1
|
Cesnik A, Schaffer LV, Gaur I, Jain M, Ideker T, Lundberg E. Mapping the Multiscale Proteomic Organization of Cellular and Disease Phenotypes. Annu Rev Biomed Data Sci 2024; 7:369-389. [PMID: 38748859 PMCID: PMC11343683 DOI: 10.1146/annurev-biodatasci-102423-113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
While the primary sequences of human proteins have been cataloged for over a decade, determining how these are organized into a dynamic collection of multiprotein assemblies, with structures and functions spanning biological scales, is an ongoing venture. Systematic and data-driven analyses of these higher-order structures are emerging, facilitating the discovery and understanding of cellular phenotypes. At present, knowledge of protein localization and function has been primarily derived from manual annotation and curation in resources such as the Gene Ontology, which are biased toward richly annotated genes in the literature. Here, we envision a future powered by data-driven mapping of protein assemblies. These maps can capture and decode cellular functions through the integration of protein expression, localization, and interaction data across length scales and timescales. In this review, we focus on progress toward constructing integrated cell maps that accelerate the life sciences and translational research.
Collapse
Affiliation(s)
- Anthony Cesnik
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Leah V Schaffer
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Ishan Gaur
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| | - Mayank Jain
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Trey Ideker
- Departments of Computer Science and Engineering and Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Emma Lundberg
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Pathology, Stanford University, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA;
| |
Collapse
|
2
|
Kotev M, Diaz Gonzalez C. Molecular Dynamics and Other HPC Simulations for Drug Discovery. Methods Mol Biol 2024; 2716:265-291. [PMID: 37702944 DOI: 10.1007/978-1-0716-3449-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
High performance computing (HPC) is taking an increasingly important place in drug discovery. It makes possible the simulation of complex biochemical systems with high precision in a short time, thanks to the use of sophisticated algorithms. It promotes the advancement of knowledge in fields that are inaccessible or difficult to access through experimentation and it contributes to accelerating the discovery of drugs for unmet medical needs while reducing costs. Herein, we report how computational performance has evolved over the past years, and then we detail three domains where HPC is essential. Molecular dynamics (MD) is commonly used to explore the flexibility of proteins, thus generating a better understanding of different possible approaches to modulate their activity. Modeling and simulation of biopolymer complexes enables the study of protein-protein interactions (PPI) in healthy and disease states, thus helping the identification of targets of pharmacological interest. Virtual screening (VS) also benefits from HPC to predict in a short time, among millions or billions of virtual chemical compounds, the best potential ligands that will be tested in relevant assays to start a rational drug design process.
Collapse
Affiliation(s)
- Martin Kotev
- Evotec SE, Integrated Drug Discovery, Molecular Architects, Campus Curie, Toulouse, France
| | | |
Collapse
|
3
|
Zercher BP, Hong S, Roush AE, Feng Y, Bush MF. Are the Gas-Phase Structures of Molecular Elephants Enduring or Ephemeral? Results from Time-Dependent, Tandem Ion Mobility. Anal Chem 2023; 95:9589-9597. [PMID: 37294019 PMCID: PMC10549206 DOI: 10.1021/acs.analchem.3c01222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The structural stability of biomolecules in the gas phase remains an important topic in mass spectrometry applications for structural biology. Here, we evaluate the kinetic stability of native-like protein ions using time-dependent, tandem ion mobility (IM). In these tandem IM experiments, ions of interest are mobility-selected after a first dimension of IM and trapped for up to ∼14 s. Time-dependent, collision cross section distributions are then determined from separations in a second dimension of IM. In these experiments, monomeric protein ions exhibited structural changes specific to both protein and charge state, whereas large protein complexes did not undergo resolvable structural changes on the timescales of these experiments. We also performed energy-dependent experiments, i.e., collision-induced unfolding, as a comparison for time-dependent experiments to understand the extent of unfolding. Collision cross section values observed in energy-dependent experiments using high collision energies were significantly larger than those observed in time-dependent experiments, indicating that the structures observed in time-dependent experiments remain kinetically trapped and retain some memory of their solution-phase structure. Although structural evolution should be considered for highly charged, monomeric protein ions, these experiments demonstrate that higher-mass protein ions can have remarkable kinetic stability in the gas phase.
Collapse
Affiliation(s)
- Benjamin P. Zercher
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Seoyeon Hong
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Addison E. Roush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Yuan Feng
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
4
|
Munteanu IG, Grădinaru VR, Apetrei C. Development of a Chemically Modified Sensor Based on a Pentapeptide and Its Application for Sensitive Detection of Verbascoside in Extra Virgin Olive Oil. Int J Mol Sci 2022; 23:ijms232415704. [PMID: 36555346 PMCID: PMC9778896 DOI: 10.3390/ijms232415704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
In addition to their antioxidant and antimicrobial action in functional foods, beverages, and in some dermato-cosmetic products, olive phenolic compounds are also recognized for their role in the prevention of diabetes and inflammation, treatment of heart disease and, consequently, of the numerous chronic diseases mediated by the free radicals. In recent years, attention has increased, in particular, regarding one of the most important compound in extra virgin olive oil (EVOO) having glycosidic structure, namely verbocoside, due to the existence in the literature of numerous studies demonstrating its remarkable contribution to the prophylaxis and treatment of various disorders of the human body. The purpose of this study was the qualitative and quantitative determination of verbascoside in commercial EVOOs from different regions by means of a newly developed sensor based on a screen-printed carbon electrode (SPCE) modified with graphene oxide (GPHOX), on the surface of which a pentapeptide was immobilized by means of glutaraldehyde as cross-linking agent. The modified electrode surface was investigated using both Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) methods. This newly developed sensor has shown a high sensibility compared to the unmodified electrode, a low detection limit (LOD) of up to 9.38 × 10-8 M, and a wide linearity range between 0.1 µM and 10.55 µM. The applicability of the modified sensor was confirmed by detecting verbascoside in ten different EVOOs samples using the cyclic voltammetry (CV) method, with very good results. The validation of the electroanalytical method was performed by using the standard addition method with very good recoveries in the range of 97.48-103.77%.
Collapse
Affiliation(s)
- Irina Georgiana Munteanu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
| | | | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
- Correspondence: ; Tel.: +40-727-580-914
| |
Collapse
|
5
|
Caporale A, Adorinni S, Lamba D, Saviano M. Peptide-Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules 2021; 26:1219. [PMID: 33668767 PMCID: PMC7956380 DOI: 10.3390/molecules26051219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The self-recognition and self-assembly of biomolecules are spontaneous processes that occur in Nature and allow the formation of ordered structures, at the nanoscale or even at the macroscale, under thermodynamic and kinetic equilibrium as a consequence of specific and local interactions. In particular, peptides and peptidomimetics play an elected role, as they may allow a rational approach to elucidate biological mechanisms to develop new drugs, biomaterials, catalysts, or semiconductors. The forces that rule self-recognition and self-assembly processes are weak interactions, such as hydrogen bonding, electrostatic attractions, and van der Waals forces, and they underlie the formation of the secondary structure (e.g., α-helix, β-sheet, polyproline II helix), which plays a key role in all biological processes. Here, we present recent and significant examples whereby design was successfully applied to attain the desired structural motifs toward function. These studies are important to understand the main interactions ruling the biological processes and the onset of many pathologies. The types of secondary structure adopted by peptides during self-assembly have a fundamental importance not only on the type of nano- or macro-structure formed but also on the properties of biomaterials, such as the types of interaction, encapsulation, non-covalent interaction, or covalent interaction, which are ultimately useful for applications in drug delivery.
Collapse
Affiliation(s)
- Andrea Caporale
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Simone Adorinni
- Dipartimento di Scienze Chimiche e Farmaceutiche di Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Doriano Lamba
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Viale delle Medaglie d’Oro 305, I-00136 Roma, Italy
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
6
|
Allison TM, Barran P, Cianférani S, Degiacomi MT, Gabelica V, Grandori R, Marklund EG, Menneteau T, Migas LG, Politis A, Sharon M, Sobott F, Thalassinos K, Benesch JLP. Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology. Anal Chem 2020; 92:10872-10880. [DOI: 10.1021/acs.analchem.9b05791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Timothy M. Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Matteo T. Degiacomi
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Erik G. Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Thomas Menneteau
- Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, Gower Street, London WC1E 6BT, United Kingdom
| | - Lukasz G. Migas
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Konstantinos Thalassinos
- Department of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, United Kingdom
| | - Justin L. P. Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
7
|
Bender J, Schmidt C. Mass spectrometry of membrane protein complexes. Biol Chem 2020; 400:813-829. [PMID: 30956223 DOI: 10.1515/hsz-2018-0443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
Membrane proteins are key players in the cell. Due to their hydrophobic nature they require solubilising agents such as detergents or membrane mimetics during purification and, consequently, are challenging targets in structural biology. In addition, their natural lipid environment is crucial for their structure and function further hampering their analysis. Alternative approaches are therefore required when the analysis by conventional techniques proves difficult. In this review, we highlight the broad application of mass spectrometry (MS) for the characterisation of membrane proteins and their interactions with lipids. We show that MS unambiguously identifies the protein and lipid components of membrane protein complexes, unravels their three-dimensional arrangements and further provides clues of protein-lipid interactions.
Collapse
Affiliation(s)
- Julian Bender
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| |
Collapse
|
8
|
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JL, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano ID, Causon T, Clowers BH, Creaser CS, De Pauw E, Far J, Fernandez‐Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T. Recommendations for reporting ion mobility Mass Spectrometry measurements. MASS SPECTROMETRY REVIEWS 2019; 38:291-320. [PMID: 30707468 PMCID: PMC6618043 DOI: 10.1002/mas.21585] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/02/2023]
Abstract
Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site2 rue Robert Escarpit, 33600PessacFrance
| | | | | | - Perdita Barran
- Michael Barber Centre for Collaborative Mass SpectrometryManchester Institute for Biotechnology, University of ManchesterManchesterUK
| | - Justin L.P. Benesch
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford, Mansfield Road, OX1 3TAOxfordUK
| | - Christian Bleiholder
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32311
| | | | - Aivett Bilbao
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashington
| | - Matthew F. Bush
- Department of ChemistryUniversity of WashingtonSeattleWashington
| | | | | | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Brian H. Clowers
- Department of ChemistryWashington State UniversityPullmanWashington
| | - Colin S. Creaser
- Centre for Analytical ScienceDepartment of Chemistry, Loughborough UniversityLoughboroughUK
| | - Edwin De Pauw
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | - Johann Far
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | | | | | | | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical ResearchInselspital, Bern University Hospital, University of Bern, Switzerland and TofwerkThunSwitzerland
| | | | - Stephan Hann
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Hugh I. Kim
- Department of ChemistryKorea UniversitySeoulKorea
| | | | - Jody C. May
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - John A. McLean
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - Kevin Pagel
- Freie Universitaet BerlinInstitute for Chemistry and BiochemistryBerlinGermany
| | | | | | - Frédéric Rosu
- CNRS, INSERM and University of BordeauxInstitut Européen de Chimie et BiologiePessacFrance
| | - Frank Sobott
- Antwerp UniversityBiomolecular & Analytical Mass SpectrometryAntwerpBelgium
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUK
- United Kingdom and Institute of Structural and Molecular BiologyDepartment of Biological Sciences, Birkbeck College, University of LondonLondonWC1E 7HXUK
| | - Stephen J. Valentine
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest Virginia
| | | |
Collapse
|
9
|
Bullock JMA, Sen N, Thalassinos K, Topf M. Modeling Protein Complexes Using Restraints from Crosslinking Mass Spectrometry. Structure 2018; 26:1015-1024.e2. [PMID: 29804821 PMCID: PMC6039719 DOI: 10.1016/j.str.2018.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/05/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
Modeling macromolecular assemblies with restraints from crosslinking mass spectrometry (XL-MS) tends to focus solely on distance violation. Recently, we identified three different modeling features inherent in crosslink data: (1) expected distance between crosslinked residues; (2) violation of the crosslinker's maximum bound; and (3) solvent accessibility of crosslinked residues. Here, we implement these features in a scoring function. cMNXL, and demonstrate that it outperforms the commonlyused crosslink distance violation. We compare the different methods of calculating the distance between crosslinked residues, which shows no significant change in performance when using Euclidean distance compared with the solvent-accessible surface distance. Finally, we create a combined score that incorporates information from 3D electron microscopy maps as well as crosslinking. This achieves, on average, better results than either information type alone and demonstrates the potential of integrative modeling with XL-MS and low-resolution cryoelectron microscopy.
Collapse
Affiliation(s)
- Joshua Matthew Allen Bullock
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Neeladri Sen
- Indian Institute of Science Education and Research Pune, Pashan, Pune 411 008, India
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
10
|
Chandler SA, Benesch JL. Mass spectrometry beyond the native state. Curr Opin Chem Biol 2017; 42:130-137. [PMID: 29288996 DOI: 10.1016/j.cbpa.2017.11.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Native mass spectrometry allows the study of proteins by probing in vacuum the interactions they form in solution. It is a uniquely useful approach for structural biology and biophysics due to the high resolution of separation it affords, allowing the concomitant interrogation of multiple protein components with high mass accuracy. At its most basic, native mass spectrometry reports the mass of intact proteins and the assemblies they form in solution. However, the opportunities for more detailed characterisation are extensive, enabled by the exquisite control of ion motion that is possible in vacuum. Here we describe recent developments in mass spectrometry approaches to the structural interrogation of proteins both in, and beyond, their native state.
Collapse
Affiliation(s)
- Shane A Chandler
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Justin Lp Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
11
|
Integrative modelling of cellular assemblies. Curr Opin Struct Biol 2017; 46:102-109. [PMID: 28735107 DOI: 10.1016/j.sbi.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/01/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
A wide variety of experimental techniques can be used for understanding the precise molecular mechanisms underlying the activities of cellular assemblies. The inherent limitations of a single experimental technique often requires integration of data from complementary approaches to gain sufficient insights into the assembly structure and function. Here, we review popular computational approaches for integrative modelling of cellular assemblies, including protein complexes and genomic assemblies. We provide recent examples of integrative models generated for such assemblies by different experimental techniques, especially including data from 3D electron microscopy (3D-EM) and chromosome conformation capture experiments, respectively. We highlight general concepts in integrative modelling and discuss the need for careful formulation and merging of different types of information.
Collapse
|
12
|
Computational modeling of protein assemblies. Curr Opin Struct Biol 2017; 44:179-189. [DOI: 10.1016/j.sbi.2017.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/18/2023]
|
13
|
Use of evolutionary information in the fitting of atomic level protein models in low resolution cryo-EM map of a protein assembly improves the accuracy of the fitting. J Struct Biol 2016; 195:294-305. [PMID: 27444391 DOI: 10.1016/j.jsb.2016.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022]
Abstract
Protein-protein interface residues, especially those at the core of the interface, exhibit higher conservation than residues in solvent exposed regions. Here, we explore the ability of this differential conservation to evaluate fittings of atomic models in low-resolution cryo-EM maps and select models from the ensemble of solutions that are often proposed by different model fitting techniques. As a prelude, using a non-redundant and high-resolution structural dataset involving 125 permanent and 95 transient complexes, we confirm that core interface residues are conserved significantly better than nearby non-interface residues and this result is used in the cryo-EM map analysis. From the analysis of inter-component interfaces in a set of fitted models associated with low-resolution cryo-EM maps of ribosomes, chaperones and proteasomes we note that a few poorly conserved residues occur at interfaces. Interestingly a few conserved residues are not in the interface, though they are close to the interface. These observations raise the potential requirement of refitting the models in the cryo-EM maps. We show that sampling an ensemble of models and selection of models with high residue conservation at the interface and in good agreement with the density helps in improving the accuracy of the fit. This study indicates that evolutionary information can serve as an additional input to improve and validate fitting of atomic models in cryo-EM density maps.
Collapse
|
14
|
Joseph AP, Malhotra S, Burnley T, Wood C, Clare DK, Winn M, Topf M. Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment. Methods 2016; 100:42-9. [PMID: 26988127 PMCID: PMC4854230 DOI: 10.1016/j.ymeth.2016.03.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023] Open
Abstract
As the resolutions of Three Dimensional Electron Microscopic reconstructions of biological macromolecules are being improved, there is a need for better fitting and refinement methods at high resolutions and robust approaches for model assessment. Flex-EM/MODELLER has been used for flexible fitting of atomic models in intermediate-to-low resolution density maps of different biological systems. Here, we demonstrate the suitability of the method to successfully refine structures at higher resolutions (2.5-4.5Å) using both simulated and experimental data, including a newly processed map of Apo-GroEL. A hierarchical refinement protocol was adopted where the rigid body definitions are relaxed and atom displacement steps are reduced progressively at successive stages of refinement. For the assessment of local fit, we used the SMOC (segment-based Manders' overlap coefficient) score, while the model quality was checked using the Qmean score. Comparison of SMOC profiles at different stages of refinement helped in detecting regions that are poorly fitted. We also show how initial model errors can have significant impact on the goodness-of-fit. Finally, we discuss the implementation of Flex-EM in the CCP-EM software suite.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Sony Malhotra
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Tom Burnley
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Chris Wood
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Daniel K Clare
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science & Innovation Campus, OX11 0DE, United Kingdom
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
15
|
Visualizing the Ensemble Structures of Protein Complexes Using Chemical Cross-Linking Coupled with Mass Spectrometry. BIOPHYSICS REPORTS 2015; 1:127-138. [PMID: 27340691 PMCID: PMC4871902 DOI: 10.1007/s41048-015-0015-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022] Open
Abstract
Graphical Abstract ![]()
Abstract Chemical cross-linking coupled with mass spectrometry (CXMS) identifies protein residues that are close in space, and has been increasingly used for modeling the structures of protein complexes. Here we show that a single structure is usually sufficient to account for the intermolecular cross-links identified for a stable complex with sub-µmol/L binding affinity. In contrast, we show that the distance between two cross-linked residues in the different subunits of a transient or fleeting complex may exceed the maximum length of the cross-linker used, and the cross-links cannot be fully accounted for with a unique complex structure. We further show that the seemingly incompatible cross-links identified with high confidence arise from alternative modes of protein-protein interactions. By converting the intermolecular cross-links to ambiguous distance restraints, we established a rigid-body simulated annealing refinement protocol to seek the minimum set of conformers collectively satisfying the CXMS data. Hence we demonstrate that CXMS allows the depiction of the ensemble structures of protein complexes and elucidates the interaction dynamics for transient and fleeting complexes. Electronic supplementary material The online version of this article (doi:10.1007/s41048-015-0015-y) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Peraro MD, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2015; 14:77-92. [DOI: 10.1038/nrmicro.2015.3] [Citation(s) in RCA: 476] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Degiacomi MT, Benesch JLP. EM∩IM: software for relating ion mobility mass spectrometry and electron microscopy data. Analyst 2015; 141:70-5. [PMID: 26616427 DOI: 10.1039/c5an01636c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present EM∩IM, software that allows the calculation of collision cross-sections from electron density maps obtained for example by means of transmission electron microscopy. This allows the assessment of structures other than those described by atomic coordinates with ion mobility mass spectrometry data, and provides a new means for contouring and validating electron density maps. EM∩IM thereby facilitates the use of data obtained in the gas phase within structural biology studies employing diverse experimental methodologies.
Collapse
Affiliation(s)
- Matteo T Degiacomi
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | | |
Collapse
|
18
|
Pandurangan AP, Vasishtan D, Alber F, Topf M. γ-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a Genetic Algorithm. Structure 2015; 23:2365-2376. [PMID: 26655474 PMCID: PMC4671957 DOI: 10.1016/j.str.2015.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 12/02/2022]
Abstract
We have developed a genetic algorithm for building macromolecular complexes using only a 3D-electron microscopy density map and the atomic structures of the relevant components. For efficient sampling the method uses map feature points calculated by vector quantization. The fitness function combines a mutual information score that quantifies the goodness of fit with a penalty score that helps to avoid clashes between components. Testing the method on ten assemblies (containing 3–8 protein components) and simulated density maps at 10, 15, and 20 Å resolution resulted in identification of the correct topology in 90%, 70%, and 60% of the cases, respectively. We further tested it on four assemblies with experimental maps at 7.2–23.5 Å resolution, showing the ability of the method to identify the correct topology in all cases. We have also demonstrated the importance of the map feature-point quality on assembly fitting in the lack of additional experimental information. γ-TEMPy uses a genetic algorithm to fit multiple components into 3D-EM density maps The fitness score is a combination of a Mutual Information score and a clash penalty Efficient sampling is aided by using map feature points from vector quantization Native topologies for assemblies containing up to eight components can be predicted
Collapse
Affiliation(s)
- Arun Prasad Pandurangan
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Daven Vasishtan
- Division of Structural Biology, Oxford Particle Imaging Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Frank Alber
- Program in Molecular and Computational Biology, University of Southern California, 1050 Childs Way, RRI413E, Los Angeles, CA 90089, USA
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
19
|
Nyon MP, Prentice T, Day J, Kirkpatrick J, Sivalingam GN, Levy G, Haq I, Irving JA, Lomas DA, Christodoulou J, Gooptu B, Thalassinos K. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1 -antitrypsin upon ligand binding. Protein Sci 2015; 24:1301-12. [PMID: 26011795 PMCID: PMC4534181 DOI: 10.1002/pro.2706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 11/11/2022]
Abstract
Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whereas ion mobility (IM)-MS can report on conformational behavior of specific states. We used IM-MS to study a conformationally labile protein (α1 -antitrypsin) that undergoes pathological polymerization in the context of point mutations. The folded, native state of the Z-variant remains highly polymerogenic in physiological conditions despite only minor thermodynamic destabilization relative to the wild-type variant. Various data implicate kinetic instability (conformational lability within a native state ensemble) as the basis of Z α1 -antitrypsin polymerogenicity. We show the ability of IM-MS to track such disease-relevant conformational behavior in detail by studying the effects of peptide binding on α1 -antitrypsin conformation and dynamics. IM-MS is, therefore, an ideal platform for the screening of compounds that result in therapeutically beneficial kinetic stabilization of native α1 -antitrypsin. Our findings are confirmed with high-resolution X-ray crystallographic and nuclear magnetic resonance spectroscopic studies of the same event, which together dissect structural changes from dynamic effects caused by peptide binding at a residue-specific level. IM-MS methods, therefore, have great potential for further study of biologically relevant thermodynamic and kinetic instability of proteins and provide rapid and multidimensional characterization of ligand interactions of therapeutic interest.
Collapse
Affiliation(s)
- Mun Peak Nyon
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Tanya Prentice
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Jemma Day
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - John Kirkpatrick
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Ganesh N Sivalingam
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Geraldine Levy
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Imran Haq
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| | - James A Irving
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| | - David A Lomas
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
| | - Bibek Gooptu
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom.,Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
| |
Collapse
|
20
|
Farabella I, Vasishtan D, Joseph AP, Pandurangan AP, Sahota H, Topf M. TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits. J Appl Crystallogr 2015; 48:1314-1323. [PMID: 26306092 PMCID: PMC4520291 DOI: 10.1107/s1600576715010092] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/24/2015] [Indexed: 12/21/2022] Open
Abstract
TEMPy is an object-oriented Python library that provides the means to validate density fits in electron microscopy reconstructions. This article highlights several features of particular interest for this purpose and includes some customized examples. Three-dimensional electron microscopy is currently one of the most promising techniques used to study macromolecular assemblies. Rigid and flexible fitting of atomic models into density maps is often essential to gain further insights into the assemblies they represent. Currently, tools that facilitate the assessment of fitted atomic models and maps are needed. TEMPy (template and electron microscopy comparison using Python) is a toolkit designed for this purpose. The library includes a set of methods to assess density fits in intermediate-to-low resolution maps, both globally and locally. It also provides procedures for single-fit assessment, ensemble generation of fits, clustering, and multiple and consensus scoring, as well as plots and output files for visualization purposes to help the user in analysing rigid and flexible fits. The modular nature of TEMPy helps the integration of scoring and assessment of fits into large pipelines, making it a tool suitable for both novice and expert structural biologists.
Collapse
Affiliation(s)
- Irene Farabella
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| | - Daven Vasishtan
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford OX3 7BN, UK
| | - Agnel Praveen Joseph
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell , Didcot, Oxon OX11 0QX, UK
| | - Arun Prasad Pandurangan
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| | - Harpal Sahota
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| |
Collapse
|
21
|
Structural Characterisation of Non-Deamidated Acidic Variants of Erwinia chrysanthemi L-asparaginase Using Small-Angle X-ray Scattering and Ion-Mobility Mass Spectrometry. Pharm Res 2015; 32:3636-48. [DOI: 10.1007/s11095-015-1722-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
|
22
|
Amir N, Cohen D, Wolfson HJ. DockStar: a novel ILP-based integrative method for structural modeling of multimolecular protein complexes. Bioinformatics 2015; 31:2801-7. [PMID: 25913207 DOI: 10.1093/bioinformatics/btv270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/19/2015] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Atomic resolution modeling of large multimolecular assemblies is a key task in Structural Cell Biology. Experimental techniques can provide atomic resolution structures of single proteins and small complexes, or low resolution data of large multimolecular complexes. RESULTS We present a novel integrative computational modeling method, which integrates both low and high resolution experimental data. The algorithm accepts as input atomic resolution structures of the individual subunits obtained from X-ray, NMR or homology modeling, and interaction data between the subunits obtained from mass spectrometry. The optimal assembly of the individual subunits is formulated as an Integer Linear Programming task. The method was tested on several representative complexes, both in the bound and unbound cases. It placed correctly most of the subunits of multimolecular complexes of up to 16 subunits and significantly outperformed the CombDock and Haddock multimolecular docking methods. AVAILABILITY AND IMPLEMENTATION http://bioinfo3d.cs.tau.ac.il/DockStar CONTACT naamaamir@mail.tau.ac.il or wolfson@tau.ac.il SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Naama Amir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Dan Cohen
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Haim J Wolfson
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Collision Cross Sections for Structural Proteomics. Structure 2015; 23:791-9. [DOI: 10.1016/j.str.2015.02.010] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 01/19/2023]
|
24
|
Tamò GE, Abriata LA, Dal Peraro M. The importance of dynamics in integrative modeling of supramolecular assemblies. Curr Opin Struct Biol 2015; 31:28-34. [PMID: 25795087 DOI: 10.1016/j.sbi.2015.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/10/2015] [Accepted: 02/26/2015] [Indexed: 11/16/2022]
Abstract
Revealing the atomistic architecture of supramolecular complexes is a fundamental step toward a deeper understanding of cellular functioning. To date, this formidable task is facilitated by an emerging array of integrative modeling approaches that combine experimental data from different sources. One major challenge these methods have to face is the treatment of the dynamic rearrangements of the individual subunits upon assembly. While this flexibility can be sampled at different levels, integrating native dynamic determinants with available experimental inputs can provide an effective way to reveal the molecular recognition mechanisms at the basis of supramolecular assembly.
Collapse
Affiliation(s)
- Giorgio E Tamò
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
25
|
Kondrat FDL, Struwe WB, Benesch JLP. Native mass spectrometry: towards high-throughput structural proteomics. Methods Mol Biol 2015; 1261:349-371. [PMID: 25502208 DOI: 10.1007/978-1-4939-2230-7_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Native mass spectrometry (MS) has become a sensitive method for structural proteomics, allowing practitioners to gain insight into protein self-assembly, including stoichiometry and three-dimensional architecture, as well as complementary thermodynamic and kinetic aspects. Although MS is typically performed in vacuum, a body of literature has described how native solution-state structure is largely retained on the timescale of the experiment. Native MS offers the benefit that it requires substantially smaller quantities of a sample than traditional structural techniques such as NMR and X-ray crystallography, and is therefore well suited to high-throughput studies. Here we first describe the native MS approach and outline the structural proteomic data that it can deliver. We then provide practical details of experiments to examine the structural and dynamic properties of protein assemblies, highlighting potential pitfalls as well as principles of best practice.
Collapse
Affiliation(s)
- Frances D L Kondrat
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | | | | |
Collapse
|
26
|
Rey M, Sarpe V, Burns KM, Buse J, Baker CAH, van Dijk M, Wordeman L, Bonvin AMJJ, Schriemer DC. Mass spec studio for integrative structural biology. Structure 2014; 22:1538-48. [PMID: 25242457 DOI: 10.1016/j.str.2014.08.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023]
Abstract
The integration of biophysical data from multiple sources is critical for developing accurate structural models of large multiprotein systems and their regulators. Mass spectrometry (MS) can be used to measure the insertion location for a wide range of topographically sensitive chemical probes, and such insertion data provide a rich, but disparate set of modeling restraints. We have developed a software platform that integrates the analysis of label-based MS and tandem MS (MS(2)) data with protein modeling activities (Mass Spec Studio). Analysis packages can mine any labeling data from any mass spectrometer in a proteomics-grade manner, and link labeling methods with data-directed protein interaction modeling using HADDOCK. Support is provided for hydrogen/deuterium exchange (HX) and covalent labeling chemistries, including novel acquisition strategies such as targeted HX-MS(2) and data-independent HX-MS(2). The latter permits the modeling of highly complex systems, which we demonstrate by the analysis of microtubule interactions.
Collapse
Affiliation(s)
- Martial Rey
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vladimir Sarpe
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kyle M Burns
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Joshua Buse
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Marc van Dijk
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Padualaan 8, Utrecht CH 3584, the Netherlands
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Padualaan 8, Utrecht CH 3584, the Netherlands
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
27
|
Mikhailov VA, Mize TH, Benesch JLP, Robinson CV. Mass-selective soft-landing of protein assemblies with controlled landing energies. Anal Chem 2014; 86:8321-8. [PMID: 25026391 DOI: 10.1021/ac5018327] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Selection and soft-landing of bionanoparticles in vacuum is potentially a preparative approach to separate heterogeneous mixtures for high-resolution structural study or to deposit homogeneous materials for nanotechnological applications. Soft-landing of intact protein assemblies however remains challenging, due to the difficulties of manipulating these heavy species in mass-selective devices and retaining their structure during the experiment. We have developed a tandem mass spectrometer with the capability for controlled ion soft-landing and ex situ visualization of the soft-landed particles by means of transmission electron microscopy. The deposition conditions can be controlled by adjusting the kinetic energies of the ions by applying accelerating or decelerating voltages to a set of ion-steering optics. To validate this approach, we have examined two cage-like protein complexes, GroEL and ferritin, and studied the effect of soft-landing conditions on the method's throughput and the preservation of protein structure. Separation, based on mass-to-charge ratio, of holo- and apo-ferritin complexes after electrospray ionization enabled us to soft-land independently the separated complexes on a grid suitable for downstream transmission electron microscopy analysis. Following negative staining, images of the soft-landed complexes reveal that their structural integrity is largely conserved, with the characteristic central cavity of apoferritin, and iron core of holoferritin, surviving the phase transition from liquid to gas, soft-landing, and dehydration in vacuum.
Collapse
Affiliation(s)
- Victor A Mikhailov
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford, OX1 3QZ, United Kingdom
| | | | | | | |
Collapse
|