (including Chinese and Western medicinal drugs), aiming at the development of more effective treatments for cryptosporidiosis.
Collapse
Affiliation(s)
- Yilong Lu
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Xiaoning Zhang
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Zhiyu Guan
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Rui Ji
- College of Traditional Chinese Medicine, Shandong Second Medical University Weifang China
| | - Fujun Peng
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Chunzhen Zhao
- College of Pharmacy, Shandong Second Medical University Weifang China
| | - Wei Gao
- College of Clinical Medicine, Shandong Second Medical University Weifang China
| | - Feng Gao
- College of Pharmacy, Shandong Second Medical University Weifang China
| |
Collapse
|
3
|
Pawar A, Deka H, Battula M, Aljawdah HM, Patil PC, Chikhale R. Integrated machine learning and physics-based methods assisted de novo design of Fatty Acyl-CoA synthase inhibitors. Expert Opin Drug Discov 2025; 20:123-135. [PMID: 39587794 DOI: 10.1080/17460441.2024.2432972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Tuberculosis is an infectious disease that has become endemic worldwide. The causative bacteria Mycobacterium tuberculosis (Mtb) is targeted via several exciting drug targets. One newly discovered target is the Fatty Acyl-CoA synthase, which plays a significant role in activating the long-chain fatty acids. RESEARCH DESIGN & METHODS This study aims to generate novel compounds using Machine Learning (ML) algorithms to inhibit this synthase. Experimentally derived bioactive compounds were chosen from ChEMBL and used as inputs for effective molecule generation by Reinvent4. The library of new molecules generated was subjected to a two-tiered molecular docking protocol, and the results were further studied to obtain a binding free energy check. RESULTS The ML-based de novo drug design (DNDD) approach successfully generated a diverse library of novel molecules targeting Fatty Acyl-CoA synthase. After rigorous molecular docking and binding free energy analysis, four new compounds were identified as potential lead candidates with promising inhibitory effects on Mtb lipid metabolism. CONCLUSIONS The study demonstrated the effectiveness of a machine-learning approach in generating novel drug candidates against Mtb. The identified hit compounds show potential as inhibitors of Fatty Acyl-CoA synthase, offering a new avenue for developing treatments for tuberculosis, particularly in combating drug-resistant strains.
Collapse
Affiliation(s)
- Atul Pawar
- SilicoScientia Private Limited, Bengaluru, India
| | | | | | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Preeti Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, India
| | - Rupesh Chikhale
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, UK
| |
Collapse
|
4
|
Li X, Song S, Kong X, Chen X, Zhao Z, Lin Z, Jia Y, Zhang Y, Luo HB, Wang QP, Zhang LH, Qian W, Deng Y. Regulation of Burkholderia cenocepacia virulence by the fatty acyl-CoA ligase DsfR as a response regulator of quorum sensing signal. Cell Rep 2024; 43:114223. [PMID: 38748879 DOI: 10.1016/j.celrep.2024.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.
Collapse
Affiliation(s)
- Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shihao Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhuoxian Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zizi Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yantao Jia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qiao-Ping Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
5
|
Charital S, Shunmugam S, Dass S, Alazzi AM, Arnold CS, Katris NJ, Duley S, Quansah NA, Pierrel F, Govin J, Yamaryo-Botté Y, Botté CY. The acyl-CoA synthetase TgACS1 allows neutral lipid metabolism and extracellular motility in Toxoplasma gondii through relocation via its peroxisomal targeting sequence (PTS) under low nutrient conditions. mBio 2024; 15:e0042724. [PMID: 38501871 PMCID: PMC11005404 DOI: 10.1128/mbio.00427-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in β-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal β-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.
Collapse
Affiliation(s)
- Sarah Charital
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Anna Maria Alazzi
- Team Govin, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Samuel Duley
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Nyamekye A. Quansah
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jérôme Govin
- Team Govin, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
6
|
Zhu Y, Shi H, Tang T, Li Q, Peng Y, Bermudez LE, Hu C, Chen H, Guo A, Chen Y. Mycobacterium tuberculosis Fatty Acyl-CoA Synthetase fadD33 Promotes Bacillus Calmette-Guérin Survival in Hostile Extracellular and Intracellular Microenvironments in the Host. Cells 2023; 12:2610. [PMID: 37998345 PMCID: PMC10670722 DOI: 10.3390/cells12222610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tb), remains a significant global health challenge. The survival of M. tb in hostile extracellular and intracellular microenvironments is crucial for its pathogenicity. In this study, we discovered a Bacillus Calmette-Guérin (BCG) mutant B1033 that potentially affected mycobacterium pathogenicity. This mutant contained an insertion mutation gene, fadD33, which is involved in lipid metabolism; however, its direct role in regulating M. tb infection is not well understood. Here, we found that the absence of fadD33 reduced BCG adhesion and invasion into human pulmonary alveolar epithelial cells and increased the permeability of the mycobacterial cell wall, allowing M. tb to survive in the low pH and membrane pressure extracellular microenvironment of the host cells. The absence of fadD33 also inhibited the survival of BCG in macrophages by promoting the release of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumors necrosis factor-α, through the mitogen-activated protein kinase p38 signaling pathway. Overall, these findings provide new insights into M. tb mechanisms to evade host defenses and might contribute to identifying potential therapeutic and vaccine targets for tuberculosis prevention.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongling Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Medha, Joshi H, Sharma S, Sharma M. Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis. J Biomol Struct Dyn 2023; 41:10009-10025. [PMID: 36448553 DOI: 10.1080/07391102.2022.2151514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) encodes a total of 67 PE_PGRS proteins and definite functions of many of them are still unknown. This study reports PE_PGRS45 (Rv2615c) protein from Mtb as NADPH dependent oxido-reductase having substrate specificity for fatty acyl Coenzyme A. Computational studies predicted PE_PGRS45 to be an integral membrane protein of Mtb. Expression of PE_PGRS45 in non-pathogenic Mycobacterium smegmatis, which does not possess PE_PGRS genes, confirmed its membrane localization. This protein was observed to have NADPH binding motif. Experimental validation confirmed its NADPH dependent oxido-reductase activity (Km value = 34.85 ± 9.478 μM, Vmax = 96.77 ± 7.184 nmol/min/mg of protein). Therefore, its potential to be targeted by first line anti-tubercular drug Isoniazid (INH) was investigated. INH was predicted to bind within the active site of PE_PGRS45 protein and experiments validated its inhibitory effect on the oxido-reductase activity of PE_PGRS45 with IC50/Ki values of 5.66 μM. Mtb is resistant to first line drugs including INH. Therefore, to address the problem of drug resistant TB, docking and Molecular Dynamics (MD) simulation studies between PE_PGRS45 and three drugs (Entacapone, Tolcapone and Verapamil) which are being used in Parkinson's and hypertension treatment were performed. PE_PGRS45 bound the three drugs with similar or better affinity in comparison to INH. Additionally, INH and these drugs bound within the same active site of PE_PGRS45. This study discovered Mtb's PE_PGRS45 protein to have an oxido-reductase activity and could be targeted by drugs that can be repurposed for TB treatment. Furthermore, in-vitro and in-vivo validation will aid in drug-resistant TB treatment. HIGHLIGHTSIn-silico and in-vitro studies of hypothetical protein PE_PGRS45 (Rv2615c) of Mycobacterium tuberculosis (Mtb) reveals it to be an integral membrane proteinPE_PGRS45 protein has substrate specificity for fatty acyl Coenzyme A (fatty acyl CoA) and possess NADPH dependent oxido-reductase activityDocking and simulation studies revealed that first line anti-tubercular drug Isoniazid (INH) and other drugs with anti-TB property have strong affinity for PE_PGRS45 proteinOxido-reductase activity of PE_PGRS45 protein is inhibited by INHPE_PGRS45 protein could be targeted by drugs that can be repurposed for TB treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Medha
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sadhna Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Monika Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| |
Collapse
|
8
|
Williams JT, Baker JJ, Zheng H, Dechow SJ, Fallon J, Murto M, Albrecht VJ, Gilliland HN, Olive AJ, Abramovitch RB. A genetic selection for Mycobacterium smegmatis mutants tolerant to killing by sodium citrate defines a combined role for cation homeostasis and osmotic stress in cell death. mSphere 2023; 8:e0035823. [PMID: 37681985 PMCID: PMC10597346 DOI: 10.1128/msphere.00358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023] Open
Abstract
Mycobacteria can colonize environments where the availability of metal ions is limited. Biological or inorganic chelators play an important role in limiting metal availability, and we developed a model to examine Mycobacterium smegmatis survival in the presence of the chelator sodium citrate. We observed that instead of restricting M. smegmatis growth, concentrated sodium citrate killed M. smegmatis. RNAseq analysis during sodium citrate treatment revealed transcriptional signatures of metal starvation and hyperosmotic stress. Notably, metal starvation and hyperosmotic stress, individually, do not kill M. smegmatis under these conditions. A forward genetic transposon selection was conducted to examine why sodium citrate was lethal, and several sodium-citrate-tolerant mutants were isolated. Based on the identity of three tolerant mutants, mgtE, treZ, and fadD6, we propose a dual stress model of killing by sodium citrate, where sodium citrate chelate metals from the cell envelope and then osmotic stress in combination with a weakened cell envelope causes cell lysis. This sodium citrate tolerance screen identified mutants in several other genes with no known function, with most conserved in the pathogen M. tuberculosis. Therefore, this model will serve as a basis to define their functions, potentially in maintaining cell wall integrity, cation homeostasis, or osmotolerance. IMPORTANCE Bacteria require mechanisms to adapt to environments with differing metal availability. When Mycobacterium smegmatis is treated with high concentrations of the metal chelator sodium citrate, the bacteria are killed. To define the mechanisms underlying killing by sodium citrate, we conducted a genetic selection and observed tolerance to killing in mutants of the mgtE magnesium transporter. Further characterization studies support a model where killing by sodium citrate is driven by a weakened cell wall and osmotic stress, that in combination cause cell lysis.
Collapse
Affiliation(s)
- John T. Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jacob J. Baker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Huiqing Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Shelby J. Dechow
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jared Fallon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Megan Murto
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Veronica J. Albrecht
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Haleigh N. Gilliland
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Li S, Qu Y. Structural study of medium-long chain fatty acyl-CoA ligase FadD8 from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2023; 672:65-71. [PMID: 37336126 DOI: 10.1016/j.bbrc.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
In mycobacteria, lipids are important components of the cell wall and play a critical role for pathogenic activities. Lipids need to be activated before participating in many biological pathways. FadD proteins are members of the adenylate-forming superfamily, catalyzing activation of fatty acids. FadD8 is one of the 34 Mycobacterium tuberculosis FadD proteins, which was reported to be a putative medium-long chain fatty acyl-CoA ligase. Previous studies showed FadD8 from Mycobacterium smegmatis exhibited higher activity with oxidized cholesterol than fatty acids. However, the catalytic mechanism of the FadD8 is still exclusive. Here, we reported the crystal structure of FadD8 from Mycobacterium tuberculosis, which forms homodimer. Structural analysis revealed presence of a relatively narrow pocket compared to other FadD proteins and a novel alternative pocket, implying distinct substrate binding preference. We propose that FadD8 plays a vital role in cholesterol utilization and metabolism by catalyzing activation of cholesterol. Collectively, our findings provide novel information for the further studies of the inhibitor and drug development.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| | - Yunhui Qu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
10
|
Mater V, Eisner S, Seidel C, Schneider D. The peripherally membrane-attached protein MbFACL6 of Mycobacterium tuberculosis activates a broad spectrum of substrates. J Mol Biol 2022; 434:167842. [PMID: 36179886 DOI: 10.1016/j.jmb.2022.167842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The infectious disease tuberculosis is one of the fifteen most common causes of death worldwide (according to the WHO). About every fourth person is infected with the main causative agent Mycobacterium tuberculosis (Mb). A characteristic of the pathogen is its entrance into a dormant state in which a phenotypic antibiotic resistance is achieved. To target resistant strains, novel dormancy-specific targets are very promising. Such a possible target is the Mb "fatty acid-CoA ligase 6" (MbFACL6), which activates fatty acids and thereby modulates the accumulation of triacylglycerol-containing lipid droplets that are used by Mb as an energy source during dormancy. We investigated the membrane association of MbFACL6 in E. coli and its specific activity towards different substrates after establishing a novel MbFACL6 activity assay. Despite a high homology to the mammalian family of fatty acid transport proteins, which are typically transmembrane proteins, our results indicate that MbFACL6 is a peripheral membrane-attached protein. Furthermore, MbFACL6 tolerates a broad spectrum of substrates including saturated and unsaturated fatty acids (C12-C20), some cholic acid derivatives, and even synthetic fatty acids, such as 9(E)-nitrooleicacid. Therefore, the substrate selectivity of MbFACL6 appears to be much broader than previously assumed.
Collapse
Affiliation(s)
- Veronika Mater
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Sabine Eisner
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Cornelia Seidel
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| |
Collapse
|
11
|
Chen Q, Jiang Y, Kang Z, Cheng J, Xiong X, Hu CY, Meng Y. Engineering a Feruloyl-Coenzyme A Synthase for Bioconversion of Phenylpropanoid Acids into High-Value Aromatic Aldehydes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9948-9960. [PMID: 35917470 DOI: 10.1021/acs.jafc.2c02980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aromatic aldehydes find extensive applications in food, perfume, pharmaceutical, and chemical industries. However, a limited natural enzyme selectivity has become the bottleneck of bioconversion of aromatic aldehydes from natural phenylpropanoid acids. Here, based on the original structure of feruloyl-coenzyme A (CoA) synthetase (FCS) from Streptomyces sp. V-1, we engineered five substrate-binding domains to match specific phenylpropanoid acids. FcsCIAE407A/K483L, FcsMAE407R/I481R/K483R, FcsHAE407K/I481K/K483I, FcsCAE407R/I481R/K483T, and FcsFAE407R/I481K/K483R showed 9.96-, 10.58-, 4.25-, 6.49-, and 8.71-fold enhanced catalytic efficiency for degrading CoA thioesters of cinnamic acid, 4-methoxycinnamic acid, 4-hydroxycinnamic acid, caffeic acid, and ferulic acid, respectively. Molecular dynamics simulation illustrated that novel substrate-binding domains formed strong interaction forces with substrates' methoxy/hydroxyl group and provided hydrophobic/alkaline catalytic surfaces. Five recombinant E. coli with FCS mutants were constructed with the maximum benzaldehyde, p-anisaldehyde, p-hydroxybenzaldehyde, protocatechualdehyde, and vanillin productivity of 6.2 ± 0.3, 5.1 ± 0.23, 4.1 ± 0.25, 7.1 ± 0.3, and 8.7 ± 0.2 mM/h, respectively. Hence, our study provided novel and efficient enzymes for the bioconversion of phenylpropanoid acids into aromatic aldehydes.
Collapse
Affiliation(s)
- Qihang Chen
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P.R. China
| | - Yaqin Jiang
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P.R. China
| | - Zhengzhong Kang
- AutoDrug Biotech Co. Ltd, No. 58 XiangKe Rd, Pudong New Area, Shanghai 201210, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Xiaochao Xiong
- Biological Systems Engineering, Washington State University, Pullman, Washington 99163, United States
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P.R. China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, Hawaii 96822, United States
| | - Yonghong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, P.R. China
| |
Collapse
|
12
|
Lundgren CAK, Lerche M, Norling C, Högbom M. Solution and Membrane Interaction Dynamics of Mycobacterium tuberculosis Fatty Acyl-CoA Synthetase FadD13. Biochemistry 2021; 60:1520-1532. [PMID: 33913324 PMCID: PMC8253482 DOI: 10.1021/acs.biochem.0c00987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The very-long-chain fatty acyl-CoA synthetase FadD13 from Mycobacterium tuberculosis activates fatty acids for further use in mycobacterial lipid metabolism. FadD13 is a peripheral membrane protein, with both soluble and membrane-bound populations in vivo. The protein displays a distinct positively charged surface patch, suggested to be involved in membrane association. In this paper, we combine structural analysis with liposome co-flotation assays and membrane association modeling to gain a more comprehensive understanding of the mechanisms behind membrane association. We show that FadD13 has affinity for negatively charged lipids, such as cardiolipin. Addition of a fatty acid substrate to the liposomes increases the apparent affinity of FadD13, consistent with our previous hypothesis that FadD13 can utilize the membrane to harbor its very-long-chain fatty acyl substrates. In addition, we unambiguously show that FadD13 adopts a dimeric arrangement in solution. The dimer interface partly buries the positive surface patch, seemingly inconsistent with membrane binding. Notably, when cross-linking the dimer, it lost its ability to bind and co-migrate with liposomes. To better understand the dynamics of association, we utilized two mutant variants of FadD13, one in which the positively charged patch was altered to become more negative and one more hydrophobic. Both variants were predominantly monomeric in solution. The hydrophobic variant maintained the ability to bind to the membrane, whereas the negative variant did not. Taken together, our data indicate that FadD13 exists in a dynamic equilibrium between the dimer and monomer, where the monomeric state can adhere to the membrane via the positively charged surface patch.
Collapse
Affiliation(s)
- Camilla A K Lundgren
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Michael Lerche
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Charlotta Norling
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Ayaz A, Saqib S, Huang H, Zaman W, Lü S, Zhao H. Genome-wide comparative analysis of long-chain acyl-CoA synthetases (LACSs) gene family: A focus on identification, evolution and expression profiling related to lipid synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:1-11. [PMID: 33556720 DOI: 10.1016/j.plaphy.2021.01.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 05/27/2023]
Abstract
In plants, Long-chain acyl-CoA synthetases (LACSs) play key roles in activating fatty acids to fatty acyl-CoA thioesters, which are then further involved in lipid synthesis and fatty acid catabolism. LACSs have been intensively studied in Arabidopsis, but its evolutionary relationship in green plants is unexplored. In this study, we performed a comprehensive genome-wide analysis of the LACS gene family across green plants followed by phylogenetic clustering analysis, gene structure determination, detection of conserved motifs, gene expression in tissues and subcellular localization. Our results identified LACS genes in 122 plant species including algae, low land plants (i.e., mosses and lycophytes), monocots, and eudicots. In total, 697 sequences were identified, and 629 sequences were selected because of alignment and some duplication errors. The retrieved amino acid sequences ranged from 271 to 1056 residues and diversified in intron/exon patterns in different LACSs. Phylogenetic clustering grouped LACS gene family into six major clades with distinct potential functions. This classification is well supported by examining gene structure and conserved motifs. Also, gene expression analysis and subcellular localization substantiate with clade division in the phylogeny, indicating that the evolutionary pattern is visible in their functionality. Additionally, experimental analysis of lacs2 mutant validated that LACS2 plays key roles in suberin synthesis. Thus, our study not only provides an evolutionary mechanism underlying functional diversification but also lays the foundation for further elucidation of the LACS gene family.
Collapse
Affiliation(s)
- Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Wajid Zaman
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
14
|
Dykstra H, Fisk C, LaRose C, Waldhart A, Meng X, Zhao G, Wu N. Mouse long-chain acyl-CoA synthetase 1 is active as a monomer. Arch Biochem Biophys 2021; 700:108773. [PMID: 33485846 DOI: 10.1016/j.abb.2021.108773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/25/2022]
Abstract
Fatty acids are essential cellular building blocks and a major energy source. Regardless of their metabolic fate, fatty acids first need to be activated by forming a thioester with a coenzyme A group. This reaction is carried out by acyl-CoA synthetases (ACSs), of which ACSL1 (long-chain acyl-CoA synthetase 1) is an important member. Two bacterial homologues of ACSL1 crystal structures have been solved previously. One is a soluble dimeric protein, and the other is a monomeric peripheral membrane protein. The mammalian ACSL1 is a membrane protein with an N-terminal transmembrane helix. To characterize the mammalian ACSL1, we purified the full-length mouse ACSL1 and reconstituted it into lipid nanodiscs. Using enzymatic assays, mutational analysis, and cryo-electron microscopy, we show that mouse ACSL1 is active as a monomer.
Collapse
Affiliation(s)
| | - Chelsea Fisk
- Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Cassi LaRose
- Van Andel Institute, Grand Rapids, MI, 49503, USA
| | | | - Xing Meng
- Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Gongpu Zhao
- Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Ning Wu
- Van Andel Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
15
|
Evans CE, Si Y, Matarlo JS, Yin Y, French JB, Tonge PJ, Tan DS. Structure-Based Design, Synthesis, and Biological Evaluation of Non-Acyl Sulfamate Inhibitors of the Adenylate-Forming Enzyme MenE. Biochemistry 2019; 58:1918-1930. [PMID: 30912442 PMCID: PMC6653581 DOI: 10.1021/acs.biochem.9b00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
N-Acyl sulfamoyladenosines (acyl-AMS) have been used
extensively to inhibit adenylate-forming enzymes that are involved in a wide
range of biological processes. These acyl-AMS inhibitors are nonhydrolyzable
mimics of the cognate acyl adenylate intermediates that are bound tightly by
adenylate-forming enzymes. However, the anionic acyl sulfamate moiety presents a
pharmacological liability that may be detrimental to cell permeability and
pharmacokinetic profiles. We have previously developed the acyl sulfamate
OSB-AMS (1) as a potent inhibitor of the adenylate-forming enzyme
MenE, an o-succinylbenzoate-CoA (OSB-CoA) synthetase that is
required for bacterial menaquinone biosynthesis. Herein, we report the use of
computational docking to develop novel, non-acyl sulfamate inhibitors of MenE. A
m-phenyl ether-linked analogue (5) was found
to be the most potent inhibitor (IC50 = 8 μM;
Kd = 244 nM), and its X-ray co-crystal structure
was determined to characterize its binding mode in comparison to the
computational prediction. This work provides a framework for the development of
potent non-acyl sulfamate inhibitors of other adenylate-forming enzymes in the
future.
Collapse
|
16
|
Behra PRK, Das S, Pettersson BMF, Shirreff L, DuCote T, Jacobsson KG, Ennis DG, Kirsebom LA. Extended insight into the Mycobacterium chelonae-abscessus complex through whole genome sequencing of Mycobacterium salmoniphilum outbreak and Mycobacterium salmoniphilum-like strains. Sci Rep 2019; 9:4603. [PMID: 30872669 PMCID: PMC6418233 DOI: 10.1038/s41598-019-40922-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Members of the Mycobacterium chelonae-abscessus complex (MCAC) are close to the mycobacterial ancestor and includes both human, animal and fish pathogens. We present the genomes of 14 members of this complex: the complete genomes of Mycobacterium salmoniphilum and Mycobacterium chelonae type strains, seven M. salmoniphilum isolates, and five M. salmoniphilum-like strains including strains isolated during an outbreak in an animal facility at Uppsala University. Average nucleotide identity (ANI) analysis and core gene phylogeny revealed that the M. salmoniphilum-like strains are variants of the human pathogen Mycobacterium franklinii and phylogenetically close to Mycobacterium abscessus. Our data further suggested that M. salmoniphilum separates into three branches named group I, II and III with the M. salmoniphilum type strain belonging to group II. Among predicted virulence factors, the presence of phospholipase C (plcC), which is a major virulence factor that makes M. abscessus highly cytotoxic to mouse macrophages, and that M. franklinii originally was isolated from infected humans make it plausible that the outbreak in the animal facility was caused by a M. salmoniphilum-like strain. Interestingly, M. salmoniphilum-like was isolated from tap water suggesting that it can be present in the environment. Moreover, we predicted the presence of mutational hotspots in the M. salmoniphilum isolates and 26% of these hotspots overlap with genes categorized as having roles in virulence, disease and defense. We also provide data about key genes involved in transcription and translation such as sigma factor, ribosomal protein and tRNA genes.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Lisa Shirreff
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Tanner DuCote
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | | | - Don G Ennis
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
17
|
Engineering Arabidopsis long-chain acyl-CoA synthetase 9 variants with enhanced enzyme activity. Biochem J 2019; 476:151-164. [DOI: 10.1042/bcj20180787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022]
Abstract
Abstract
Long-chain acyl-CoA synthetase (LACS, EC 6.2.1.3) catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which, in turn, serves as the major acyl donor for various lipid metabolic pathways. Increasing the size of acyl-CoA pool by enhancing LACS activity appears to be a useful approach to improve the production and modify the composition of fatty acid-derived compounds, such as triacylglycerol. In the present study, we aimed to improve the enzyme activity of Arabidopsis thaliana LACS9 (AtLACS9) by introducing random mutations into its cDNA using error-prone PCR. Two AtLACS9 variants containing multiple amino acid residue substitutions were identified with enhanced enzyme activity. To explore the effect of each amino acid residue substitution, single-site mutants were generated and the amino acid substitutions C207F and D238E were found to be primarily responsible for the increased activity of the two variants. Furthermore, evolutionary analysis revealed that the beneficial amino acid site C207 is conserved among LACS9 from plant eudicots, whereas the other beneficial amino acid site D238 might be under positive selection. Together, our results provide valuable information for the production of LACS variants for applications in the metabolic engineering of lipid biosynthesis in oleaginous organisms.
Collapse
|
18
|
LipG a bifunctional phospholipase/thioesterase involved in mycobacterial envelope remodeling. Biosci Rep 2018; 38:BSR20181953. [PMID: 30487163 PMCID: PMC6435540 DOI: 10.1042/bsr20181953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis is currently one of the leading causes of death from an infectious agent. The main difficulties encountered in eradicating this bacteria are mainly related to (i) a very complex lipid composition of the bacillus cell wall, (ii) its ability to hide from the immune system inside the granulomas, and (iii) the increasing number of resistant strains. In this context, we were interested in the Rv0646c (lipGMTB ) gene located upstream to the mmaA cluster which is described as being crucial for the production of cell wall components and required for the bacilli adaptation and survival in mouse macrophages. Using biochemical experiments combined with the construction of deletion and overexpression mutant strains in Mycobacterium smegmatis, we found that LipGMTB is a cytoplasmic membrane-associated enzyme that displays both phospholipase and thioesterase activities. Overproduction of LipGMTB decreases the glycopeptidolipids (GPL) level concomitantly to an increase in phosphatidylinositol (PI) which is the precursor of the PI mannoside (PIM), an essential lipid component of the bacterial cell wall. Conversely, deletion of the lipGMS gene in M. smegmatis leads to an overproduction of GPL, and subsequently decreases the strain susceptibility to various antibiotics. All these findings demonstrate that LipG is involved in cell envelope biosynthesis/remodeling, and consequently this enzyme may thus play an important role in mycobacterial physiology.
Collapse
|
19
|
Fatty Acyl-AMP Ligases as Mechanistic Variants of ANL Superfamily and Molecular Determinants Dictating Substrate Specificities. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Xu JY, Zhao L, Liu X, Hu H, Liu P, Tan M, Ye BC. Characterization of the Lysine Acylomes and the Substrates Regulated by Protein Acyltransferase in Mycobacterium smegmatis. ACS Chem Biol 2018; 13:1588-1597. [PMID: 29799716 DOI: 10.1021/acschembio.8b00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein acylation plays important roles in bacterial pathogenesis through regulation of enzymatic activity, protein stability, nucleic acid binding ability, and protein-protein interactions. Mycobacteria, a genus including invasive pathogens known to cause serious diseases, shapes its pathogenicity through adaptation of its energy metabolism to microenvironments encountered within mammalian hosts. In this process, acetyl-CoA and propionyl-CoA function as important intermediates. However, the function of acetyl-CoA/propionyl-CoA driven protein acylation remains to be elucidated. Herein, we systematically investigated protein acetylome/propionylome in the nonpathogenic Mycobacterium smegmatis through antibody-enrichment-based proteomic analysis in which 146 acetylated sites on 121 proteins and 26 propionylated sites on 25 proteins were identified. After that, characteristic differences of the two acylomes were elucidated through such bioinformatic methods as motif analysis, protein-protein analysis, Gene Ontology analysis, and KEGG analysis. In addition, quantitative mass spectrometric method was used to evaluate the site-specific and motif-biased catalytic mechanism mediated by the cAMP-dependent acetyltransferase MsKat in M. smegmatis. Furthermore, we raised the possibility that both O-serine and Nε-lysine acetylation might coregulate the propionyl-CoA synthetase. This study described the landscape of acetylome and propionylome in the M. smegmatis, showing an unexpected role of protein acylation regulation in mycobacteria.
Collapse
Affiliation(s)
- Jun-Yu Xu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lei Zhao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - XinXin Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
21
|
Adipocyte Model of Mycobacterium tuberculosis Infection Reveals Differential Availability of Iron to Bacilli in the Lipid-Rich Caseous Environment. Infect Immun 2018; 86:IAI.00041-18. [PMID: 29632245 PMCID: PMC5964510 DOI: 10.1128/iai.00041-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis, a successful human pathogen, utilizes multiple carbon sources from the host but adapts to a fatty-acid-rich environment in vivo. We sought to delineate the physiologic response of M. tuberculosis to a lipid-rich environment by using differentiated adipocytes as a model system. Global transcriptome profiling based on RNA sequencing was performed for bacilli from infected adipocytes and preadipocytes. Genes involved in de novo fatty acid synthesis were downregulated, while those predicted to be involved in triglyceride biosynthesis were upregulated, in bacilli isolated from adipocytes, indicating reliance on host-derived fatty acids. Transcription factor network analysis indicated suppression of IdeR-regulated genes, suggesting decreased iron uptake by M. tuberculosis in the adipocyte model. This suppression of iron uptake coincided with higher ferritin and iron levels in adipocytes than in preadipocytes. In accord with the role of iron in mediating oxidative stress, we observed upregulation of genes involved in mitigating oxidative stress in M. tuberculosis isolated from adipocytes. We provide evidence that oleic acid, a major host-derived fatty acid, helps reduce the bacterial cytoplasm, thereby providing a safe haven for an M. tuberculosis mutant that is sensitive to iron-mediated oxidative stress. Via an independent mechanism, host ferritin is also able to rescue the growth of this mutant. Our work highlights the inherent synergy between macronutrients and micronutrients of the host environment that converge to provide resilience to the pathogen. This complex synergy afforded by the adipocyte model of infection will aid in the identification of genes required by M. tuberculosis in a caseous host environment.
Collapse
|
22
|
Hemmerling F, Lebe KE, Wunderlich J, Hahn F. An Unusual Fatty Acyl:Adenylate Ligase (FAAL)-Acyl Carrier Protein (ACP) Didomain in Ambruticin Biosynthesis. Chembiochem 2018. [DOI: 10.1002/cbic.201800084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Franziska Hemmerling
- Professur für Organische Chemie (Lebensmittelchemie); Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstrasse 30 95447 Bayreuth Germany
- Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| | - Karen E. Lebe
- Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| | - Johannes Wunderlich
- Professur für Organische Chemie (Lebensmittelchemie); Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstrasse 30 95447 Bayreuth Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie); Fakultät für Biologie, Chemie und Geowissenschaften; Universität Bayreuth; Universitätsstrasse 30 95447 Bayreuth Germany
- Biomolekulares Wirkstoffzentrum; Leibniz Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|
23
|
Abstract
Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, uses various tactics to resist on antibiotics and evade host immunity. To control tuberculosis, antibiotics with novel mechanisms of action are urgently needed. Emerging new antibiotics and underlying novel drug targets are summarized in this paper.
Collapse
Affiliation(s)
- Nzungize Lambert
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Abualgasim Elgaili Abdalla
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China.,b Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman , Islamic University , Omdurman , Sudan
| | - Xiangke Duan
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Jianping Xie
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| |
Collapse
|
24
|
Kuhn ML, Alexander E, Minasov G, Page HJ, Warwrzak Z, Shuvalova L, Flores KJ, Wilson DJ, Shi C, Aldrich CC, Anderson WF. Structure of the Essential Mtb FadD32 Enzyme: A Promising Drug Target for Treating Tuberculosis. ACS Infect Dis 2016; 2:579-591. [PMID: 27547819 DOI: 10.1021/acsinfecdis.6b00082] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mycolic acids are indispensible lipids of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), and contribute to the distinctive architecture and impermeability of the mycobacterial cell envelope. FadD32 plays a pivotal role in mycolic acid biosynthesis by functionally linking fatty acid synthase (FAS) and polyketide synthase (PKS) biosynthetic pathways. FadD32, a fatty acyl-AMP ligase (FAAL), represents one of the best genetically and chemically validated new TB drug targets. We have determined the three-dimensional crystal structure of Mtb FadD32 in complex with a ligand specifically designed to stabilize the catalytically active adenylate-conformation, which provides a foundation for structure-based drug design efforts against this essential protein. The structure also captures the unique interactions of a FAAL-specific insertion sequence and provides insight into the specificity and mechanism of fatty acid transfer.
Collapse
Affiliation(s)
- Misty L. Kuhn
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, United States
| | | | - George Minasov
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Holland J. Page
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, United States
| | - Zdzislaw Warwrzak
- LS-CAT,
Synchrotron Research Center, Northwestern University, Argonne, Illinois 60439, United States
| | - Ludmilla Shuvalova
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Kristin J. Flores
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | | | | | | | - Wayne F. Anderson
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
25
|
Guillet V, Galandrin S, Maveyraud L, Ladevèze S, Mariaule V, Bon C, Eynard N, Daffé M, Marrakchi H, Mourey L. Insight into Structure-Function Relationships and Inhibition of the Fatty Acyl-AMP Ligase (FadD32) Orthologs from Mycobacteria. J Biol Chem 2016; 291:7973-89. [PMID: 26900152 DOI: 10.1074/jbc.m115.712612] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Indexed: 12/14/2022] Open
Abstract
Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is one of the targets of first-line antituberculous drugs. This pathway contains a number of potential targets, including some that have been identified only recently and have yet to be explored. One such target, FadD32, is required for activation of the long meromycolic chain and is essential for mycobacterial growth. We report here an in-depth biochemical, biophysical, and structural characterization of four FadD32 orthologs, including the very homologous enzymes fromMycobacterium tuberculosisandMycobacterium marinum Determination of the structures of two complexes with alkyl adenylate inhibitors has provided direct information, with unprecedented detail, about the active site of the enzyme and the associated hydrophobic tunnel, shedding new light on structure-function relationships and inhibition mechanisms by alkyl adenylates and diarylated coumarins. This work should pave the way for the rational design of inhibitors of FadD32, a highly promising drug target.
Collapse
Affiliation(s)
- Valérie Guillet
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Ségolène Galandrin
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Laurent Maveyraud
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Simon Ladevèze
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Vincent Mariaule
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Cécile Bon
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Nathalie Eynard
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Mamadou Daffé
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Hedia Marrakchi
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Lionel Mourey
- From the Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
26
|
Guo F, Zhang H, Payne HR, Zhu G. Differential Gene Expression and Protein Localization of Cryptosporidium parvum Fatty Acyl-CoA Synthetase Isoforms. J Eukaryot Microbiol 2015; 63:233-46. [PMID: 26411755 DOI: 10.1111/jeu.12272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
Abstract
Cryptosporidium parvum is unable to synthesize fatty acids de novo, but possesses three long-chain fatty acyl-CoA synthetase (CpACS) isoforms for activating fatty acids. We have recently shown that these enzymes could be targeted to kill the parasite in vitro and in vivo. Here, we demonstrated that the CpACS genes were differentially expressed during the parasite life cycle, and their proteins were localized to different subcellular structures by immunofluorescence and immuno-electron microscopies. Among them, CpACS1 displayed as an apical protein in sporozoites and merozoites, but no or little presence during the intracellular merogony until the release of merozoites, suggesting that CpACS1 probably functioned mainly during the parasite invasion and/or early stage of intracellular development. Both CpACS2 and CpACS3 proteins were present in all parasite life cycle stages, in which CpACS2 was present in the parasite and the parasitophorous vacuole membranes (PVM), whereas CpACS3 was mainly present in the parasite plasma membranes with little presence in the PVM. These observations suggest that CpACS2 and CpACS3 may participate in scavenging and transport of fatty acids across the PVM and the parasite cytoplasmic membranes, respectively.
Collapse
Affiliation(s)
- Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Harold Ross Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
27
|
Daniel J, Sirakova T, Kolattukudy P. An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy. PLoS One 2014; 9:e114877. [PMID: 25490545 PMCID: PMC4260918 DOI: 10.1371/journal.pone.0114877] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/14/2014] [Indexed: 11/17/2022] Open
Abstract
Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and resembles eukaryotic fatty acid transport proteins, is able to stimulate fatty acid uptake in E. coli cells. We show that purified FACL6 displays acyl-coenzyme A synthetase activity with a preference towards oleic acid, which is one of the predominant fatty acids in host lipids. Our results indicate that the expression of FACL6 protein in Mycobacterium tuberculosis is significantly increased during in vitro dormancy. The facl6-deficient Mycobacterium tuberculosis mutant displayed a diminished ability to synthesize acyl-coenzyme A in cell-free extracts. Furthermore, during in vitro dormancy, the mutant synthesized lower levels of intracellular triacylglycerol from exogenous fatty acids. Complementation partially restored the lost function. Our results suggest that FACL6 modulates triacylglycerol accumulation as the pathogen enters dormancy by activating fatty acids.
Collapse
Affiliation(s)
- Jaiyanth Daniel
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32816, United States of America; Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana, 46805, United States of America
| | - Tatiana Sirakova
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32816, United States of America
| | - Pappachan Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32816, United States of America
| |
Collapse
|
28
|
Orfanoudaki G, Economou A. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Mol Cell Proteomics 2014; 13:3674-87. [PMID: 25210196 DOI: 10.1074/mcp.o114.041137] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell compartmentalization serves both the isolation and the specialization of cell functions. After synthesis in the cytoplasm, over a third of all proteins are targeted to other subcellular compartments. Knowing how proteins are distributed within the cell and how they interact is a prerequisite for understanding it as a whole. Surface and secreted proteins are important pathogenicity determinants. Here we present the STEP database (STEPdb) that contains a comprehensive characterization of subcellular localization and topology of the complete proteome of Escherichia coli. Two widely used E. coli proteomes (K-12 and BL21) are presented organized into thirteen subcellular classes. STEPdb exploits the wealth of genetic, proteomic, biochemical, and functional information on protein localization, secretion, and targeting in E. coli, one of the best understood model organisms. Subcellular annotations were derived from a combination of bioinformatics prediction, proteomic, biochemical, functional, topological data and extensive literature re-examination that were refined through manual curation. Strong experimental support for the location of 1553 out of 4303 proteins was based on 426 articles and some experimental indications for another 526. Annotations were provided for another 320 proteins based on firm bioinformatic predictions. STEPdb is the first database that contains an extensive set of peripheral IM proteins (PIM proteins) and includes their graphical visualization into complexes, cellular functions, and interactions. It also summarizes all currently known protein export machineries of E. coli K-12 and pairs them, where available, with the secretory proteins that use them. It catalogs the Sec- and TAT-utilizing secretomes and summarizes their topological features such as signal peptides and transmembrane regions, transmembrane topologies and orientations. It also catalogs physicochemical and structural features that influence topology such as abundance, solubility, disorder, heat resistance, and structural domain families. Finally, STEPdb incorporates prediction tools for topology (TMHMM, SignalP, and Phobius) and disorder (IUPred) and implements the BLAST2STEP that performs protein homology searches against the STEPdb.
Collapse
Affiliation(s)
- Georgia Orfanoudaki
- From the ‡Institute of Molecular Biology and Biotechnology-FoRTH and §Department of Biology-University of Crete, P.O. Box 1385, Iraklio, Crete, Greece
| | - Anastassios Economou
- From the ‡Institute of Molecular Biology and Biotechnology-FoRTH and §Department of Biology-University of Crete, P.O. Box 1385, Iraklio, Crete, Greece; ¶Laboratory of Molecular Bacteriology; Rega Institute, Department of Microbiology and Immunology, KU Leuven, Herrestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
29
|
Matange N, Podobnik M, Visweswariah SS. The non-catalytic "cap domain" of a mycobacterial metallophosphoesterase regulates its expression and localization in the cell. J Biol Chem 2014; 289:22470-81. [PMID: 24970891 DOI: 10.1074/jbc.m114.578328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite highly conserved core catalytic domains, members of the metallophosphoesterase (MPE) superfamily perform diverse and crucial functions ranging from nucleotide and nucleic acid metabolism to phospholipid hydrolysis. Unique structural elements outside of the catalytic core called "cap domains" are thought to provide specialization to these enzymes; however, no directed study has been performed to substantiate this. The cap domain of Rv0805, an MPE from Mycobacterium tuberculosis, is located C-terminal to its catalytic domain and is dispensable for the catalytic activity of this enzyme in vitro. We show here that this C-terminal extension (CTE) mediates in vivo localization of the protein to the cell membrane and cell wall as well as modulates expression levels of Rv0805 in mycobacteria. We also demonstrate that Rv0805 interacts with the cell wall of mycobacteria, possibly with the mycolyl-arabinogalactan-peptidoglycan complex, by virtue of its C terminus, a hitherto unknown property of this MPE. Using a panel of mutant proteins, we identify interactions between active site residues of Rv0805 and the CTE that determine its association with the cell wall. Finally, we show that Rv0805 and a truncated mutant devoid of the CTE produce different phenotypic effects when expressed in mycobacteria. Our study thus provides a detailed dissection of the functions of the cap domain of an MPE and suggests that the repertoire of cellular functions of MPEs cannot be understood without exploring the modulatory effects of these subdomains.
Collapse
Affiliation(s)
- Nishad Matange
- From the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, India 560012 and
| | - Marjetka Podobnik
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Sandhya S Visweswariah
- From the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, India 560012 and
| |
Collapse
|
30
|
Guo F, Zhang H, Fritzler JM, Rider SD, Xiang L, McNair NN, Mead JR, Zhu G. Amelioration of Cryptosporidium parvum infection in vitro and in vivo by targeting parasite fatty acyl-coenzyme A synthetases. J Infect Dis 2013; 209:1279-87. [PMID: 24273180 DOI: 10.1093/infdis/jit645] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cryptosporidium is emerging as 1 of the 4 leading diarrheal pathogens in children in developing countries. Its infections in patients with AIDS can be fatal, whereas fully effective treatments are unavailable. The major goal of this study is to explore parasite fatty acyl-coenzyme A synthetase (ACS) as a novel drug target. METHODS A colorimetric assay was developed to evaluate biochemical features and inhibitory kinetics of Cryptosporidium parvum ACSs using recombinant proteins. Anticryptosporidial efficacies of the ACS inhibitor triacsin C were evaluated both in vitro and in vivo. RESULTS Cryptosporidium ACSs displayed substrate preference toward long-chain fatty acids. The activity of parasite ACSs could be specifically inhibited by triacsin C with the inhibition constant Ki in the nanomolar range. Triacsin C was highly effective against C. parvum growth in vitro (median inhibitory concentration, 136 nmol/L). Most importantly, triacsin C effectively reduced parasite oocyst production up to 88.1% with no apparent toxicity when administered to Cryptosporidium-infected interleukin 12 knockout mice at 8-15 mg/kg/d for 1 week. CONCLUSIONS The findings of this study not only validated Cryptosporidium ACS (and related acyl-[acyl-carrier-protein]-ligases) as pharmacological targets but also indicate that triacsin C and analogues can be explored as potential new therapeutics against the virtually untreatable cryptosporidial infection in immunocompromised patients.
Collapse
Affiliation(s)
- Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Vergnolle O, Xu H, Blanchard JS. Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33. J Biol Chem 2013; 288:28116-25. [PMID: 23935107 DOI: 10.1074/jbc.m113.495549] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterial siderophores are critical components for bacterial virulence in the host. Pathogenic mycobacteria synthesize iron chelating siderophores named mycobactin and carboxymycobactin to extract intracellular macrophage iron. The two siderophores differ in structure only by a lipophilic aliphatic chain attached on the ε-amino group of the lysine mycobactin core, which is transferred by MbtK. Prior to acyl chain transfer, the lipophilic chain requires activation by a specific fatty acyl-AMP ligase FadD33 (also known as MbtM) and is then loaded onto phosphopantetheinylated acyl carrier protein (holo-MbtL) to form covalently acylated MbtL. We demonstrate that FadD33 prefers long chain saturated lipids and initial velocity studies showed that FadD33 proceeds via a Bi Uni Uni Bi ping-pong mechanism. Inhibition experiments suggest that, during the first half-reaction (adenylation), fatty acid binds first to the free enzyme, followed by ATP and the release of pyrophosphate to form the adenylate intermediate. During the second half-reaction (ligation), holo-MbtL binds to the enzyme followed by the release of products AMP and acylated MbtL. In addition, we characterized a post-translational regulation mechanism of FadD33 by the mycobacterial protein lysine acetyltransferase in a cAMP-dependent manner. FadD33 acetylation leads to enzyme inhibition, which can be reversed by the NAD(+)-dependent deacetylase, MSMEG_5175 (DAc1). To the best of our knowledge, this is the first time that bacterial siderophore synthesis has been shown to be regulated via post-translational protein acetylation.
Collapse
Affiliation(s)
- Olivia Vergnolle
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
32
|
Liu Z, Ioerger TR, Wang F, Sacchettini JC. Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme. J Biol Chem 2013; 288:18473-83. [PMID: 23625916 DOI: 10.1074/jbc.m113.466912] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis has a group of 34 FadD proteins that belong to the adenylate-forming superfamily. They are classified as either fatty acyl-AMP ligases (FAALs) or fatty acyl-CoA ligases based on sequence analysis. FadD10, involved in the synthesis of a virulence-related lipopeptide, was mis-annotated as a fatty acyl-CoA ligase; however, it is in fact a FAAL that transfers fatty acids to an acyl carrier protein (Rv0100). In this study, we have determined the structures of FadD10 in both the apo-form and the complexed form with dodecanoyl-AMP, where we see for the first time an adenylate-forming enzyme that does not adopt a closed conformation for catalysis. Indeed, this novel conformation of FadD10, facilitated by its unique inter-domain and intermolecular interactions, is critical for the enzyme to carry out the acyl transfer onto Rv0100 rather than coenzyme A. This contradicts the existing model of FAALs that rely on an insertion motif for the acyltransferase specificity and thus makes FadD10 a new type of FAAL. We have also characterized the fatty acid preference of FadD10 through biological and structural analyses, and the data indicate long chain saturated fatty acids as the biological substrates of the enzyme.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | | | | | | |
Collapse
|
33
|
Nambi S, Gupta K, Bhattacharyya M, Ramakrishnan P, Ravikumar V, Siddiqui N, Thomas AT, Visweswariah SS. Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism. J Biol Chem 2013; 288:14114-14124. [PMID: 23553634 DOI: 10.1074/jbc.m113.463992] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synthetase) enzymes is acetylated by KATmt in a cAMP-dependent manner and that acetylation inhibits the activity of FadD enzymes. A sirtuin-like enzyme can deacetylate multiple FadDs, thus completing the regulatory cycle. Using a strain deleted for the KATmt ortholog in Mycobacterium bovis Bacillus Calmette-Guérin (BCG), we show for the first time that acetylation is dependent on intracellular cAMP levels. KATmt can utilize propionyl CoA as a substrate and, therefore, plays a critical role in alleviating propionyl CoA toxicity in mycobacteria by inactivating acyl CoA synthetase (ACS). The precision by which mycobacteria can regulate the metabolism of fatty acids in a cAMP-dependent manner appears to be unparalleled in other biological organisms and is ideally suited to adapt to the complex environment that pathogenic mycobacteria experience in the host.
Collapse
Affiliation(s)
- Subhalaxmi Nambi
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Parvathy Ramakrishnan
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Vaishnavi Ravikumar
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Nida Siddiqui
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Ann Terene Thomas
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|