1
|
Ren Y, Lin X, Liao W, Peng X, Deng J, Zhang Z, Zhan J, Zhou Y, Westhof E, Lilley DMJ, Wang J, Huang L. A general strategy for engineering GU base pairs to facilitate RNA crystallization. Nucleic Acids Res 2025; 53:gkae1218. [PMID: 39721592 PMCID: PMC11797044 DOI: 10.1093/nar/gkae1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
X-ray crystallography is a fundamental technique that provides atomic-level insights into RNA structures. However, obtaining crystals of RNA structures diffracting to high resolution is challenging. We introduce a simple strategy to enhance the resolution limit of RNA crystals by the selective substitution of Watson-Crick pairs by GU pairs within RNA sequences. Our approach has successfully yielded high-resolution structures for eight unique RNA crystals. Notably, six instances showed marked resolution enhancement upon GC/AU to GU base pair substitution, with two cases achieving high-resolution structures from initially poor data. In one case, reverting GU to GC base pairs also improved resolution. Our method facilitated the first structural determinations of the Long Interspersed Nuclear Element-1 and Olfactory Receptor family 4 subfamily K member 15 ribozymes, the 2'-deoxyguanosine-III riboswitch and the Broccoli RNA aptamer. The placement of GU base pairs within the first 5' helical stem of any given RNA species, or in one peripheral stem, is shown to be sufficient. These results offer a simple and effective approach for designing sequences or selecting sequences from homologous sequences, for high-resolution RNA structure determination.
Collapse
Affiliation(s)
- Yangyi Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaowei Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Dafeng Hospital, Chaoyang District, Shantou 515000, China
| | - Wenjian Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xuemei Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhe Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jian Zhan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Ribopeutic Inc., Guangzhou International Bio Island, Guangzhou 510005, China
| | - Yaoqi Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Eric Westhof
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, Strasbourg F-67084, France
| | - David M J Lilley
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jia Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
2
|
Stagno JR, Wang YX. Riboswitch Mechanisms for Regulation of P1 Helix Stability. Int J Mol Sci 2024; 25:10682. [PMID: 39409011 PMCID: PMC11477058 DOI: 10.3390/ijms251910682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/20/2024] Open
Abstract
Riboswitches are highly structured RNA regulators of gene expression. Although found in all three domains of life, they are particularly abundant and widespread in bacteria, including many human pathogens, thus making them an attractive target for antimicrobial development. Moreover, the functional versatility of riboswitches to recognize a myriad of ligands, including ions, amino acids, and diverse small-molecule metabolites, has enabled the generation of synthetic aptamers that have been used as molecular probes, sensors, and regulatory RNA devices. Generally speaking, a riboswitch consists of a ligand-sensing aptamer domain and an expression platform, whose genetic control is achieved through the formation of mutually exclusive secondary structures in a ligand-dependent manner. For most riboswitches, this involves formation of the aptamer's P1 helix and the regulation of its stability, whose competing structure turns gene expression ON/OFF at the level of transcription or translation. Structural knowledge of the conformational changes involving the P1 regulatory helix, therefore, is essential in understanding the structural basis for ligand-induced conformational switching. This review provides a summary of riboswitch cases for which ligand-free and ligand-bound structures have been determined. Comparative analyses of these structures illustrate the uniqueness of these riboswitches, not only in ligand sensing but also in the various structural mechanisms used to achieve the same end of regulating switch helix stability. In all cases, the ligand stabilizes the P1 helix primarily through coaxial stacking interactions that promote helical continuity.
Collapse
Affiliation(s)
- Jason R. Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | | |
Collapse
|
3
|
Irving PS, Weeks KM. RNAvigate: efficient exploration of RNA chemical probing datasets. Nucleic Acids Res 2024; 52:2231-2241. [PMID: 38348910 PMCID: PMC10954457 DOI: 10.1093/nar/gkae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Chemical probing technologies enable high-throughput examination of diverse structural features of RNA, including local nucleotide flexibility, RNA secondary structure, protein and ligand binding, through-space interaction networks, and multistate structural ensembles. Deep understanding of RNA structure-function relationships typically requires evaluating a system under structure- and function-altering conditions, linking these data with additional information, and visualizing multilayered relationships. Current platforms lack the broad accessibility, flexibility and efficiency needed to iterate on integrative analyses of these diverse, complex data. Here, we share the RNA visualization and graphical analysis toolset RNAvigate, a straightforward and flexible Python library that automatically parses 21 standard file formats (primary sequence annotations, per- and internucleotide data, and secondary and tertiary structures) and outputs 18 plot types. RNAvigate enables efficient exploration of nuanced relationships between multiple layers of RNA structure information and across multiple experimental conditions. Compatibility with Jupyter notebooks enables nonburdensome, reproducible, transparent and organized sharing of multistep analyses and data visualization strategies. RNAvigate simplifies and accelerates discovery and characterization of RNA-centric functions in biology.
Collapse
Affiliation(s)
- Patrick S Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
4
|
Wang K, Yin Z, Sang C, Xia W, Wang Y, Sun T, Xu X. Geometric deep learning for the prediction of magnesium-binding sites in RNA structures. Int J Biol Macromol 2024; 262:130150. [PMID: 38365157 DOI: 10.1016/j.ijbiomac.2024.130150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Magnesium ions (Mg2+) are essential for the folding, functional expression, and structural stability of RNA molecules. However, predicting Mg2+-binding sites in RNA molecules based solely on RNA structures is still challenging. The molecular surface, characterized by a continuous shape with geometric and chemical properties, is important for RNA modelling and carries essential information for understanding the interactions between RNAs and Mg2+ ions. Here, we propose an approach named RNA-magnesium ion surface interaction fingerprinting (RMSIF), a geometric deep learning-based conceptual framework to predict magnesium ion binding sites in RNA structures. To evaluate the performance of RMSIF, we systematically enumerated decoy Mg2+ ions across a full-space grid within the range of 2 to 10 Å from the RNA molecule and made predictions accordingly. Visualization techniques were used to validate the prediction results and calculate success rates. Comparative assessments against state-of-the-art methods like MetalionRNA, MgNet, and Metal3DRNA revealed that RMSIF achieved superior success rates and accuracy in predicting Mg2+-binding sites. Additionally, in terms of the spatial distribution of Mg2+ ions within the RNA structures, a majority were situated in the deep grooves, while a minority occupied the shallow grooves. Collectively, the conceptual framework developed in this study holds promise for advancing insights into drug design, RNA co-transcriptional folding, and structure prediction.
Collapse
Affiliation(s)
- Kang Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Zuode Yin
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chunjiang Sang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Wentao Xia
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Yan Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
5
|
Irving PS, Weeks KM. RNAvigate: Efficient exploration of RNA chemical probing datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538311. [PMID: 37162917 PMCID: PMC10168276 DOI: 10.1101/2023.04.25.538311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemical probing technologies enable high-throughput examination of diverse structural features of RNA including local nucleotide flexibility, RNA secondary structure, protein- and ligand-binding, through-space interaction networks, and multi-state structural ensembles. Performing these experiments, by themselves, does not directly lead to biological insight. Instead, deep understanding of RNA structure-function relationships typically requires evaluating a system under structure- and function-altering conditions, linking these data with additional information, and visualizing multi-layered relationships. Current platforms lack the broad accessibility, flexibility, and efficiency needed to iterate on integrative analyses of these diverse, complex data. Here, we share the RNA visualization and graphical analysis toolset RNAvigate, a straightforward and flexible Python library. RNAvigate currently automatically parses twenty-one standard file formats (primary sequence annotations, per- and internucleotide data, and secondary and tertiary structures) and outputs eighteen plot types. These features enable efficient exploration of nuanced relationships between chemical probing data, RNA structure, and motif annotations across multiple experimental samples. Compatibility with Jupyter Notebooks enables non-burdensome, reproducible, transparent and organized sharing of multi-step analyses and data visualization strategies. RNAvigate simplifies examination of multi-layered RNA structure information and accelerates discovery and characterization of RNA-centric functions in biology.
Collapse
Affiliation(s)
- Patrick S. Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| |
Collapse
|
6
|
Banna HA, Das NK, Ojha M, Koirala D. Advances in chaperone-assisted RNA crystallography using synthetic antibodies. BBA ADVANCES 2023; 4:100101. [PMID: 37655005 PMCID: PMC10466895 DOI: 10.1016/j.bbadva.2023.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
RNA molecules play essential roles in many biological functions, from gene expression regulation, cellular growth, and metabolism to catalysis. They frequently fold into three-dimensional structures to perform their functions. Therefore, determining RNA structure represents a key step for understanding the structure-function relationships and developing RNA-targeted therapeutics. X-ray crystallography remains a method of choice for determining high-resolution RNA structures, but it has been challenging due to difficulties associated with RNA crystallization and phasing. Several natural and synthetic RNA binding proteins have been used to facilitate RNA crystallography. Having unique properties to help crystal packing and phasing, synthetic antibody fragments, specifically the Fabs, have emerged as promising RNA crystallization chaperones, and so far, over a dozen of RNA structures have been solved using this strategy. Nevertheless, multiple steps in this approach need to be improved, including the recombinant expression of these anti-RNA Fabs, to warrant the full potential of these synthetic Fabs as RNA crystallization chaperones. This review highlights the nuts and bolts and recent advances in the chaperone-assisted RNA crystallography approach, specifically emphasizing the Fab antibody fragments as RNA crystallization chaperones.
Collapse
Affiliation(s)
- Hasan Al Banna
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Manju Ojha
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
7
|
Mustoe AM, Weidmann CA, Weeks KM. Single-Molecule Correlated Chemical Probing: A Revolution in RNA Structure Analysis. Acc Chem Res 2023; 56:763-775. [PMID: 36917683 PMCID: PMC10078950 DOI: 10.1021/acs.accounts.2c00782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
RNA molecules convey biological information both in their linear sequence and in their base-paired secondary and tertiary structures. Chemical probing experiments, which involve treating an RNA with a reagent that modifies conformationally dynamic nucleotides, have broadly enabled examination of short- and long-range RNA structure in diverse contexts, including in living cells. For decades, chemical probing experiments have been interpreted in a per-nucleotide way, such that the reactivity measured at each nucleotide reports the average structure at a position over all RNA molecules within a sample. However, there are numerous important cases where per-nucleotide chemical probing falls short, including for RNAs that are bound by proteins, RNAs that form complex higher order structures, and RNAs that sample multiple conformations.Recent experimental and computational innovations have started a revolution in RNA structure analysis by transforming chemical probing into a massively parallel, single-molecule experiment. Enabled by a specialized reverse transcription strategy called mutational profiling (MaP), multiple chemical modification events can be measured within individual RNA molecules. Nucleotides that communicate structurally through direct base pairing or large-scale folding-unfolding transitions will react with chemical probes in a correlated manner, thereby revealing structural complexity hidden to conventional approaches. These single-molecule correlated chemical probing (smCCP) experiments can be interpreted to directly identify nucleotides that base pair (the PAIR-MaP strategy) and to reveal long-range, through-space structural communication (RING-MaP). Correlated probing can also define the thermodynamic populations of complex RNA ensembles (DANCE-MaP). Complex RNA-protein networks can be interrogated by cross-linking proteins to RNA and measuring correlations between cross-linked positions (RNP-MaP).smCCP thus visualizes RNA secondary and higher-order structure with unprecedented accuracy, defining novel structures, RNA-protein interaction networks, time-resolved dynamics, and allosteric structural switches. These strategies are not mutually exclusive; in favorable cases, multiple levels of RNA structure ─ base pairing, through-space structural communication, and equilibrium ensembles ─ can be resolved concurrently. The physical experimentation required for smCCP is profoundly simple, and experiments are readily performed in cells on RNAs of any size, including large noncoding RNAs and mRNAs. Single-molecule correlated chemical probing is paving the way for a new generation of biophysical studies on RNA in living systems.
Collapse
Affiliation(s)
- Anthony M. Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Therapeutic Innovation Center (THINC), One Baylor Plaza, Baylor College of Medicine, Houston, TX 77030
| | - Chase A. Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, 1150 W. Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290
| |
Collapse
|
8
|
Sapkota KP, Li S, Zhang J. Cotranscriptional Assembly and Native Purification of Large RNA-RNA Complexes for Structural Analyses. Methods Mol Biol 2023; 2568:1-12. [PMID: 36227558 PMCID: PMC11275850 DOI: 10.1007/978-1-0716-2687-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent technological developments such as cryogenic electron microscopy (Cryo-EM) and X-ray free electron lasers (XFEL) have significantly expanded the available toolkit to visualize large, complex noncoding RNAs and their complexes. Consequently, the quality of the RNA sample, as measured by its chemical monodispersity and conformational homogeneity, has become the bottleneck that frequently precludes effective structural analyses. Here we describe a general RNA sample preparation protocol that combines cotranscriptional RNA folding and RNA-RNA complex assembly, followed by native purification of stoichiometric complexes. We illustrate and discuss the utility of this versatile method in overcoming RNA misfolding and enabling the structural and mechanistic elucidations of the T-box riboswitch-tRNA complexes.
Collapse
Affiliation(s)
- Krishna P Sapkota
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Structural Biochemistry Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
9
|
Zhao S, Li X, Wen Z, Zou M, Yu G, Liu X, Mao J, Zhang L, Xue Y, Fu R, Wang S. Dynamics of base pairs with low stability in RNA by solid-state nuclear magnetic resonance exchange spectroscopy. iScience 2022; 25:105322. [DOI: 10.1016/j.isci.2022.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022] Open
|
10
|
Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch. Commun Biol 2022; 5:1120. [PMID: 36273041 PMCID: PMC9588036 DOI: 10.1038/s42003-022-04096-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Riboswitches normally regulate gene expression through structural changes in response to the specific binding of cellular metabolites or metal ions. Taking add adenine riboswitch as an example, we explore the influences of metal ions (especially for K+ and Mg2+ ions) on the structure and dynamics of riboswitch aptamer (with and without ligand) by using molecular dynamic (MD) simulations. Our results show that a two-state transition marked by the structural deformation at the connection of J12 and P1 (CJ12-P1) is not only related to the binding of cognate ligands, but also strongly coupled with the change of metal ion environments. Moreover, the deformation of the structure at CJ12-P1 can be transmitted to P1 directly connected to the expression platform in multiple ways, which will affect the structure and stability of P1 to varying degrees, and finally change the regulation state of this riboswitch. Molecular dynamic simulations are employed to assess the influence of metal ions on riboswitch structure and dynamics, suggesting a conformational control of riboswitch aptamers by metal ions before ligand binding.
Collapse
|
11
|
tRNA Fusion to Streamline RNA Structure Determination: Case Studies in Probing Aminoacyl-tRNA Sensing Mechanisms by the T-Box Riboswitch. CRYSTALS 2022. [DOI: 10.3390/cryst12050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNAs are prone to misfolding and are often more challenging to crystallize and phase than proteins. Here, we demonstrate that tRNA fusion can streamline the crystallization and structure determination of target RNA molecules. This strategy was applied to the T-box riboswitch system to capture a dynamic interaction between the tRNA 3′-UCCA tail and the T-box antiterminator, which senses aminoacylation. We fused the T-box antiterminator domain to the tRNA anticodon arm to capture the intended interaction through crystal packing. This approach drastically improved the probability of crystallization and successful phasing. Multiple structure snapshots captured the antiterminator loop in an open conformation with some resemblance to that observed in the recent co-crystal structures of the full-length T box riboswitch–tRNA complex, which contrasts the resting, closed conformation antiterminator observed in an earlier NMR study. The anticipated tRNA acceptor–antiterminator interaction was captured in a low-resolution crystal structure. These structures combined with our previous success using prohead RNA–tRNA fusions demonstrates tRNA fusion is a powerful method in RNA structure determination.
Collapse
|
12
|
Olson SW, Turner AMW, Arney JW, Saleem I, Weidmann CA, Margolis DM, Weeks KM, Mustoe AM. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol Cell 2022; 82:1708-1723.e10. [PMID: 35320755 PMCID: PMC9081252 DOI: 10.1016/j.molcel.2022.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
Abstract
7SK is a conserved noncoding RNA that regulates transcription by sequestering the transcription factor P-TEFb. 7SK function entails complex changes in RNA structure, but characterizing RNA dynamics in cells remains an unsolved challenge. We developed a single-molecule chemical probing strategy, DANCE-MaP (deconvolution and annotation of ribonucleic conformational ensembles), that defines per-nucleotide reactivity, direct base pairing interactions, tertiary interactions, and thermodynamic populations for each state in RNA structural ensembles from a single experiment. DANCE-MaP reveals that 7SK RNA encodes a large-scale structural switch that couples dissolution of the P-TEFb binding site to structural remodeling at distal release factor binding sites. The 7SK structural equilibrium shifts in response to cell growth and stress and can be targeted to modulate expression of P-TEFbresponsive genes. Our study reveals that RNA structural dynamics underlie 7SK function as an integrator of diverse cellular signals to control transcription and establishes the power of DANCE-MaP to define RNA dynamics in cells.
Collapse
Affiliation(s)
- Samuel W Olson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Anne-Marie W Turner
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Winston Arney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Irfana Saleem
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Bou-Nader C, Zhang J. Rational engineering enables co-crystallization and structural determination of the HIV-1 matrix-tRNA complex. STAR Protoc 2022; 3:101056. [PMID: 35005638 PMCID: PMC8715211 DOI: 10.1016/j.xpro.2021.101056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Host tRNAs specifically interact with the matrix domain (MA) of HIV-1 major structural polyprotein, Gag, to control its membrane localization and virion assembly. In this protocol, we describe the purification and engineering of HIV-1 MA and tRNA, and the co-crystallization and structure determination of the complex using X-ray crystallography. Rational engineering of the tRNA surface created tRNA-tRNA packing contacts that drove the formation of diffraction-quality co-crystals. This protocol can be adapted to solve other ribonucleoprotein complex structures containing structured RNAs. For complete details on the use and execution of this protocol, please refer to Bou-Nader et al. (2021).
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Zerihun MB, Pucci F, Schug A. CoCoNet-boosting RNA contact prediction by convolutional neural networks. Nucleic Acids Res 2021; 49:12661-12672. [PMID: 34871451 PMCID: PMC8682773 DOI: 10.1093/nar/gkab1144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Co-evolutionary models such as direct coupling analysis (DCA) in combination with machine learning (ML) techniques based on deep neural networks are able to predict accurate protein contact or distance maps. Such information can be used as constraints in structure prediction and massively increase prediction accuracy. Unfortunately, the same ML methods cannot readily be applied to RNA as they rely on large structural datasets only available for proteins. Here, we demonstrate how the available smaller data for RNA can be used to improve prediction of RNA contact maps. We introduce an algorithm called CoCoNet that is based on a combination of a Coevolutionary model and a shallow Convolutional Neural Network. Despite its simplicity and the small number of trained parameters, the method boosts the positive predictive value (PPV) of predicted contacts by about 70% with respect to DCA as tested by cross-validation of about eighty RNA structures. However, the direct inclusion of the CoCoNet contacts in 3D modeling tools does not result in a proportional increase of the 3D RNA structure prediction accuracy. Therefore, we suggest that the field develops, in addition to contact PPV, metrics which estimate the expected impact for 3D structure modeling tools better. CoCoNet is freely available and can be found at https://github.com/KIT-MBS/coconet.
Collapse
Affiliation(s)
- Mehari B Zerihun
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fabrizio Pucci
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Computational Biology and Bioinformatics, Université Libre de Bruxelles 1050, Brussels, Belgium
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
15
|
Predicting RNA Secondary Structure Using In Vitro and In Vivo Data. Methods Mol Biol 2021. [PMID: 34694602 DOI: 10.1007/978-1-0716-1851-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The new flow of high-throughput RNA secondary structure data coming from different techniques allowed the further development of machine learning approaches. We developed CROSS and CROSSalive, two algorithms trained on experimental data able to predict the RNA secondary structure propensity both in vitro and in vivo. Since the in vivo folding of RNA molecules depends on multiple factors due to the cellular crowded environment, prediction is a complex problem that needs additional calculations for the interaction with proteins and other molecules. In the following chapter, we will describe the differences in predicting RNA secondary structure propensity using experimental data as input for an Artificial Neural Network (ANN) in vitro and in vivo.
Collapse
|
16
|
Liu D, Shao Y, Piccirilli JA, Weizmann Y. Structures of artificially designed discrete RNA nanoarchitectures at near-atomic resolution. SCIENCE ADVANCES 2021; 7:eabf4459. [PMID: 34550747 PMCID: PMC8457670 DOI: 10.1126/sciadv.abf4459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/02/2021] [Indexed: 05/11/2023]
Abstract
Although advances in nanotechnology have enabled the construction of complex and functional synthetic nucleic acid–based nanoarchitectures, high-resolution discrete structures are lacking because of the difficulty in obtaining good diffracting crystals. Here, we report the design and construction of RNA nanostructures based on homooligomerizable one-stranded tiles for x-ray crystallographic determination. We solved three structures to near-atomic resolution: a 2D parallelogram, a 3D nanobracelet unexpectedly formed from an RNA designed for a nanocage, and, eventually, a bona fide 3D nanocage designed with the guidance of the two previous structures. Structural details of their constituent motifs, such as kissing loops, branched kissing loops, and T-junctions, that resemble natural RNA motifs and resisted x-ray determination are revealed, providing insights into those natural motifs. This work unveils the largely unexplored potential of crystallography in gaining high-resolution feedback for nanoarchitectural design and suggests a route to investigate RNA motif structures by configuring them into nanoarchitectures.
Collapse
Affiliation(s)
- Di Liu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yaming Shao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Joseph A. Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Yossi Weizmann
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
17
|
Bahoua B, Sevdalis SE, Soto AM. Effect of Sequence on the Interactions of Divalent Cations with M-Box Riboswitches from Mycobacterium tuberculosis and Bacillus subtilis. Biochemistry 2021; 60:2781-2794. [PMID: 34472844 DOI: 10.1021/acs.biochem.1c00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA is highly negatively charged and often acquires complex structures that require the presence of divalent cations. Subtle changes in conformation resulting from changes in sequence can affect the way ions associate with RNA. Riboswitches are RNA molecules that are involved in the control of gene expression in bacteria and are excellent systems for testing the effects of sequence variations on the conformation of RNA because they contain a highly conserved binding pocket but present sequence variability among different organisms. In this work, we have compared the aptamer domain of a proposed M-box riboswitch from Mycobacterium tuberculosis with the aptamer domain of a validated M-box riboswitch from Bacillus subtilis. We have in vitro transcribed and purified wild-type (WT) M-box riboswitches from M. tuberculosis and B. subtilis as well as a variety of mutated aptamers in which regions from one riboswitch have been replaced with regions from the other riboswitch. We have used ultraviolet unfolding experiments and circular dichroism to characterize the interactions of WT and related M-box riboswitches with divalent cations. Our results show that M-box from M. tuberculosis associates with Mg2+ and Sr2+ in a similar fashion while M-box from B. subtilis discriminates between these two ions and appears to associate better with Mg2+. Our overall results show that M-box from M. tuberculosis interacts differently with cations than M-box from B. subtilis and suggest conformational differences between these two riboswitches.
Collapse
|
18
|
Pujari N, Saundh SL, Acquah FA, Mooers BHM, Ferré-D’Amaré AR, Leung AKW. Engineering Crystal Packing in RNA Structures I: Past and Future Strategies for Engineering RNA Packing in Crystals. CRYSTALS 2021; 11:952. [PMID: 34745656 PMCID: PMC8570644 DOI: 10.3390/cryst11080952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
X-ray crystallography remains a powerful method to gain atomistic insights into the catalytic and regulatory functions of RNA molecules. However, the technique requires the preparation of diffraction-quality crystals. This is often a resource- and time-consuming venture because RNA crystallization is hindered by the conformational heterogeneity of RNA, as well as the limited opportunities for stereospecific intermolecular interactions between RNA molecules. The limited success at crystallization explains in part the smaller number of RNA-only structures in the Protein Data Bank. Several approaches have been developed to aid the formation of well-ordered RNA crystals. The majority of these are construct-engineering techniques that aim to introduce crystal contacts to favor the formation of well-diffracting crystals. A typical example is the insertion of tetraloop-tetraloop receptor pairs into non-essential RNA segments to promote intermolecular association. Other methods of promoting crystallization involve chaperones and crystallization-friendly molecules that increase RNA stability and improve crystal packing. In this review, we discuss the various techniques that have been successfully used to facilitate crystal packing of RNA molecules, recent advances in construct engineering, and directions for future research in this vital aspect of RNA crystallography.
Collapse
Affiliation(s)
- Narsimha Pujari
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Stephanie L. Saundh
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Francis A. Acquah
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Blaine H. M. Mooers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adrian R. Ferré-D’Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
19
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Ramakrishnan S, Stagno JR, Heinz WF, Zuo X, Yu P, Wang YX. The mechanism driving a solid-solid phase transition in a biomacromolecular crystal. IUCRJ 2021; 8:655-664. [PMID: 34258013 PMCID: PMC8256710 DOI: 10.1107/s2052252521004826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Solid-solid phase transitions (SSPTs) occur between distinguishable crystalline forms. Because of their importance in application and theory in materials science and condensed-matter physics, SSPTs have been studied most extensively in metallic alloys, inorganic salts and small organic molecular crystals, but much less so in biomacromolecular crystals. In general, the mechanisms of SSPTs at the atomic and molecular levels are not well understood. Here, the ordered molecular rearrangements in biomacromolecular crystals of the adenine riboswitch aptamer are described using real-time serial crystallography and solution atomic force microscopy. Large, ligand-induced conformational changes drive the initial phase transition from the apo unit cell (AUC) to the trans unit cell 1 (TUC1). During this transition, coaxial stacking of P1 duplexes becomes the dominant packing interface, whereas P2-P2 interactions are almost completely disrupted, resulting in 'floating' layers of molecules. The coupling points in TUC1 and their local conformational flexibility allow the molecules to reorganize to achieve the more densely packed and energetically favorable bound unit cell (BUC). This study thus reveals the interplay between the conformational changes and the crystal phases - the underlying mechanism that drives the phase transition. Using polarized video microscopy to monitor SSPTs in small crystals at high ligand concentration, the time window during which the major conformational changes take place was identified, and the in crystallo kinetics have been simulated. Together, these results provide the spatiotemporal information necessary for informing time-resolved crystallography experiments. Moreover, this study illustrates a practical approach to characterization of SSPTs in transparent crystals.
Collapse
Affiliation(s)
- Saminathan Ramakrishnan
- Structural Biophysics Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R. Stagno
- Structural Biophysics Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ping Yu
- Structural Biophysics Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
21
|
Grotz KK, Cruz-León S, Schwierz N. Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties. J Chem Theory Comput 2021; 17:2530-2540. [PMID: 33720710 PMCID: PMC8047801 DOI: 10.1021/acs.jctc.0c01281] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Magnesium ions play an essential role in many vital processes. To correctly describe their interactions in molecular dynamics simulations, an accurate parametrization is crucial. Despite the importance and considerable scientific effort, current force fields based on the commonly used 12-6 Lennard-Jones interaction potential fail to reproduce a variety of experimental solution properties. In particular, no parametrization exists so far that simultaneously reproduces the solvation free energy and the distance to the water oxygens in the first hydration shell. Moreover, current Mg2+ force fields significantly underestimate the rate of water exchange leading to unrealistically slow exchange kinetics. In order to make progress in the development of improved models, we systematically optimize the Mg2+ parameters in combination with the TIP3P water model in a much larger parameter space than previously done. The results show that a long-ranged interaction potential and modified Lorentz-Berthelot combination rules allow us to accurately reproduce multiple experimental properties including the solvation free energy, the distances to the oxygens of the first hydration shell, the hydration number, the activity coefficient derivative in MgCl2 solutions, the self-diffusion coefficient, and the binding affinity to the phosphate oxygen of RNA. Matching this broad range of thermodynamic properties, we present two sets of optimal parameters: MicroMg yields water exchange on the microsecond timescale in agreement with experiments. NanoMg yields water exchange on the nanosecond timescale facilitating the direct observation of ion-binding events. As shown for the example of the add A-riboswitch, the optimized parameters correctly reproduce the structure of specifically bound ions and permit the de novo prediction of Mg2+-binding sites in biomolecular simulations.
Collapse
Affiliation(s)
- Kara K. Grotz
- Department of Theoretical Biophysics, Max-Planck-Institute of Biophysics, Frankfurt am Main 60438, Germany
| | - Sergio Cruz-León
- Department of Theoretical Biophysics, Max-Planck-Institute of Biophysics, Frankfurt am Main 60438, Germany
| | - Nadine Schwierz
- Department of Theoretical Biophysics, Max-Planck-Institute of Biophysics, Frankfurt am Main 60438, Germany
| |
Collapse
|
22
|
Binas O, de Jesus V, Landgraf T, Völklein AE, Martins J, Hymon D, Kaur Bains J, Berg H, Biedenbänder T, Fürtig B, Lakshmi Gande S, Niesteruk A, Oxenfarth A, Shahin Qureshi N, Schamber T, Schnieders R, Tröster A, Wacker A, Wirmer‐Bartoschek J, Wirtz Martin MA, Stirnal E, Azzaoui K, Richter C, Sreeramulu S, José Blommers MJ, Schwalbe H. 19 F NMR-Based Fragment Screening for 14 Different Biologically Active RNAs and 10 DNA and Protein Counter-Screens. Chembiochem 2021; 22:423-433. [PMID: 32794266 PMCID: PMC7436455 DOI: 10.1002/cbic.202000476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Indexed: 11/17/2022]
Abstract
We report here the nuclear magnetic resonance 19 F screening of 14 RNA targets with different secondary and tertiary structure to systematically assess the druggability of RNAs. Our RNA targets include representative bacterial riboswitches that naturally bind with nanomolar affinity and high specificity to cellular metabolites of low molecular weight. Based on counter-screens against five DNAs and five proteins, we can show that RNA can be specifically targeted. To demonstrate the quality of the initial fragment library that has been designed for easy follow-up chemistry, we further show how to increase binding affinity from an initial fragment hit by chemistry that links the identified fragment to the intercalator acridine. Thus, we achieve low-micromolar binding affinity without losing binding specificity between two different terminator structures.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Tom Landgraf
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Albrecht Eduard Völklein
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Jason Martins
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Hannes Berg
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Thomas Biedenbänder
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Santosh Lakshmi Gande
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Anna Niesteruk
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Robbin Schnieders
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Alix Tröster
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Julia Wirmer‐Bartoschek
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Maria Alexandra Wirtz Martin
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Kamal Azzaoui
- Saverna TherapeuticsGewerbestrasse 244123AllschwilSwitzerland
| | - Christian Richter
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | | | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
23
|
Abstract
The crystallization and structural determination of large RNAs and their complexes remain major bottlenecks in the mechanistic analysis of cellular and viral RNAs. Here, we describe a protocol that combines postcrystallization dehydration and ion replacement that dramatically improved the diffraction quality of crystals of a large gene-regulatory tRNA-mRNA complex. Through this method, the resolution limit of X-ray data extended from 8.5 to 3.2 Å, enabling structure determination. Although this protocol was developed for a particular RNA complex, the general importance of solvent and counterions in nucleic acid structure may render it generally useful for crystallographic analysis of other RNAs.
Collapse
|
24
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
25
|
Pucci F, Zerihun MB, Peter EK, Schug A. Evaluating DCA-based method performances for RNA contact prediction by a well-curated data set. RNA (NEW YORK, N.Y.) 2020; 26:794-802. [PMID: 32276988 PMCID: PMC7297115 DOI: 10.1261/rna.073809.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
RNA molecules play many pivotal roles in a cell that are still not fully understood. Any detailed understanding of RNA function requires knowledge of its three-dimensional structure, yet experimental RNA structure resolution remains demanding. Recent advances in sequencing provide unprecedented amounts of sequence data that can be statistically analyzed by methods such as direct coupling analysis (DCA) to determine spatial proximity or contacts of specific nucleic acid pairs, which improve the quality of structure prediction. To quantify this structure prediction improvement, we here present a well curated data set of about 70 RNA structures of high resolution and compare different nucleotide-nucleotide contact prediction methods available in the literature. We observe only minor differences between the performances of the different methods. Moreover, we discuss how robust these predictions are for different contact definitions and how strongly they depend on procedures used to curate and align the families of homologous RNA sequences.
Collapse
Affiliation(s)
- Fabrizio Pucci
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Mehari B Zerihun
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Emanuel K Peter
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
26
|
Abstract
The three-dimensional structures of RNA molecules provide rich and often critical information for understanding their functions, including how they recognize small molecule and protein partners. Computational modeling of RNA 3D structure is becoming increasingly accurate, particularly with the availability of growing numbers of template structures already solved experimentally and the development of sequence alignment and 3D modeling tools to take advantage of this database. For several recent "RNA puzzle" blind modeling challenges, we have successfully identified useful template structures and achieved accurate structure predictions through homology modeling tools developed in the Rosetta software suite. We describe our semi-automated methodology here and walk through two illustrative examples: an adenine riboswitch aptamer, modeled from a template guanine riboswitch structure, and a SAM I/IV riboswitch aptamer, modeled from a template SAM I riboswitch structure.
Collapse
Affiliation(s)
- Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA, United States
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States; Biophysics Program, Stanford University, Stanford, CA, United States.
| |
Collapse
|
27
|
Stagno JR, Yu P, Dyba MA, Wang YX, Liu Y. Heavy-atom labeling of RNA by PLOR for de novo crystallographic phasing. PLoS One 2019; 14:e0215555. [PMID: 30986270 PMCID: PMC6464214 DOI: 10.1371/journal.pone.0215555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022] Open
Abstract
Due to the paucity of known RNA structures, experimental phasing is crucial for obtaining three-dimensional structures of RNAs by X-ray crystallography. Covalent attachment of heavy atoms to RNAs is one of the most useful strategies to facilitate phase determination. However, this approach is limited by the inefficiency or inability to synthesize large RNAs (>60 nucleotides) site-specifically labeled with heavy atoms using traditional methods. Here, we applied our recently reported method, PLOR (position-selective labeling of RNA) to incorporate 5-iodouridine at specific positions in the adenine riboswitch RNA aptamer domain, which was then used for crystallization and subsequent de novo SAD phasing. PLOR is a powerful tool to improve the efficiency of obtaining RNA structures de novo by X-ray crystallography.
Collapse
Affiliation(s)
- Jason R. Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Marzena A. Dyba
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yu Liu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
28
|
Sun LZ, Chen SJ. Predicting RNA-Metal Ion Binding with Ion Dehydration Effects. Biophys J 2018; 116:184-195. [PMID: 30612712 DOI: 10.1016/j.bpj.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023] Open
Abstract
Metal ions play essential roles in nucleic acids folding and stability. The interaction between metal ions and nucleic acids can be highly complicated because of the interplay between various effects such as ion correlation, fluctuation, and dehydration. These effects may be particularly important for multivalent ions such as Mg2+ ions. Previous efforts to model ion correlation and fluctuation effects led to the development of the Monte Carlo tightly bound ion model. Here, by incorporating ion hydration/dehydration effects into the Monte Carlo tightly bound ion model, we develop a, to our knowledge, new approach to predict ion binding. The new model enables predictions for not only the number of bound ions but also the three-dimensional spatial distribution of the bound ions. Furthermore, the new model reveals several intriguing features for the bound ions such as the mutual enhancement/inhibition in ion binding between the fully hydrated (diffuse) ions, the outer-shell dehydrated ions, and the inner-shell dehydrated ions and novel features for the monovalent-divalent ion interplay due to the hydration effect.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China; Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri.
| |
Collapse
|
29
|
Armaos A, Cirillo D, Gaetano Tartaglia G. omiXcore: a web server for prediction of protein interactions with large RNA. Bioinformatics 2018. [PMID: 28637296 PMCID: PMC5870566 DOI: 10.1093/bioinformatics/btx361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Summary Here we introduce omiXcore, a server for calculations of protein binding to large RNAs (> 500 nucleotides). Our webserver allows (i) use of both protein and RNA sequences without size restriction, (ii) pre-compiled library for exploration of human long intergenic RNAs interactions and (iii) prediction of binding sites. Results omiXcore was trained and tested on enhanced UV Cross-Linking and ImmunoPrecipitation data. The method discriminates interacting and non-interacting protein-RNA pairs and identifies RNA binding sites with Areas under the ROC curve > 0.80, which suggests that the tool is particularly useful to prioritize candidates for further experimental validation. Availability and implementation omiXcore is freely accessed on the web at http://service.tartaglialab.com/grant_submission/omixcore. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexandros Armaos
- Bioinformatics and Genomics, Gene Function and Evolution, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology.,Bioinformatics and Genomics, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Davide Cirillo
- Bioinformatics and Genomics, Gene Function and Evolution, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology.,Bioinformatics and Genomics, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Bioinformatics and Genomics, Gene Function and Evolution, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology.,Bioinformatics and Genomics, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Bioinformatics and Genomics, Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
30
|
Liu Y, Holmstrom E, Yu P, Tan K, Zuo X, Nesbitt DJ, Sousa R, Stagno JR, Wang YX. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA. Nat Protoc 2018; 13:987-1005. [PMID: 29651055 DOI: 10.1038/nprot.2018.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Site-specific incorporation of labeled nucleotides is an extremely useful synthetic tool for many structural studies (e.g., NMR, electron paramagnetic resonance (EPR), fluorescence resonance energy transfer (FRET), and X-ray crystallography) of RNA. However, specific-position-labeled RNAs >60 nt are not commercially available on a milligram scale. Position-selective labeling of RNA (PLOR) has been applied to prepare large RNAs labeled at desired positions, and all the required reagents are commercially available. Here, we present a step-by-step protocol for the solid-liquid hybrid phase method PLOR to synthesize 71-nt RNA samples with three different modification applications, containing (i) a 13C15N-labeled segment; (ii) discrete residues modified with Cy3, Cy5, or biotin; or (iii) two iodo-U residues. The flexible procedure enables a wide range of downstream biophysical analyses using precisely localized functionalized nucleotides. All three RNAs were obtained in <2 d, excluding time for preparing reagents and optimizing experimental conditions. With optimization, the protocol can be applied to other RNAs with various labeling schemes, such as ligation of segmentally labeled fragments.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Erik Holmstrom
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Kemin Tan
- Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, Illinois, USA
| | - Xiaobing Zuo
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
31
|
Tian S, Kladwang W, Das R. Allosteric mechanism of the V. vulnificus adenine riboswitch resolved by four-dimensional chemical mapping. eLife 2018; 7:29602. [PMID: 29446752 PMCID: PMC5847336 DOI: 10.7554/elife.29602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Abstract
The structural interconversions that mediate the gene regulatory functions of RNA molecules may be different from classic models of allostery, but the relevant structural correlations have remained elusive in even intensively studied systems. Here, we present a four-dimensional expansion of chemical mapping called lock-mutate-map-rescue (LM2R), which integrates multiple layers of mutation with nucleotide-resolution chemical mapping. This technique resolves the core mechanism of the adenine-responsive V. vulnificus add riboswitch, a paradigmatic system for which both Monod-Wyman-Changeux (MWC) conformational selection models and non-MWC alternatives have been proposed. To discriminate amongst these models, we locked each functionally important helix through designed mutations and assessed formation or depletion of other helices via compensatory rescue evaluated by chemical mapping. These LM2R measurements give strong support to the pre-existing correlations predicted by MWC models, disfavor alternative models, and suggest additional structural heterogeneities that may be general across ligand-free riboswitches.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Rhiju Das
- Department of Physics, Stanford University, Stanford, United States
| |
Collapse
|
32
|
Trachman RJ, Draper DE. Divalent ion competition reveals reorganization of an RNA ion atmosphere upon folding. Nucleic Acids Res 2017; 45:4733-4742. [PMID: 28115628 PMCID: PMC5416767 DOI: 10.1093/nar/gkw1327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/26/2016] [Indexed: 01/06/2023] Open
Abstract
Although RNA interactions with K+ and Mg2+ have been studied extensively, much less is known about the third most abundant cation in bacterial cells, putrescine2+, and how RNA folding might be influenced by the three ions in combination. In a new approach, we have observed the competition between Mg2+ and putrescine2+ (in a background of K+) with native, partially unfolded and highly extended conformations of an adenine riboswitch aptamer. With the native state, putrescine2+ is a weak competitor when the ratio of the excess Mg2+ (which neutralizes phosphate charge) to RNA is very low, but becomes much more effective at replacing Mg2+ as the excess Mg2+ in the RNA ion atmosphere increases. Putrescine2+ is even more effective in competing Mg2+ from the extended conformation, independent of the Mg2+ excess. To account for these and other results, we propose that both ions closely approach the surface of RNA secondary structure, but the completely folded RNA tertiary structure develops small pockets of very negative electrostatic potential that are more accessible to the compact charge of Mg2+. The sensitivity of RNA folding to the combination of Mg2+ and putrescine2+ found in vivo depends on the architectures of both the unfolded and native conformations.
Collapse
Affiliation(s)
- Robert J Trachman
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David E Draper
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
33
|
Sun LZ, Kranawetter C, Heng X, Chen SJ. Predicting Ion Effects in an RNA Conformational Equilibrium. J Phys Chem B 2017; 121:8026-8036. [PMID: 28780864 DOI: 10.1021/acs.jpcb.7b03873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We develop a partial charge-based tightly bound ion (PCTBI) model for the ion effects in RNA folding. On the basis of the Monte Carlo tightly bound ion (MCTBI) approach, the model can account for ion fluctuation and correlation effects, and can predict the ion distribution around the RNA. Furthermore, unlike the previous coarse-grained RNA charge models, where negative charges are placed on the phosphates only, the current new model considers the detailed all-atom partial charge distribution on the RNA. Thus, the model not only keeps the advantage of the MCTBI model, but also has the potential to provide important detailed information unattainable by the previous MCTBI models. For example, the model predicts the reduction in ion binding upon protein binding and ion-induced conformational switches. For hepatitis C virus genomic RNA, the model predicts a Mg2+-induced stabilization of a kissing motif for a cis-acting regulatory element in the genomic RNA. Extensive theory-experiment comparisons support the reliability of the theoretical predictions. Therefore, the model may serve as a robust starting point for further development of an accurate method for ion effects in an RNA conformational equilibrium and RNA-cofactor interactions.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Clayton Kranawetter
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
34
|
Stagno JR, Bhandari YR, Conrad CE, Liu Y, Wang YX. Real-time crystallographic studies of the adenine riboswitch using an X-ray free-electron laser. FEBS J 2017; 284:3374-3380. [PMID: 28504865 DOI: 10.1111/febs.14110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022]
Abstract
Structures of the four reaction states of the adenine riboswitch aptamer domain, including a transient intermediate state were solved by serial femtosecond crystallography. The structures not only demonstrate the use of X-ray free-electron lasers for RNA crystallography but have also proven that transient states can be determined in real time by mix-and-inject crystallography. These results illustrate the structural basis for the ligand-induced conformational changes associated with the molecular 'switch'.
Collapse
Affiliation(s)
- Jason R Stagno
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Yuba R Bhandari
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Chelsie E Conrad
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Yu Liu
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
35
|
Sun LZ, Zhang JX, Chen SJ. MCTBI: a web server for predicting metal ion effects in RNA structures. RNA (NEW YORK, N.Y.) 2017; 23:1155-1165. [PMID: 28450533 PMCID: PMC5513060 DOI: 10.1261/rna.060947.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/16/2017] [Indexed: 05/27/2023]
Abstract
Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing-Xiang Zhang
- School of Science and Technology, Zhejiang International Studies University, Hangzhou 310012, China
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
36
|
Abstract
In addition to continuous rapid progress in RNA structure determination, probing, and biophysical studies, the past decade has seen remarkable advances in the development of a new generation of RNA folding theories and models. In this article, we review RNA structure prediction models and models for ion-RNA and ligand-RNA interactions. These new models are becoming increasingly important for a mechanistic understanding of RNA function and quantitative design of RNA nanotechnology. We focus on new methods for physics-based, knowledge-based, and experimental data-directed modeling for RNA structures and explore the new theories for the predictions of metal ion and ligand binding sites and metal ion-dependent RNA stabilities. The integration of these new methods with theories about the cellular environment effects in RNA folding, such as molecular crowding and cotranscriptional kinetic effects, may ultimately lead to an all-encompassing RNA folding model.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| | - Dong Zhang
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and MU Informatics Institute, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
37
|
Leonarski F, D'Ascenzo L, Auffinger P. Mg2+ ions: do they bind to nucleobase nitrogens? Nucleic Acids Res 2017; 45:987-1004. [PMID: 27923930 PMCID: PMC5314772 DOI: 10.1093/nar/gkw1175] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/28/2023] Open
Abstract
Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments.
Collapse
Affiliation(s)
- Filip Leonarski
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Luigi D'Ascenzo
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| | - Pascal Auffinger
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France
| |
Collapse
|
38
|
Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 2016; 541:242-246. [PMID: 27841871 DOI: 10.1038/nature20599] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022]
Abstract
Riboswitches are structural RNA elements that are generally located in the 5' untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform. A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time. Here we use femtosecond X-ray free electron laser (XFEL) pulses to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro- and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of 'mix-and-inject' time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes.
Collapse
|
39
|
Park H, Tran T, Lee JH, Park H, Disney MD. Controlled dehydration improves the diffraction quality of two RNA crystals. BMC STRUCTURAL BIOLOGY 2016; 16:19. [PMID: 27809904 PMCID: PMC5093936 DOI: 10.1186/s12900-016-0069-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Post-crystallization dehydration methods, applying either vapor diffusion or humidity control devices, have been widely used to improve the diffraction quality of protein crystals. Despite the fact that RNA crystals tend to diffract poorly, there is a dearth of reports on the application of dehydration methods to improve the diffraction quality of RNA crystals. RESULTS We use dehydration techniques with a Free Mounting System (FMS, a humidity control device) to recover the poor diffraction quality of RNA crystals. These approaches were applied to RNA constructs that model various RNA-mediated repeat expansion disorders. CONCLUSION The method we describe herein could serve as a general tool to improve diffraction quality of RNA crystals to facilitate structure determinations.
Collapse
Affiliation(s)
- HaJeung Park
- X-ray Core Facility, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Tuan Tran
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990 Republic of Korea ,Department of Polar Sciences, University of Science and Technology, Incheon, 21990 Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990 Republic of Korea ,Department of Polar Sciences, University of Science and Technology, Incheon, 21990 Republic of Korea
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
40
|
Liu Y, Yu P, Dyba M, Sousa R, Stagno JR, Wang YX. Applications of PLOR in labeling large RNAs at specific sites. Methods 2016; 103:4-10. [PMID: 27033177 PMCID: PMC10802919 DOI: 10.1016/j.ymeth.2016.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022] Open
Abstract
Incorporation of modified or labeled nucleotides at specific sites in RNAs is critical for gaining insights into the structure and function of RNAs. Preparation of site-specifically labeled large RNAs in amounts suitable for structural or functional studies is extremely difficult using current methodologies. The position-selective labeling of RNA, PLOR, is a recently developed method that makes such syntheses possible. PLOR allows incorporation of various probes, including (2)D/(13)C/(15)N-isotopic labels, Cy3/Cy5/Alexa488/Alexa555 fluorescent dyes, biotin and other chemical groups, into specific positions in long RNAs. Here, we describe in detail the use of PLOR to label RNAs at specific segment(s) or discrete sites.
Collapse
Affiliation(s)
- Yu Liu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Ping Yu
- Structural Biophysics Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marzena Dyba
- Structural Biophysics Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
41
|
Zhang J, Ferré-D'Amaré AR. Post-crystallization Improvement of RNA Crystal Diffraction Quality. Methods Mol Biol 2016; 1316:13-24. [PMID: 25967049 DOI: 10.1007/978-1-4939-2730-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The crystallization and structural determination of large RNAs and their complexes remain major bottlenecks in the mechanistic analysis of cellular and viral RNAs. Here, we describe a protocol that combines post-crystallization dehydration and ion replacement that dramatically improved the diffraction quality of crystals of a large gene-regulatory tRNA-mRNA complex. Through this method, the resolution limit of X-ray data extended from 8.5 to 3.2 Å, enabling structure determination. Although this protocol was developed for a particular RNA complex, the general importance of solvent and counterions in nucleic acid structure may render it generally useful for crystallographic analysis of other RNAs.
Collapse
Affiliation(s)
- Jinwei Zhang
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD, 20892-8012, USA
| | | |
Collapse
|
42
|
Chen JL, Bellaousov S, Tubbs JD, Kennedy SD, Lopez MJ, Mathews DH, Turner DH. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints. Biochemistry 2015; 54:6769-82. [PMID: 26451676 PMCID: PMC4666457 DOI: 10.1021/acs.biochem.5b00833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Knowledge
of RNA
structure is necessary to determine structure–function relationships
and to facilitate design of potential therapeutics.
RNA secondary structure prediction can be improved by applying constraints
from nuclear magnetic resonance (NMR) experiments to a dynamic programming
algorithm. Imino proton walks from NOESY spectra reveal double-stranded
regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs,
UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to
identify constraints for the 5′ to 3′ directionality
of base pairs in helices. The 5′ to 3′ directionality
constraints were incorporated into an NMR-assisted prediction of secondary
structure (NAPSS-CS) program. When it was tested on 18 structures,
including nine pseudoknots, the sensitivity and positive predictive
value were improved relative to those of three unrestrained programs.
The prediction accuracy for the pseudoknots improved the most. The
program also facilitates assignment of chemical shifts to individual
nucleotides, a necessary step for determining three-dimensional structure.
Collapse
Affiliation(s)
- Jonathan L Chen
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Stanislav Bellaousov
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| | - Jason D Tubbs
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Scott D Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| | - Michael J Lopez
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - David H Mathews
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States.,Center for RNA Biology, University of Rochester , Rochester, New York 14642, United States
| | - Douglas H Turner
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States.,Center for RNA Biology, University of Rochester , Rochester, New York 14642, United States
| |
Collapse
|
43
|
Zhang J, Ferré-D’Amaré AR. Post-crystallization Improvement of RNA Crystals by Synergistic Ion Exchange and Dehydration. Bio Protoc 2015; 5:e1578. [PMID: 27430006 PMCID: PMC4943581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Compared to the recent dramatic growth in the numbers of genome-wide and functional studies of complex non-coding RNAs, mechanistic and structural analyses have lagged behind. A major technical bottleneck in the structural determination of large RNAs and their complexes is preparation of diffracting crystals. Empirically, a vast majority of such RNA crystals fail to diffract X-rays to usable resolution (~4 Å) due to their inherent disorder and non-specific packing within the crystals. Here, we present a protocol that combines post-crystallization cation replacement and dehydration that dramatically improved the diffraction quality of crystals of a large gene-regulatory mRNA-tRNA complex. This procedure not only extended the resolution limit of X-ray data from 8.5 to 3.2 Å, but also significantly improved the quality of the data, enabling de novo phasing and structure determination. Because it exploits the general importance of counterions and solvation in RNA structure, this procedure may prove broadly useful in the crystallographic analyses of other large non-coding RNAs.
Collapse
|
44
|
Liu Y, Holmstrom E, Zhang J, Yu P, Wang J, Dyba MA, Chen D, Ying J, Lockett S, Nesbitt DJ, Ferré-D'Amaré AR, Sousa R, Stagno JR, Wang YX. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 2015; 522:368-72. [PMID: 25938715 PMCID: PMC4800989 DOI: 10.1038/nature14352] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/25/2015] [Indexed: 12/13/2022]
Abstract
Knowledge of the structure and dynamics of RNA molecules is critical to understanding their many biological functions. Furthermore, synthetic RNAs have applications as therapeutics and molecular sensors. Both research and technological applications of RNA would be dramatically enhanced by methods that enable incorporation of modified or labelled nucleotides into specifically designated positions or regions of RNA. However, the synthesis of tens of milligrams of such RNAs using existing methods has been impossible. Here we develop a hybrid solid-liquid phase transcription method and automated robotic platform for the synthesis of RNAs with position-selective labelling. We demonstrate its use by successfully preparing various isotope- or fluorescently labelled versions of the 71-nucleotide aptamer domain of an adenine riboswitch for nuclear magnetic resonance spectroscopy or single-molecule Förster resonance energy transfer, respectively. Those RNAs include molecules that were selectively isotope-labelled in specific loops, linkers, a helix, several discrete positions, or a single internal position, as well as RNA molecules that were fluorescently labelled in and near kissing loops. These selectively labelled RNAs have the same fold as those transcribed using conventional methods, but they greatly simplify the interpretation of NMR spectra. The single-position isotope- and fluorescently labelled RNA samples reveal multiple conformational states of the adenine riboswitch. Lastly, we describe a robotic platform and the operation that automates this technology. Our selective labelling method may be useful for studying RNA structure and dynamics and for making RNA sensors for a variety of applications including cell-biological studies, substance detection, and disease diagnostics.
Collapse
Affiliation(s)
- Yu Liu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Erik Holmstrom
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Jinwei Zhang
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | - Ping Yu
- Structural Biophysics Laboratory, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jinbu Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Marzena A Dyba
- Structural Biophysics Laboratory, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - De Chen
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | - Rui Sousa
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
45
|
Zhang J, Ferré-D'Amaré AR. Structure and mechanism of the T-box riboswitches. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:419-33. [PMID: 25959893 DOI: 10.1002/wrna.1285] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 01/11/2023]
Abstract
In most Gram-positive bacteria, including many clinically devastating pathogens from genera such as Bacillus, Clostridium, Listeria, and Staphylococcus, T-box riboswitches sense and regulate intracellular availability of amino acids through a multipartite messenger RNA (mRNA)-transfer RNA (tRNA) interaction. The T-box mRNA leaders respond to nutrient starvation by specifically binding cognate tRNAs and sensing whether the bound tRNA is aminoacylated, as a proxy for amino acid availability. Based on this readout, T-boxes direct a transcriptional or translational switch to control the expression of downstream genes involved in various aspects of amino acid metabolism: biosynthesis, transport, aminoacylation, transamidation, and so forth. Two decades after its discovery, the structural and mechanistic underpinnings of the T-box riboswitch were recently elucidated, producing a wealth of insights into how two structured RNAs can recognize each other with robust affinity and exquisite selectivity. The T-box paradigm exemplifies how natural noncoding RNAs can interact not just through sequence complementarity but can add molecular specificity by precisely juxtaposing RNA structural motifs, exploiting inherently flexible elements and the biophysical properties of post-transcriptional modifications, ultimately achieving a high degree of shape complementarity through mutually induced fit. The T-box also provides a proof-of-principle that compact RNA domains can recognize minute chemical changes (such as tRNA aminoacylation) on another RNA. The unveiling of the structure and mechanism of the T-box system thus expands our appreciation of the range of capabilities and modes of action of structured noncoding RNAs, and hints at the existence of networks of noncoding RNAs that communicate through both, structural and sequence specificity.
Collapse
Affiliation(s)
- Jinwei Zhang
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
46
|
Resolving Individual Components in Protein–RNA Complexes Using Small-Angle X-ray Scattering Experiments. Methods Enzymol 2015; 558:363-390. [DOI: 10.1016/bs.mie.2015.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
|