1
|
Boulaki V, Efthimiopoulos S, Moschonas NK, Spyrou GΜ. Exploring potential key genes and disease mechanisms in early-onset genetic epilepsy via integrated bioinformatics analysis. Neurobiol Dis 2025; 210:106888. [PMID: 40180227 DOI: 10.1016/j.nbd.2025.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Epilepsy is a severe common neurological disease affecting all ages. Epilepsy with onset before the age of 5 years, designated early-onset epilepsy (EOE), is of special importance. According to previous studies, genetic factors contribute significantly to the pathogenesis of EOE that remains unclear and must be explored. So, a list of 229 well-selected EOE-associated genes expressed in the brain was created for the investigation of genetic factors and molecular mechanisms involved in its pathogenesis. Enrichment analysis showed that among significant pathways were nicotine addiction, GABAergic synapse, synaptic vesicle cycle, regulation of membrane potential, cholinergic synapse, dopaminergic synapse, and morphine addiction. Performing an integrated analysis as well as protein-protein interaction network-based approaches with the use of GO, KEGG, ClueGO, cytoHubba and 3 network metrics, 12 hub genes were identified, seven of which, CDKL5, GABRA1, KCNQ2, KCNQ3, SCN1A, SCN8A and STXBP1, were identified as key genes (via Venn diagram analysis). These key genes are mostly enriched in SNARE interactions in vesicular transport, regulation of membrane potential and synaptic vesicle exocytosis. Clustering analysis of the PPI network via MCODE showed significant functional modules, indicating also other pathways such as N-Glycan biosynthesis and protein N-linked glycosylation, retrograde endocannabinoid signaling, mTOR signaling and aminoacyl-tRNA biosynthesis. Drug-gene interaction analysis identified a number of drugs as potential medications for EOE, among which the non-FDA approved drugs azetukalner (under clinical development), indiplon and ICA-105665 and the FDA approved drugs retigabine, ganaxolone and methohexital.
Collapse
Affiliation(s)
- Vasiliki Boulaki
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras 26500, Greece; Metabolic Engineering &Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - George Μ Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus.
| |
Collapse
|
2
|
Mkrtchyan L, Sahakyan H, Eldstrom J, Karapetyan T, Abrahamyan A, Nazaryan K, Schwarz JR, Kneussel M, Fedida D, Vardanyan V. Ion permeation through a narrow cavity constriction in KCNQ1 channels: Mechanism and implications for pathogenic variants. Proc Natl Acad Sci U S A 2024; 121:e2411182121. [PMID: 39671184 DOI: 10.1073/pnas.2411182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
KCNQ1 potassium channels play a pivotal role in the physiology and pathophysiology of several human excitable and epithelial tissues. The latest cryo-electron microscopy (cryo-EM) structures provide unique insights into channel function and pharmacology, opening avenues for different therapeutic strategies against human diseases associated with KCNQ1 mutations. However, these structures also raise fundamental questions about the mechanisms of ion permeation. Cryo-EM structures thought to represent the open state of the channel feature a cavity region not wide enough for accommodation of hydrated K+. To understand how K+ passes through the cavity constriction, we utilized microsecond-scale molecular dynamics (MD) simulations using the KCNQ1/KCNE3 cryo-EM structure, characterized mutants at the G345 residue situated at the narrowest point of the cavity, and recorded single channels. The findings indicate that ions become partially dehydrated at the constriction, which enables permeation. MD simulations demonstrate that the constriction can impede the flow of ions through the channel's pore, a finding that is corroborated by mutational screening and single-channel recordings. Reduced channel conductance is the key mechanism underlying reported pathological KCNQ1 mutations at or near the constriction site.
Collapse
Affiliation(s)
- Liana Mkrtchyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tatev Karapetyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Astghik Abrahamyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Jürgen R Schwarz
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| |
Collapse
|
3
|
Oz S, Keren-Raifman T, Sharon T, Subramaniam S, Pallien T, Katz M, Tsemakhovich V, Sholokh A, Watad B, Tripathy DR, Sasson G, Chomsky-Hecht O, Vysochek L, Schulz-Christian M, Fecher-Trost C, Zühlke K, Bertinetti D, Herberg FW, Flockerzi V, Hirsch JA, Klussmann E, Weiss S, Dascal N. Tripartite interactions of PKA catalytic subunit and C-terminal domains of cardiac Ca 2+ channel may modulate its β-adrenergic regulation. BMC Biol 2024; 22:276. [PMID: 39609812 PMCID: PMC11603854 DOI: 10.1186/s12915-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated CaV1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits. Free PKAC phosphorylates the inhibitory protein Rad, leading to increased Ca2+ influx. In cardiomyocytes, the core subunit of CaV1.2, CaV1.2α1, exists in two forms: full-length or truncated (lacking the distal C-terminus (dCT)). Signaling efficiency is believed to emanate from protein interactions within multimolecular complexes, such as anchoring PKA (via PKAR) to CaV1.2α1 by A-kinase anchoring proteins (AKAPs). However, AKAPs are inessential for βAR regulation of CaV1.2 in heterologous models, and their role in cardiomyocytes also remains unclear. RESULTS We show that PKAC interacts with CaV1.2α1 in heart and a heterologous model, independently of Rad, PKAR, or AKAPs. Studies with peptide array assays and purified recombinant proteins demonstrate direct binding of PKAC to two domains in CaV1.2α1-CT: the proximal and distal C-terminal regulatory domains (PCRD and DCRD), which also interact with each other. Data indicate both partial competition and possible simultaneous interaction of PCRD and DCRD with PKAC. The βAR regulation of CaV1.2α1 lacking dCT (which harbors DCRD) was preserved, but subtly altered, in a heterologous model, the Xenopus oocyte. CONCLUSIONS We discover direct interactions between PKAC and two domains in CaV1.2α1. We propose that these tripartite interactions, if present in vivo, may participate in organizing the multimolecular signaling complex and fine-tuning the βAR effect in cardiomyocytes.
Collapse
Affiliation(s)
- Shimrit Oz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- Department of Neuroscience, Faculty of Medicine, The Ruth and Bruce Rappaport, Haifa, 3109601, Israel
| | - Tal Keren-Raifman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Tom Sharon
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Suraj Subramaniam
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Moshe Katz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Vladimir Tsemakhovich
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Baraa Watad
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Debi Ranjan Tripathy
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
- National Forensic Science University, Radhanagar, Agartala, Tripura, 799001, India
| | - Giorgia Sasson
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Orna Chomsky-Hecht
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Leonid Vysochek
- Heart Center, Sheba Medical Center, Ramat Gan, 5262000, Israel
| | - Maike Schulz-Christian
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Fecher-Trost
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Veit Flockerzi
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Joel A Hirsch
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Sharon Weiss
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| | - Nathan Dascal
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| |
Collapse
|
4
|
Zhong L, Yan Z, Jiang D, Weng KC, Ouyang Y, Zhang H, Lin X, Xiao C, Yang H, Yao J, Kang X, Wang C, Huang C, Shen B, Chung SK, Jiang ZH, Zhu W, Neher E, Silva JR, Hou P. Targeting the I Ks Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants. Circ Res 2024; 135:722-738. [PMID: 39166328 PMCID: PMC11392204 DOI: 10.1161/circresaha.124.325009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which β-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.
Collapse
Affiliation(s)
- Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Dexiang Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Yue Ouyang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Hangyu Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Xiaoqing Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Chenxin Xiao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University (H.Y.)
| | - Jing Yao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, China (J.Y.)
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (X.K.)
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China (X.K.)
- College of Life Sciences, Liaocheng University, China (X.K.)
| | - Changhe Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Department of Neurology, First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China (C.W.)
| | - Chen Huang
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhi-Hong Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (W.Z.)
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Jonathan R Silva
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| |
Collapse
|
5
|
Zhou Z, Gong M, Pande A, Margineanu A, Lisewski U, Purfürst B, Zhu H, Liang L, Jia S, Froehler S, Zeng C, Kühnen P, Khodaverdi S, Krill W, Röpke T, Chen W, Raile K, Sander M, Izsvák Z. Atypical KCNQ1/Kv7 channel function in a neonatal diabetes patient: Hypersecretion preceded the failure of pancreatic β-cells. iScience 2024; 27:110291. [PMID: 39055936 PMCID: PMC11269803 DOI: 10.1016/j.isci.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
KCNQ1/Kv7, a low-voltage-gated K+ channel, regulates cardiac rhythm and glucose homeostasis. While KCNQ1 mutations are associated with long-QT syndrome and type2 diabetes, its function in human pancreatic cells remains controversial. We identified a homozygous KCNQ1 mutation (R397W) in an individual with permanent neonatal diabetes melitus (PNDM) without cardiovascular symptoms. To decipher the potential mechanism(s), we introduced the mutation into human embryonic stem cells and generated islet-like organoids (SC-islets) using CRISPR-mediated homology-repair. The mutation did not affect pancreatic differentiation, but affected channel function by increasing spike frequency and Ca2+ flux, leading to insulin hypersecretion. With prolonged culturing, the mutant islets decreased their secretion and gradually deteriorated, modeling a diabetic state, which accelerated by high glucose levels. The molecular basis was the downregulated expression of voltage-activated Ca2+ channels and oxidative phosphorylation. Our study provides a better understanding of the role of KCNQ1 in regulating insulin secretion and β-cell survival in hereditary diabetes pathology.
Collapse
Affiliation(s)
- Zhimin Zhou
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Maolian Gong
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Amit Pande
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anca Margineanu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Ulrike Lisewski
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, 13125 Berlin, Germany
| | - Bettina Purfürst
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Han Zhu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92037, USA
| | - Lei Liang
- Department of Pediatrics, Anhui Provincial Children’s Hospital, Hefei 23000, China
| | - Shiqi Jia
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Sebastian Froehler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Chun Zeng
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92037, USA
| | - Peter Kühnen
- Charité, Universitätsmedizin Berlin, Virchow-Klinikum, 13125 Berlin, Germany
| | | | - Winfried Krill
- Department of Pediatrics, Klinikum Hanau, 63450 Hanau, Germany
| | - Torsten Röpke
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, 13125 Berlin, Germany
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518000, China
| | - Klemens Raile
- Charité, Universitätsmedizin Berlin, Virchow-Klinikum, 13125 Berlin, Germany
| | - Maike Sander
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92037, USA
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| |
Collapse
|
6
|
Stagno C, Mancuso F, Ciaglia T, Ostacolo C, Piperno A, Iraci N, Micale N. In Silico Methods for the Discovery of Kv7.2/7.3 Channels Modulators: A Comprehensive Review. Molecules 2024; 29:3234. [PMID: 38999185 PMCID: PMC11243076 DOI: 10.3390/molecules29133234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
The growing interest in Kv7.2/7.3 agonists originates from the involvement of these channels in several brain hyperexcitability disorders. In particular, Kv7.2/7.3 mutants have been clearly associated with epileptic encephalopathies (DEEs) as well as with a spectrum of focal epilepsy disorders, often associated with developmental plateauing or regression. Nevertheless, there is a lack of available therapeutic options, considering that retigabine, the only molecule used in clinic as a broad-spectrum Kv7 agonist, has been withdrawn from the market in late 2016. This is why several efforts have been made both by both academia and industry in the search for suitable chemotypes acting as Kv7.2/7.3 agonists. In this context, in silico methods have played a major role, since the precise structures of different Kv7 homotetramers have been only recently disclosed. In the present review, the computational methods used for the design of Kv.7.2/7.3 small molecule agonists and the underlying medicinal chemistry are discussed in the context of their biological and structure-function properties.
Collapse
Affiliation(s)
- Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
7
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
8
|
Huang Y, Ma D, Yang Z, Zhao Y, Guo J. Voltage-gated potassium channels KCNQs: Structures, mechanisms, and modulations. Biochem Biophys Res Commun 2023; 689:149218. [PMID: 37976835 DOI: 10.1016/j.bbrc.2023.149218] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiwen Zhao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Yang W, Zhu Y, Tang F, Jian Z, Xiao Y. Cardiac proteomic profiling suggests that hypertrophic and dilated cardiomyopathy share a common pathogenetic pathway of the calcium signalling pathway. Eur J Clin Invest 2023; 53:e14051. [PMID: 37381592 DOI: 10.1111/eci.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are classified as different diseases but have many similar pathogenic genes and clinical symptoms. Previous research has focused on mutated genes. This study was conducted to identify key molecular mechanisms and explore effective therapeutic targets. METHODS Myocardial tissue was harvested from patients with HCM (n = 3) or DCM (n = 4) during surgery. Hearts donated by healthy traffic accident victims were treated as controls (n = 4). Total proteins were extracted for liquid chromatography-tandem mass spectrometry. Differentially expressed proteins (DEPs) were annotated via GO and KEGG analyses. Selected distinguishing protein abundance was confirmed by western blotting. RESULTS Compared with the control group, there were 121 and 76 DEPs in the HCM and DCM groups, respectively. GO terms for these two comparisons are associated with contraction-related components and actin binding. Additionally, the most significantly upregulated and downregulated proteins were periostin and tropomyosin alpha-3 chain in both comparisons. Moreover, when comparing the HCM and DCM groups, we found 60 significant DEPs, and the GO and KEGG terms are related to the calcium signalling pathway. Expression of the calcium regulation-related protein peptidyl-prolyl cis-trans isomerase (FKBP1A) was significantly upregulated in multiple samples. CONCLUSION HCM and DCM have many mutual pathogenetic pathways. Calcium ion-related processes are among the most significant factors affecting disease development. For HCM and DCM, research on regulating linchpin protein expression or interfering with key calcium-related pathways may be more beneficial than genetic research.
Collapse
Affiliation(s)
- Wenjuan Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yu Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- Department of Cardiovascular Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Fuqin Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhao Jian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Kang PW, Woodbury L, Angsutararux P, Sambare N, Shi J, Marras M, Abella C, Bedi A, Zinn D, Cui J, Silva JR. Arrhythmia-associated calmodulin variants interact with KCNQ1 to confer aberrant membrane trafficking and function. PNAS NEXUS 2023; 2:pgad335. [PMID: 37965565 PMCID: PMC10642763 DOI: 10.1093/pnasnexus/pgad335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023]
Abstract
Missense variants in calmodulin (CaM) predispose patients to arrhythmias associated with high mortality rates ("calmodulinopathy"). As CaM regulates many key cardiac ion channels, an understanding of disease mechanism associated with CaM variant arrhythmias requires elucidating individual CaM variant effects on distinct channels. One key CaM regulatory target is the KCNQ1 (KV7.1) voltage-gated potassium channel that carries the IKs current. Yet, relatively little is known as to how CaM variants interact with KCNQ1 or affect its function. Here, we take a multipronged approach employing a live-cell fluorescence resonance energy transfer binding assay, fluorescence trafficking assay, and functional electrophysiology to characterize >10 arrhythmia-associated CaM variants for effect on KCNQ1 CaM binding, membrane trafficking, and channel function. We identify one variant (G114W) that exhibits severely weakened binding to KCNQ1 but find that most other CaM variants interact with similar binding affinity to KCNQ1 when compared with CaM wild-type over physiological Ca2+ ranges. We further identify several CaM variants that affect KCNQ1 and IKs membrane trafficking and/or baseline current activation kinetics, thereby delineating KCNQ1 dysfunction in calmodulinopathy. Lastly, we identify CaM variants with no effect on KCNQ1 function. This study provides extensive functional data that reveal how CaM variants contribute to creating a proarrhythmic substrate by causing abnormal KCNQ1 membrane trafficking and current conduction. We find that CaM variant regulation of KCNQ1 is not uniform with effects varying from benign to significant loss of function, suggesting how CaM variants predispose patients to arrhythmia via the dysregulation of multiple cardiac ion channels. Classification: Biological, Health, and Medical Sciences, Physiology.
Collapse
Affiliation(s)
- Po wei Kang
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Lucy Woodbury
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Namit Sambare
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Martina Marras
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Carlota Abella
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Anish Bedi
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - DeShawn Zinn
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St.Louis, St. Louis, MO 63130, USA
| |
Collapse
|
11
|
McCormick L, Wadmore K, Milburn A, Gupta N, Morris R, Held M, Prakash O, Carr J, Barrett‐Jolley R, Dart C, Helassa N. Long QT syndrome-associated calmodulin variants disrupt the activity of the slowly activating delayed rectifier potassium channel. J Physiol 2023; 601:3739-3764. [PMID: 37428651 PMCID: PMC10952621 DOI: 10.1113/jp284994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 μm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.
Collapse
Affiliation(s)
- Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory HubSaint Mary's HospitalManchesterUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Amy Milburn
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Joseph Carr
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Richard Barrett‐Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
12
|
Bates A, Stowe RB, Travis EM, Cook LE, Dabney-Smith C, Lorigan GA. The role of native cysteine residues in the oligomerization of KCNQ1 channels. Biochem Biophys Res Commun 2023; 659:34-39. [PMID: 37031592 PMCID: PMC10170711 DOI: 10.1016/j.bbrc.2023.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
KCNQ1, the major component of the slow-delayed rectifier potassium channel, is responsible for repolarization of cardiac action potential. Mutations in this channel can lead to a variety of diseases, most notably long QT syndrome. It is currently unknown how many of these mutations change channel function and structure on a molecular level. Since tetramerization is key to proper function and structure of the channel, it is likely that mutations modify the stability of KCNQ1 oligomers. Presently, the C-terminal domain of KCNQ1 has been noted as the driving force for oligomer formation. However, truncated versions of this protein lacking the C-terminal domain still tetramerize. Therefore, we explored the role of native cysteine residues in a truncated construct of human KCNQ1, amino acids 100-370, by blocking potential interactions of cysteines with a nitroxide based spin label. Mobility of the spin labels was investigated with continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. The oligomerization state was examined by gel electrophoresis. The data provide information on tetramerization of human KCNQ1 without the C-terminal domain. Specifically, how blocking the side chains of native cysteines residues reduces oligomerization. A better understanding of tetramer formation could provide improved understanding of the molecular etiology of long QT syndrome and other diseases related to KCNQ1.
Collapse
Affiliation(s)
- Alison Bates
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, USA
| | - Rebecca B Stowe
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, USA
| | - Elizabeth M Travis
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, USA
| | - Lauryn E Cook
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, USA
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, USA.
| |
Collapse
|
13
|
Abrahamyan A, Eldstrom J, Sahakyan H, Karagulyan N, Mkrtchyan L, Karapetyan T, Sargsyan E, Kneussel M, Nazaryan K, Schwarz JR, Fedida D, Vardanyan V. Mechanism of external K+ sensitivity of KCNQ1 channels. J Gen Physiol 2023; 155:213880. [PMID: 36809486 PMCID: PMC9960071 DOI: 10.1085/jgp.202213205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
KCNQ1 voltage-gated K+ channels are involved in a wide variety of fundamental physiological processes and exhibit the unique feature of being markedly inhibited by external K+. Despite the potential role of this regulatory mechanism in distinct physiological and pathological processes, its exact underpinnings are not well understood. In this study, using extensive mutagenesis, molecular dynamics simulations, and single-channel recordings, we delineate the molecular mechanism of KCNQ1 modulation by external K+. First, we demonstrate the involvement of the selectivity filter in the external K+ sensitivity of the channel. Then, we show that external K+ binds to the vacant outermost ion coordination site of the selectivity filter inducing a diminution in the unitary conductance of the channel. The larger reduction in the unitary conductance compared to whole-cell currents suggests an additional modulatory effect of external K+ on the channel. Further, we show that the external K+ sensitivity of the heteromeric KCNQ1/KCNE complexes depends on the type of associated KCNE subunits.
Collapse
Affiliation(s)
- Astghik Abrahamyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Nare Karagulyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Liana Mkrtchyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Tatev Karapetyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Ernest Sargsyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jürgen R Schwarz
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| |
Collapse
|
14
|
Nuñez E, Jones F, Muguruza-Montero A, Urrutia J, Aguado A, Malo C, Bernardo-Seisdedos G, Domene C, Millet O, Gamper N, Villarroel A. Redox regulation of K V7 channels through EF3 hand of calmodulin. eLife 2023; 12:e81961. [PMID: 36803414 PMCID: PMC9988260 DOI: 10.7554/elife.81961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Neuronal KV7 channels, important regulators of cell excitability, are among the most sensitive proteins to reactive oxygen species. The S2S3 linker of the voltage sensor was reported as a site-mediating redox modulation of the channels. Recent structural insights reveal potential interactions between this linker and the Ca2+-binding loop of the third EF-hand of calmodulin (CaM), which embraces an antiparallel fork formed by the C-terminal helices A and B, constituting the calcium responsive domain (CRD). We found that precluding Ca2+ binding to the EF3 hand, but not to EF1, EF2, or EF4 hands, abolishes oxidation-induced enhancement of KV7.4 currents. Monitoring FRET (Fluorescence Resonance Energy Transfer) between helices A and B using purified CRDs tagged with fluorescent proteins, we observed that S2S3 peptides cause a reversal of the signal in the presence of Ca2+ but have no effect in the absence of this cation or if the peptide is oxidized. The capacity of loading EF3 with Ca2+ is essential for this reversal of the FRET signal, whereas the consequences of obliterating Ca2+ binding to EF1, EF2, or EF4 are negligible. Furthermore, we show that EF3 is critical for translating Ca2+ signals to reorient the AB fork. Our data are consistent with the proposal that oxidation of cysteine residues in the S2S3 loop relieves KV7 channels from a constitutive inhibition imposed by interactions between the EF3 hand of CaM which is crucial for this signaling.
Collapse
Affiliation(s)
| | - Frederick Jones
- School of Biomedical Sciences, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | | | | | | | | | | | - Carmen Domene
- Department of Chemistry, University of BathBathUnited Kingdom
- Department of Chemistry, University of OxfordOxfordUnited Kingdom
| | - Oscar Millet
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNEDerioSpain
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | | |
Collapse
|
15
|
Kang PW, Woodbury L, Angsutararux P, Sambare N, Shi J, Marras M, Abella C, Bedi A, Zinn D, Cui J, Silva JR. Arrhythmia-associated Calmodulin Variants Interact with KCNQ1 to Confer Aberrant Membrane Trafficking and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526031. [PMID: 36747728 PMCID: PMC9900995 DOI: 10.1101/2023.01.28.526031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rationale Missense variants in calmodulin (CaM) predispose patients to arrhythmias associated with high mortality rates. As CaM regulates several key cardiac ion channels, a mechanistic understanding of CaM variant-associated arrhythmias requires elucidating individual CaM variant effect on distinct channels. One key CaM regulatory target is the KCNQ1 (K V 7.1) voltage-gated potassium channel that underlie the I Ks current. Yet, relatively little is known as to how CaM variants interact with KCNQ1 or affect its function. Objective To observe how arrhythmia-associated CaM variants affect binding to KCNQ1, channel membrane trafficking, and KCNQ1 function. Methods and Results We combine a live-cell FRET binding assay, fluorescence trafficking assay, and functional electrophysiology to characterize >10 arrhythmia-associated CaM variants effect on KCNQ1. We identify one variant (G114W) that exhibits severely weakened binding to KCNQ1 but find that most other CaM variants interact with similar binding affinity to KCNQ1 when compared to CaM wild-type over physiological Ca 2+ ranges. We further identify several CaM variants that affect KCNQ1 and I Ks membrane trafficking and/or baseline current activation kinetics, thereby contextualizing KCNQ1 dysfunction in calmodulinopathy. Lastly, we delineate CaM variants with no effect on KCNQ1 function. Conclusions This study provides comprehensive functional data that reveal how CaM variants contribute to creating a pro-arrhythmic substrate by causing abnormal KCNQ1 membrane trafficking and current conduction. We find that CaM variant regulation of KCNQ1 is not uniform with effects varying from benign to significant loss of function. This study provides a new approach to collecting details of CaM binding that are key for understanding how CaM variants predispose patients to arrhythmia via the dysregulation of multiple cardiac ion channels.
Collapse
|
16
|
Yang X, Chen S, Zhang S, Shi S, Zong R, Gao Y, Guan B, Gamper N, Gao H. Intracellular zinc protects Kv7 K + channels from Ca 2+/calmodulin-mediated inhibition. J Biol Chem 2022; 299:102819. [PMID: 36549648 PMCID: PMC9852549 DOI: 10.1016/j.jbc.2022.102819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Zinc (Zn) is an essential trace element; it serves as a cofactor for a great number of enzymes, transcription factors, receptors, and other proteins. Zinc is also an important signaling molecule, which can be released from intracellular stores into the cytosol or extracellular space, for example, during synaptic transmission. Amongst cellular effects of zinc is activation of Kv7 (KCNQ, M-type) voltage-gated potassium channels. Here, we investigated relationships between Kv7 channel inhibition by Ca2+/calmodulin (CaM) and zinc-mediated potentiation. We show that Zn2+ ionophore, zinc pyrithione (ZnPy), can prevent or reverse Ca2+/CaM-mediated inhibition of Kv7.2. In the presence of both Ca2+ and Zn2+, the Kv7.2 channels lose most of their voltage dependence and lock in an open state. In addition, we demonstrate that mutations that interfere with CaM binding to Kv7.2 and Kv7.3 reduced channel membrane abundance and activity, but these mutants retained zinc sensitivity. Moreover, the relative efficacy of ZnPy to activate these mutants was generally greater, compared with the WT channels. Finally, we show that zinc sensitivity was retained in Kv7.2 channels assembled with mutant CaM with all four EF hands disabled, suggesting that it is unlikely to be mediated by CaM. Taken together, our findings indicate that zinc is a potent Kv7 stabilizer, which may protect these channels from physiological inhibitory effects of neurotransmitters and neuromodulators, protecting neurons from overactivity.
Collapse
Affiliation(s)
- Xinhe Yang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China,CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co, Ltd, Shijiazhuang, Hebei, China
| | - Shuai Chen
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuo Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiting Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bingcai Guan
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China; Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK.
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
17
|
Emerging mechanisms involving brain Kv7 channel in the pathogenesis of hypertension. Biochem Pharmacol 2022; 206:115318. [PMID: 36283445 DOI: 10.1016/j.bcp.2022.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Hypertension is a prevalent health problem inducing many organ damages. The pathogenesis of hypertension involves a complex integration of different organ systems including the brain. The elevated sympathetic nerve activity is closely related to the etiology of hypertension. Ion channels are critical regulators of neuronal excitability. Several mechanisms have been proposed to contribute to hypothalamic-driven elevated sympathetic activity, including altered ion channel function. Recent findings indicate one of the voltage-gated potassium channels, Kv7 channels (M channels), plays a vital role in regulating cardiovascular-related neurons activity, and the expression of Kv7 channels is downregulated in hypertension. This review highlights recent findings that the Kv7 channels in the brain, blood vessels, and kidneys are emerging targets involved in the pathogenesis of hypertension, suggesting new therapeutic targets for treating drug-resistant, neurogenic hypertension.
Collapse
|
18
|
Homma K. The Pathological Mechanisms of Hearing Loss Caused by KCNQ1 and KCNQ4 Variants. Biomedicines 2022; 10:biomedicines10092254. [PMID: 36140355 PMCID: PMC9496569 DOI: 10.3390/biomedicines10092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; ; Tel.: +1-312-503-5344
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
19
|
Bauer CK, Holling T, Horn D, Laço MN, Abdalla E, Omar OM, Alawi M, Kutsche K. Clinically Relevant KCNQ1 Variants Causing KCNQ1-KCNE2 Gain-of-Function Affect the Ca2+ Sensitivity of the Channel. Int J Mol Sci 2022; 23:ijms23179690. [PMID: 36077086 PMCID: PMC9456291 DOI: 10.3390/ijms23179690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dominant KCNQ1 variants are well-known for underlying cardiac arrhythmia syndromes. The two heterozygous KCNQ1 missense variants, R116L and P369L, cause an allelic disorder characterized by pituitary hormone deficiency and maternally inherited gingival fibromatosis. Increased K+ conductance upon co-expression of KCNQ1 mutant channels with the beta subunit KCNE2 is suggested to underlie the phenotype; however, the reason for KCNQ1-KCNE2 (Q1E2) channel gain-of-function is unknown. We aimed to discover the genetic defect in a single individual and three family members with gingival overgrowth and identified the KCNQ1 variants P369L and V185M, respectively. Patch-clamp experiments demonstrated increased constitutive K+ conductance of V185M-Q1E2 channels, confirming the pathogenicity of the novel variant. To gain insight into the pathomechanism, we examined all three disease-causing KCNQ1 mutants. Manipulation of the intracellular Ca2+ concentration prior to and during whole-cell recordings identified an impaired Ca2+ sensitivity of the mutant KCNQ1 channels. With low Ca2+, wild-type KCNQ1 currents were efficiently reduced and exhibited a pre-pulse-dependent cross-over of current traces and a high-voltage-activated component. These features were absent in mutant KCNQ1 channels and in wild-type channels co-expressed with calmodulin and exposed to high intracellular Ca2+. Moreover, co-expression of calmodulin with wild-type Q1E2 channels and loading the cells with high Ca2+ drastically increased Q1E2 current amplitudes, suggesting that KCNE2 normally limits the resting Q1E2 conductance by an increased demand for calcified calmodulin to achieve effective channel opening. Our data link impaired Ca2+ sensitivity of the KCNQ1 mutants R116L, V185M and P369L to Q1E2 gain-of-function that is associated with a particular KCNQ1 channelopathy.
Collapse
Affiliation(s)
- Christiane K. Bauer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence:
| | - Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Denise Horn
- Department of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany
| | - Mário Nôro Laço
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria 5422031, Egypt
- Genetics Department, Armed Forces College of Medicine (AFCM), Cairo 4460015, Egypt
| | - Omneya Magdy Omar
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria 5422031, Egypt
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
20
|
Karlova M, Abramochkin DV, Pustovit KB, Nesterova T, Novoseletsky V, Loussouarn G, Zaklyazminskaya E, Sokolova OS. Disruption of a Conservative Motif in the C-Terminal Loop of the KCNQ1 Channel Causes LQT Syndrome. Int J Mol Sci 2022; 23:ijms23147953. [PMID: 35887302 PMCID: PMC9316142 DOI: 10.3390/ijms23147953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
We identified a single nucleotide variation (SNV) (c.1264A > G) in the KCNQ1 gene in a 5-year-old boy who presented with a prolonged QT interval. His elder brother and mother, but not sister and father, also had this mutation. This missense mutation leads to a p.Lys422Glu (K422E) substitution in the Kv7.1 protein that has never been mentioned before. We inserted this substitution in an expression plasmid containing Kv7.1 cDNA and studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1, using the whole-cell configuration of the patch-clamp technique. Expression of the mutant Kv7.1 channel in both homo- and heterozygous conditions in the presence of auxiliary subunit KCNE1 results in a significant decrease in tail current densities compared to the expression of wild-type (WT) Kv7.1 and KCNE1. This study also indicates that K422E point mutation causes a dominant negative effect. The mutation was not associated with a trafficking defect; the mutant channel protein was confirmed to localize at the cell membrane. This mutation disrupts the poly-Lys strip in the proximal part of the highly conserved cytoplasmic A−B linker of Kv7.1 that was not shown before to be crucial for channel functioning.
Collapse
Affiliation(s)
- Maria Karlova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
| | - Denis V. Abramochkin
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
| | - Ksenia B. Pustovit
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
| | - Tatiana Nesterova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 620049 Ekaterinburg, Russia;
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620075 Ekaterinburg, Russia
| | - Valery Novoseletsky
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
- Biology Department, Shenzhen MSU-BIT University, Shenzhen 517182, China
| | - Gildas Loussouarn
- Nantes Université, CNRS, INSERM, l’institut du Thorax, F-44000 Nantes, France;
| | | | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (M.K.); (D.V.A.); (K.B.P.); (V.N.)
- Biology Department, Shenzhen MSU-BIT University, Shenzhen 517182, China
- Correspondence: or
| |
Collapse
|
21
|
Willegems K, Eldstrom J, Kyriakis E, Ataei F, Sahakyan H, Dou Y, Russo S, Van Petegem F, Fedida D. Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nat Commun 2022; 13:3760. [PMID: 35768468 PMCID: PMC9243137 DOI: 10.1038/s41467-022-31526-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
The KCNQ1 ion channel plays critical physiological roles in electrical excitability and K+ recycling in organs including the heart, brain, and gut. Loss of function is relatively common and can cause sudden arrhythmic death, sudden infant death, epilepsy and deafness. Here, we report cryogenic electron microscopic (cryo-EM) structures of Xenopus KCNQ1 bound to Ca2+/Calmodulin, with and without the KCNQ1 channel activator, ML277. A single binding site for ML277 was identified, localized to a pocket lined by the S4-S5 linker, S5 and S6 helices of two separate subunits. Several pocket residues are not conserved in other KCNQ isoforms, explaining specificity. MD simulations and point mutations support this binding location for ML277 in open and closed channels and reveal that prevention of inactivation is an important component of the activator effect. Our work provides direction for therapeutic intervention targeting KCNQ1 loss of function pathologies including long QT interval syndrome and seizures. KCNQ1 channels are active in heart, brain and gut. Functional loss causes epilepsy and sudden arrhythmic death. Here, authors describe a key activator drug binding site, explaining isoform and drug selectivity, and point the way for new drug design.
Collapse
Affiliation(s)
- Katrien Willegems
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Efthimios Kyriakis
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Fariba Ataei
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes for Health, Bethesda, MD, USA
| | - Ying Dou
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Sophia Russo
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Li M, Wood CE, Keller-Wood M. Chronic maternal hypercortisolemia models stress-induced adverse birth outcome and altered cardiac function in newborn lambs. Am J Physiol Regul Integr Comp Physiol 2022; 323:R193-R203. [PMID: 35670476 PMCID: PMC9291417 DOI: 10.1152/ajpregu.00041.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal stress in pregnancy is thought to be a contributing factor in adverse pregnancy outcome, including stillbirth and prematurity. Previous studies in our laboratory have shown that chronic elevation in maternal cortisol concentration in ewes (by maternal infusion of 1 mg·kg-1·day-1) during the late gestion increased the incidence of stillbirth and altered fetal heart rate and blood pressure at birth. We designed the current study to test the effect of chronically elevated maternal cortisol on fetal cardiac adaption from in utero life to ex utero life. The combined risk of stillbirth or prematurity was significantly greater in the pregnancies with maternal hypercortisolemia: in this cohort, 40% of the lambs of cortisol-infused ewes died in utero or at birth compared to 25% of lambs of control ewes, and 24% of lambs of cortisol-infused ewes were born preterm, whereas no lamb was born preterm in the control group. Compared to control lambs, the lambs of cortisol-infused ewes born at full term exhibited a significant increase in mean aortic pressure just prior to birth, and a significant decrease in mean aortic pressure that was evident during the first 9 hours after birth. The QT interval was decreased prior to birth and increased immediately after birth in the newborns of cortisol-treated ewes compared to control lambs. These findings suggest that an excess in utero corticosteroid exposure adversely affects fetal cardiac adaptation to extrauterine life and that chronic maternal stress or hypersecretion of corticosteroids may contribute to adverse obstetric outcomes.
Collapse
Affiliation(s)
- Mengchen Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainsville, FL, United States
| |
Collapse
|
23
|
Kato K, Isbell HM, Fressart V, Denjoy I, Debbiche A, Itoh H, Poinsot J, George AL, Coulombe A, Shea MA, Guicheney P. Novel CALM3 Variant Causing Calmodulinopathy With Variable Expressivity in a 4-Generation Family. Circ Arrhythm Electrophysiol 2022; 15:e010572. [PMID: 35225649 DOI: 10.1161/circep.121.010572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CaM (calmodulin), encoded by 3 separate genes (CALM1, CALM2, and CALM3), is a multifunctional Ca2+-binding protein involved in many signal transduction events including ion channel regulation. CaM variants may present with early-onset long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia, or sudden cardiac death. Most reported variants occurred de novo. We identified a novel CALM3 variant, p.Asn138Lys (N138K), in a 4-generation family segregating with LQTS. The aim of this study was to elucidate its pathogenicity and to compare it with that of p.D130G-CaM-a variant associated with a severe LQTS phenotype. METHODS We performed whole exome sequencing for a large, 4-generation family affected by LQTS. To assess the effect of the detected CALM3 variant, the intrinsic Ca2+-binding affinity was measured by stoichiometric Ca2+ titrations and equilibrium titrations. L-type Ca2+ and slow delayed rectifier potassium currents (ICaL and IKs) were recorded by whole-cell patch-clamp. Cav1.2 and Kv7.1 membrane expression were determined by optical fluorescence assays. RESULTS We identified 14 p.N138K-CaM carriers in a family where 2 sudden deaths occurred in children. Several members were only mildly affected compared with CaM-LQTS patients to date described in literature. The intrinsic Ca2+-binding affinity of the CaM C-terminal domain was 10-fold lower for p.N138K-CaM compared with wild-type-CaM. ICaL inactivation was slowed in cells expressing p.N138K-CaM but less than in p.D130G-CaM cells. Unexpectedly, a larger IKs current density was observed in cells expressing p.N138K-CaM, but not for p.D130G-CaM, compared with wild-type-CaM. CONCLUSIONS The p.N138K CALM3 variant impairs Ca2+-binding affinity of CaM and ICaL inactivation but potentiates IKs. The variably expressed phenotype of this variant compared with previously published de novo LQTS-CaM variants is likely explained by a milder impairment of ICaL inactivation combined with IKs augmentation.
Collapse
Affiliation(s)
- Koichi Kato
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.).,Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.K.)
| | - Holly M Isbell
- Department of Biochemistry, Carver College of Medicine, University of Iowa (H.M.I., M.A.S.)
| | - Véronique Fressart
- AP-HP, Pitié-Salpêtrière Hospital, Functional Unit of Cardiogenetics and Myogenetics, Paris, France (V.F.)
| | - Isabelle Denjoy
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.).,Cardiology Department, Referring Center for Heritable or Rare Cardiac Diseases, AP-HP, Bichat Hospital, HUPNVS, Referring Center for Rare Cardiac Diseases, Sorbonne University, Paris, France (I.D.)
| | - Amal Debbiche
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.)
| | - Hideki Itoh
- Division of Patient Safety, Hiroshima University Hospital, Japan (H.I.)
| | - Jacques Poinsot
- Unité de cardio-pediatrie, service de medecine pediatrique, Centre Hospitalier Universitaire de Tours, Tours, France (J.P.)
| | - Alfred L George
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (A.L.G.)
| | - Alain Coulombe
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.)
| | - Madeline A Shea
- Department of Biochemistry, Carver College of Medicine, University of Iowa (H.M.I., M.A.S.)
| | - Pascale Guicheney
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.)
| |
Collapse
|
24
|
Sanguinetti MC, Seebohm G. Physiological Functions, Biophysical Properties, and Regulation of KCNQ1 (K V7.1) Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:335-353. [PMID: 35138621 DOI: 10.1007/978-981-16-4254-8_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
KCNQ1 (KV7.1) K+ channels are expressed in multiple tissues, including the heart, pancreas, colon, and inner ear. The gene encoding the KCNQ1 protein was discovered by a positional cloning effort to determine the genetic basis of long QT syndrome, an inherited ventricular arrhythmia that can cause sudden death. Mutations in KCNQ1 can also cause other types of arrhythmia (i.e., short QT syndrome, atrial fibrillation) and the gene may also have a role in diabetes and certain cancers. KCNQ1 α-subunits can partner with accessory β-subunits (KCNE1-KCNE5) to form K+-selective channels that have divergent biophysical properties. In the heart, KCNQ1 α-subunits coassemble with KCNE1 β-subunits to form channels that conduct IKs, a very slowly activating delayed rectifier K+ current. KV7.1 channels are highly regulated by PIP2, calmodulin, and phosphorylation, and rich pharmacology includes blockers and gating modulators. Recent biophysical studies and a cryo-EM structure of the KCNQ1-calmodulin complex have provided new insights into KV7.1 channel function, and how interactions between KCNQ1 and KCNE subunits alter the gating properties of heteromultimeric channels.
Collapse
Affiliation(s)
| | - Guiscard Seebohm
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| |
Collapse
|
25
|
Barret DCA, Schertler GFX, Kaupp UB, Marino J. Structural basis of the partially open central gate in the human CNGA1/CNGB1 channel explained by additional density for calmodulin in cryo-EM map. J Struct Biol 2021; 214:107828. [PMID: 34971760 DOI: 10.1016/j.jsb.2021.107828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
The recently reported structure of the human CNGA1/CNGB1 CNG channel in the open state (Xue et al., 2021a) shows that one CNGA1 and one CNGB1 subunit do not open the central hydrophobic gate completely upon cGMP binding. This is different from what has been reported for CNGA homomeric channels (Xue et al., 2021b; Zheng et al., 2020). In seeking to understand how this difference is due to the presence of the CNGB1 subunit, we find that the deposited density map (Xue et al., 2021a) (EMDB 24465) contains an additional density not reported in the images of the original publication. This additional density fits well the structure of calmodulin (CaM), and it unambiguously connects the newly identified D-helix of CNGB1 to one of the CNGA1 helices (A1R) participating in the coiled-coil region. Interestingly, the CNGA1 subunit that engages in the interaction with this additional density is the one that, together with CNGB1, does not open completely the central gate. The sequence of the D-helix of CNGB1 contains a known CaM-binding site of exquisitely high affinity - named CaM2 (Weitz et al., 1998) -, and thus the presence of CaM in that region is not surprising. The mechanism through which CaM reduces currents across the membrane by acting on the native channel (Bauer, 1996; Hsu and Molday, 1993; Weitz et al., 1998) remains unclear. We suggest that the presence of CaM may explain the partially open central gate reported by Xue et al. (2021a). The structure of the open and closed states of the CNGA1/CNGB1 channel may be different with and without CaM present.
Collapse
Affiliation(s)
- Diane C A Barret
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Switzerland; Department of Biology, ETH-Zurich, Switzerland
| | - U Benjamin Kaupp
- Center for Advanced European Studies and Research (CAESAR), Bonn, Germany; Life and Medical Sciences Institute LIMES, University of Bonn, Germany
| | - Jacopo Marino
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Switzerland.
| |
Collapse
|
26
|
Network Pharmacology-Based Strategy and Molecular Docking to Explore the Potential Mechanism of Jintiange Capsule for Treating Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5338182. [PMID: 34899951 PMCID: PMC8664513 DOI: 10.1155/2021/5338182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022]
Abstract
Background With the advent of ageing population, osteoporosis (OP) has already become a global challenge. Jintiange capsule is extensively applied to treat OP in China. Although recent studies demonstrate that it generates significant effects on strengthening bone, the exact mechanism of the jintiange capsule for treating OP remains unknown. Purpose To understand the main ingredients of the jintiange capsule, predict the possible targets and the relevant signal transduction pathways, and explore the mechanism of the jintiange capsule for the treatment of OP. Methods Main ingredients of the jintiange capsule, drug targets, and potential disease targets for OP were obtained from public databases. Molecular biological processes and signaling pathways were determined via bioinformatic analysis, containing protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the disease-drug-ingredient-targets-pathways networks were constructed using Cytoscape. According to CytoNCA, core targets were acquired. Finally, the present study conducted molecular docking for better testing the abovementioned results. Results In the current work, we found that 4 main ingredients of the jintiange capsule, 33 drug targets, 4745 potential disease targets for OP, and 12 overlapping targets were identified. PPI network containing 12 nodes and 25 edges proved that there existed a complex relationship. As revealed by GO functional annotation, the intersected targets were mostly associated with BP, CC, and MF. The targets were enriched to 368 items in BP, 27 items in CC, and 42 items in MF. They mainly included calcium ion homeostasis, calcium channel complex, and calcium channel regulator activity. According to KEGG pathway analysis, the intersected targets were mostly associated with Rap 1, cGMP-PKG, Ras, cAMP, calcium pathways, and so on. Based on the analysis with CytoNCA, we acquired 4 core targets, respectively—CALR, SPARC, CALM1, and CALM2. Besides, 2 core targets, CALR and CALM1, were selected for molecular docking experiments. Molecular docking revealed that the main ingredient, calcium phosphate, had good binding with the CALR protein and CALM1 protein. Conclusion To conclude, the main ingredient of the jintiange capsule, particularly calcium phosphate, may interact with 2 targets, CALR and CALM1, and regulate multiple signaling pathways to treat OP. Additionally, this also benefits us in further understanding the mechanism of the jintiange capsule for treating OP.
Collapse
|
27
|
Kojima T, Wasano K, Takahashi S, Homma K. Cell death-inducing cytotoxicity in truncated KCNQ4 variants associated with DFNA2 hearing loss. Dis Model Mech 2021; 14:272416. [PMID: 34622280 PMCID: PMC8628632 DOI: 10.1242/dmm.049015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/22/2021] [Indexed: 01/30/2023] Open
Abstract
KCNQ4 encodes the homotetrameric voltage-dependent potassium ion channel Kv7.4, and is the causative gene for autosomal dominant nonsyndromic sensorineural hearing loss, DFNA2. Dominant-negative inhibition accounts for the observed dominant inheritance of many DFNA2-associated KCNQ4 variants. In addition, haploinsufficiency has been presumed as the pathological mechanism for truncated Kv7.4 variants lacking the C-terminal tetramerization region, as they are unlikely to exert a dominant-negative inhibitory effect. Such truncated Kv7.4 variants should result in relatively mild hearing loss when heterozygous; however, this is not always the case. In this study, we characterized Kv7.4Q71fs (c.211delC), Kv7.4W242X (c.725G>A) and Kv7.4A349fs (c.1044_1051del8) in heterologous expression systems and found that expression of these truncated Kv7.4 variants induced cell death. We also found similar cell death-inducing cytotoxic effects in truncated Kv7.1 (KCNQ1) variants, suggesting that the generality of our findings could account for the dominant inheritance of many, if not most, truncated Kv7 variants. Moreover, we found that the application of autophagy inducers can ameliorate the cytotoxicity, providing a novel insight for the development of alternative therapeutic strategies for Kv7.4 variants. Summary: Expression of truncated KCNQ4 variants lacking the C-terminal tetramerization domain results in cell-death inducing cytotoxicity, providing novel insight into the development of alternative therapeutic strategies for DFNA2 hearing loss.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichiro Wasano
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
28
|
Luu DD, Owens AM, Mebrat MD, Van Horn WD. A molecular perspective on identifying TRPV1 thermosensitive regions and disentangling polymodal activation. Temperature (Austin) 2021; 10:67-101. [PMID: 37187836 PMCID: PMC10177694 DOI: 10.1080/23328940.2021.1983354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
TRPV1 is a polymodal receptor ion channel that is best known to function as a molecular thermometer. It is activated in diverse ways, including by heat, protons (low pH), and vanilloid compounds, such as capsaicin. In this review, we summarize molecular studies of TRPV1 thermosensing, focusing on the cross-talk between heat and other activation modes. Additional insights from TRPV1 isoforms and non-rodent/non-human TRPV1 ortholog studies are also discussed in this context. While the molecular mechanism of heat activation is still emerging, it is clear that TRPV1 thermosensing is modulated allosterically, i.e., at a distance, with contributions from many distinct regions of the channel. Similarly, current studies identify cross-talk between heat and other TRPV1 activation modes, such as protons and capsaicin, and that these modes can generally be selectively disentangled. In aggregate, this suggests that future TRPV1 molecular studies should define allosteric pathways and provide mechanistic insight, thereby enabling mode-selective manipulation of the polymodal receptor. These advances are anticipated to have significant implications in both basic and applied biomedical sciences.
Collapse
Affiliation(s)
- Dustin D. Luu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Aerial M. Owens
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Mubark D. Mebrat
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Wade D. Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| |
Collapse
|
29
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
30
|
Ledford HA, Park S, Muir D, Woltz RL, Ren L, Nguyen PT, Sirish P, Wang W, Sihn CR, George AL, Knollmann BC, Yamoah EN, Yarov-Yarovoy V, Zhang XD, Chiamvimonvat N. Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. J Gen Physiol 2021; 152:211546. [PMID: 33211795 PMCID: PMC7681919 DOI: 10.1085/jgp.202012667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca2+-dependent proteins and ion channels. Mutations in CaM cause life-threatening cardiac arrhythmias. Among the known CaM targets, small-conductance Ca2+-activated K+ (SK) channels are unique, since they are gated solely by beat-to-beat changes in intracellular Ca2+. However, the molecular mechanisms of how CaM mutations may affect the function of SK channels remain incompletely understood. To address the structural and functional effects of these mutations, we introduced prototypical human CaM mutations in human induced pluripotent stem cell–derived cardiomyocyte-like cells (hiPSC-CMs). Using structural modeling and molecular dynamics simulation, we demonstrate that human calmodulinopathy-associated CaM mutations disrupt cardiac SK channel function via distinct mechanisms. CaMD96V and CaMD130G mutants reduce SK currents through a dominant-negative fashion. By contrast, specific mutations replacing phenylalanine with leucine result in conformational changes that affect helix packing in the C-lobe, which disengage the interactions between apo-CaM and the CaM-binding domain of SK channels. Distinct mutant CaMs may result in a significant reduction in the activation of the SK channels, leading to a decrease in the key Ca2+-dependent repolarization currents these channels mediate. The findings in this study may be generalizable to other interactions of mutant CaMs with Ca2+-dependent proteins within cardiac myocytes.
Collapse
Affiliation(s)
- Hannah A Ledford
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Duncan Muir
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Ryan L Woltz
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Lu Ren
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Phuong T Nguyen
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Wenying Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Choong-Ryoul Sihn
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| |
Collapse
|
31
|
SNTA1 altered reactive oxygen species production is associated with J wave syndromes. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Naffaa MM, Al-Ewaidat OA. Ligand modulation of KCNQ-encoded (K V7) potassium channels in the heart and nervous system. Eur J Pharmacol 2021; 906:174278. [PMID: 34174270 DOI: 10.1016/j.ejphar.2021.174278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
KCNQ-encoded (KV7) potassium channels are diversely distributed in the human tissues, associated with many physiological processes and pathophysiological conditions. These channels are increasingly used as drug targets for treating diseases. More selective and potent molecules on various types of the KV7 channels are desirable for appropriate therapies. The recent knowledge of the structure and function of human KCNQ-encoded channels makes it more feasible to achieve these goals. This review discusses the role and mechanism of action of many molecules in modulating the function of the KCNQ-encoded potassium channels in the heart and nervous system. The effects of these compounds on KV7 channels help to understand their involvement in many diseases, and to search for more selective and potent ligands to be used in the treatment of many disorders such as various types of cardiac arrhythmias, epilepsy, and pain.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Ola A Al-Ewaidat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
33
|
Urrutia J, Aguado A, Gomis-Perez C, Muguruza-Montero A, Ballesteros OR, Zhang J, Nuñez E, Malo C, Chung HJ, Leonardo A, Bergara A, Villarroel A. An epilepsy-causing mutation leads to co-translational misfolding of the Kv7.2 channel. BMC Biol 2021; 19:109. [PMID: 34020651 PMCID: PMC8138981 DOI: 10.1186/s12915-021-01040-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function. Results We report that the epilepsy W344R mutation within the IQ motif of CRD decreases channel function, but contrary to other mutations at this site, it does not impair the interaction with Calmodulin (CaM) in vitro, as monitored by multiple in vitro binding assays. We find negligible impact of the mutation on the structure of the complex by molecular dynamic computations. In silico studies revealed two orientations of the side chain, which are differentially populated by WT and W344R variants. Binding to CaM is impaired when the mutated protein is produced in cellulo but not in vitro, suggesting that this mutation impedes proper folding during translation within the cell by forcing the nascent chain to follow a folding route that leads to a non-native configuration, and thereby generating non-functional ion channels that fail to traffic to proper neuronal compartments. Conclusions Our data suggest that the key pathogenic mechanism of Kv7.2 W344R mutation involves the failure to adopt a configuration that can be recognized by CaM in vivo but not in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01040-1.
Collapse
Affiliation(s)
- Janire Urrutia
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain.,Present address: Department of Physiology, Faculty of Medicine and Nursery, UPV/EHU, 48940, Leioa, Spain
| | | | - Carolina Gomis-Perez
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain.,Present address: Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eider Nuñez
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain
| | | | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aritz Leonardo
- Departamento de Física Aplicada II, Universidad del País Vasco, UPV/EHU, 48940, Leioa, Spain.,Donostia International Physics Center, 20018, Donostia, Spain
| | - Aitor Bergara
- Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018, Donostia, Spain.,Donostia International Physics Center, 20018, Donostia, Spain.,Departmento de Materia Condensada, Universidad del País Vasco, UPV/EHU, 48940, Leioa, Spain
| | | |
Collapse
|
34
|
González-Garrido A, Domínguez-Pérez M, Jacobo-Albavera L, López-Ramírez O, Guevara-Chávez JG, Zepeda-García O, Iturralde P, Carnevale A, Villarreal-Molina T. Compound Heterozygous KCNQ1 Mutations Causing Recessive Romano-Ward Syndrome: Functional Characterization by Mutant Co-expression. Front Cardiovasc Med 2021; 8:625449. [PMID: 33693037 PMCID: PMC7937651 DOI: 10.3389/fcvm.2021.625449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Next Generation Sequencing has identified many KCNQ1 genetic variants associated with type 1 long QT or Romano-Ward syndrome, most frequently inherited in an autosomal dominant fashion, although recessive forms have been reported. Particularly in the case of missense variants, functional studies of mutants are of aid to establish variant pathogenicity and to understand the mechanistic basis of disease. Two compound heterozygous KCNQ1 mutations (p.A300T and p.P535T) were previously found in a child who suffered sudden death. To provide further insight into the clinical significance and basis for pathogenicity of these variants, different combinations of wildtype, A300T and P535T alleles were co-expressed with the accessory β-subunit minK in HEK293 cells, to analyze colocalization with the plasma membrane and some biophysical phenotypes of homo and heterotetrameric channels using the patch-clamp technique. A300T homotetrameric channels showed left-shifted activation V1/2 as previously observed in Xenopus oocytes, decreased maximum conductance density, slow rise-time300ms, and a characteristic use-dependent response. A300T slow rise-time300ms and use-dependent response behaved as dominant biophysical traits for all allele combinations. The P535T variant significantly decreased maximum conductance density and Kv7.1-minK-plasma membrane colocalization. P535T/A300T heterotetrameric channels showed decreased colocalization with plasma membrane, slow rise-time300ms and the A300T characteristic use-dependent response. While A300T left shifted activation voltage dependence behaved as a recessive trait when co-expressed with WT alleles, it was dominant when co-expressed with P535T alleles. Conclusions: The combination of P535T/A300T channel biophysical properties is compatible with recessive Romano Ward syndrome. Further analysis of other biophysical traits may identify other mechanisms involved in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Cátedras CONACyT, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Omar López-Ramírez
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
| | - José Guadalupe Guevara-Chávez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Oscar Zepeda-García
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Pedro Iturralde
- Departamento de Electrofisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico, Mexico
| | - Alessandra Carnevale
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico, Mexico
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
35
|
Zhuang W, Yan Z. The S2-S3 Loop of Kv7.4 Channels Is Essential for Calmodulin Regulation of Channel Activation. Front Physiol 2021; 11:604134. [PMID: 33551832 PMCID: PMC7854705 DOI: 10.3389/fphys.2020.604134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Kv7.4 (KCNQ4) voltage-gated potassium channels control excitability in the inner ear and the central auditory pathway. Mutations in Kv7.4 channels result in inherited progressive deafness in humans. Calmodulin (CaM) is crucial for regulating Kv7 channels, but how CaM affects Kv7 activity has remained unclear. Here, based on electrophysiological recordings, we report that the third EF hand (EF3) of CaM controls the calcium-dependent regulation of Kv7.4 activation and that the S2–S3 loop of Kv7.4 is essential for the regulation mediated by CaM. Overexpression of the mutant CaM1234, which loses the calcium binding ability of all four EF hands, facilitates Kv7.4 activation by accelerating activation kinetics and shifting the voltage dependence of activation leftwards. The single mutant CaM3, which loses the calcium binding ability of the EF3, phenocopies facilitating effects of CaM1234 on Kv7.4 activation. Kv7.4 channels co-expressed with wild-type (WT) CaM show inhibited activation when intracellular calcium levels increase, while Kv7.4 channels co-expressed with CaM1234 or CaM3 are insensitive to calcium. Mutations C156A, C157A, C158V, R159, and R161A, which are located within the Kv7.4 S2–S3 loop, dramatically facilitate activation of Kv7.4 channels co-expressed with WT CaM but have no effect on activation of Kv7.4 channels co-expressed with CaM3, indicating that these five mutations decrease the inhibitory effect of Ca2+/CaM. The double mutation C156A/R159A decreases Ca2+/CaM binding and completely abolishes CaM-mediated calcium-dependent regulation of Kv7.4 activation. Taken together, our results provide mechanistic insights into CaM regulation of Kv7.4 activation and highlight the crucial role of the Kv7.4 S2–S3 loop in CaM regulation.
Collapse
Affiliation(s)
- Wenhui Zhuang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhiqiang Yan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.,Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen, China
| |
Collapse
|
36
|
Abstract
Kv7.1-Kv7.5 (KCNQ1-5) K+ channels are voltage-gated K+ channels with major roles in neurons, muscle cells and epithelia where they underlie physiologically important K+ currents, such as neuronal M current and cardiac IKs. Specific biophysical properties of Kv7 channels make them particularly well placed to control the activity of excitable cells. Indeed, these channels often work as 'excitability breaks' and are targeted by various hormones and modulators to regulate cellular activity outputs. Genetic deficiencies in all five KCNQ genes result in human excitability disorders, including epilepsy, arrhythmias, deafness and some others. Not surprisingly, this channel family attracts considerable attention as potential drug targets. Here we will review biophysical properties and tissue expression profile of Kv7 channels, discuss recent advances in the understanding of their structure as well as their role in various neurological, cardiovascular and other diseases and pathologies. We will also consider a scope for therapeutic targeting of Kv7 channels for treatment of the above health conditions.
Collapse
|
37
|
Lipinsky M, Tobelaim WS, Peretz A, Simhaev L, Yeheskel A, Yakubovich D, Lebel G, Paas Y, Hirsch JA, Attali B. A unique mechanism of inactivation gating of the Kv channel family member Kv7.1 and its modulation by PIP2 and calmodulin. SCIENCE ADVANCES 2020; 6:eabd6922. [PMID: 33355140 PMCID: PMC11206195 DOI: 10.1126/sciadv.abd6922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Inactivation of voltage-gated K+ (Kv) channels mostly occurs by fast N-type or/and slow C-type mechanisms. Here, we characterized a unique mechanism of inactivation gating comprising two inactivation states in a member of the Kv channel superfamily, Kv7.1. Removal of external Ca2+ in wild-type Kv7.1 channels produced a large, voltage-dependent inactivation, which differed from N- or C-type mechanisms. Glu295 and Asp317 located, respectively, in the turret and pore entrance are involved in Ca2+ coordination, allowing Asp317 to form H-bonding with the pore helix Trp304, which stabilizes the selectivity filter and prevents inactivation. Phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+-calmodulin prevented Kv7.1 inactivation triggered by Ca2+-free external solutions, where Ser182 at the S2-S3 linker relays the calmodulin signal from its inner boundary to the external pore to allow proper channel conduction. Thus, we revealed a unique mechanism of inactivation gating in Kv7.1, exquisitely controlled by external Ca2+ and allosterically coupled by internal PIP2 and Ca2+-calmodulin.
Collapse
Affiliation(s)
- Maya Lipinsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - William Sam Tobelaim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luba Simhaev
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Yeheskel
- The Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Lebel
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Paas
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
38
|
Kang PW, Westerlund AM, Shi J, White KM, Dou AK, Cui AH, Silva JR, Delemotte L, Cui J. Calmodulin acts as a state-dependent switch to control a cardiac potassium channel opening. SCIENCE ADVANCES 2020; 6:6/50/eabd6798. [PMID: 33310856 PMCID: PMC7732179 DOI: 10.1126/sciadv.abd6798] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/27/2020] [Indexed: 05/09/2023]
Abstract
Calmodulin (CaM) and phosphatidylinositol 4,5-bisphosphate (PIP2) are potent regulators of the voltage-gated potassium channel KCNQ1 (KV7.1), which conducts the cardiac I Ks current. Although cryo-electron microscopy structures revealed intricate interactions between the KCNQ1 voltage-sensing domain (VSD), CaM, and PIP2, the functional consequences of these interactions remain unknown. Here, we show that CaM-VSD interactions act as a state-dependent switch to control KCNQ1 pore opening. Combined electrophysiology and molecular dynamics network analysis suggest that VSD transition into the fully activated state allows PIP2 to compete with CaM for binding to VSD. This leads to conformational changes that alter VSD-pore coupling to stabilize open states. We identify a motif in the KCNQ1 cytosolic domain, which works downstream of CaM-VSD interactions to facilitate the conformational change. Our findings suggest a gating mechanism that integrates PIP2 and CaM in KCNQ1 voltage-dependent activation, yielding insights into how KCNQ1 gains the phenotypes critical for its physiological function.
Collapse
Affiliation(s)
- Po Wei Kang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Annie M Westerlund
- Department of Applied Physics, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Kelli McFarland White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Alex K Dou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Amy H Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Lucie Delemotte
- Department of Applied Physics, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
39
|
Tran B, Ji ZG, Xu M, Tsuchida TN, Cooper EC. Two KCNQ2 Encephalopathy Variants in the Calmodulin-Binding Helix A Exhibit Dominant-Negative Effects and Altered PIP 2 Interaction. Front Physiol 2020; 11:1144. [PMID: 33041849 PMCID: PMC7518097 DOI: 10.3389/fphys.2020.571813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Heterozygous missense variants in KCNQ2, which encodes the potassium channel subunit Kv7.2, are among the most common genetic causes of severe neonatal-onset epileptic encephalopathy. Because about 20% of known severe Kv7.2 missense changes lie within the intracellular C-terminal region, improving understanding of the underlying pathogenic mechanisms is important. We analyzed the basis for the severe phenotypes of Kv7.2 A337T and A337G, variants in the C-terminal’s calmodulin (CaM)-binding Helix A. When expressed heterologously in mammalian cells, alone or in combination with wild type Kv7.2 or with wild type Kv7.2 and Kv7.3, both variants strongly suppressed channel currents. A337T channels expressed alone exhibited significantly reduced protein half-life and surface trafficking and co-immunoprecipitated less CaM. For both variants, increasing cellular phosphatidylinositol 4,5-bisphosphate (PIP2) by overexpression of PI(4)P5-kinase restored current densities. For both variants, the fraction of current suppressed by activation of M1 muscarinic receptors with 10 μM oxotremorine methiodide, which depletes PIP2, was less than for controls. During voltage-sensitive phosphatase-induced transient PIP2 depletion and resynthesize, potassium current inhibition and recovery kinetics were both markedly slowed. These results suggest that these variants may reduce currents by a mechanism not previously described: slowing of PIP2 migration between the bulk membrane and binding sites mediating channel electromechanical coupling. A novel Kv7.2/3-selective opener, SF0034, rescued current amplitudes. Our findings show that these two Helix A variants suppress channel current density strongly, consistent with their severe heterozygous phenotypes, implicate impairment of CaM and PIP2 regulation in KCNQ2 encephalopathy pathogenesis, and highlight the potential usefulness of selective Kv7 openers for this distinctive pathogenic mechanism and patient subgroup.
Collapse
Affiliation(s)
- Baouyen Tran
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Zhi-Gang Ji
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Mingxuan Xu
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Tammy N Tsuchida
- Departments of Pediatrics and Neurology, Children's National Medical Center, Washington, DC, United States
| | - Edward C Cooper
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
40
|
Wang Y, Eldstrom J, Fedida D. Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes. Front Physiol 2020; 11:504. [PMID: 32581825 PMCID: PMC7287213 DOI: 10.3389/fphys.2020.00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
The IKs channel complex is formed by the co-assembly of Kv7.1 (KCNQ1), a voltage-gated potassium channel, with its β-subunit, KCNE1 and the association of numerous accessory regulatory molecules such as PIP2, calmodulin, and yotiao. As a result, the IKs potassium current shows kinetic and regulatory flexibility, which not only allows IKs to fulfill physiological roles as disparate as cardiac repolarization and the maintenance of endolymph K+ homeostasis, but also to cause significant disease when it malfunctions. Here, we review new areas of understanding in the assembly, kinetics of activation and inactivation, voltage-sensor pore coupling, unitary events and regulation of this important ion channel complex, all of which have been given further impetus by the recent solution of cryo-EM structural representations of KCNQ1 alone and KCNQ1+KCNE3. Recently, the stoichiometric ratio of KCNE1 to KCNQ1 subunits has been confirmed to be variable up to a ratio of 4:4, rather than fixed at 2:4, and we will review the results and new methodologies that support this conclusion. Significant advances have been made in understanding differences between KCNQ1 and IKs gating using voltage clamp fluorimetry and mutational analysis to illuminate voltage sensor activation and inactivation, and the relationship between voltage sensor translation and pore domain opening. We now understand that the KCNQ1 pore can open with different permeabilities and conductance when the voltage sensor is in partially or fully activated positions, and the ability to make robust single channel recordings from IKs channels has also revealed the complicated pore subconductance architecture during these opening steps, during inactivation, and regulation by 1−4 associated KCNE1 subunits. Experiments placing mutations into individual voltage sensors to drastically change voltage dependence or prevent their movement altogether have demonstrated that the activation of KCNQ1 alone and IKs can best be explained using allosteric models of channel gating. Finally, we discuss how the intrinsic gating properties of KCNQ1 and IKs are highly modulated through the impact of intracellular signaling molecules and co-factors such as PIP2, protein kinase A, calmodulin and ATP, all of which modulate IKs current kinetics and contribute to diverse IKs channel complex function.
Collapse
Affiliation(s)
- Yundi Wang
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Brewer KR, Kuenze G, Vanoye CG, George AL, Meiler J, Sanders CR. Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome. Front Pharmacol 2020; 11:550. [PMID: 32431610 PMCID: PMC7212895 DOI: 10.3389/fphar.2020.00550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The cardiac action potential is critical to the production of a synchronized heartbeat. This electrical impulse is governed by the intricate activity of cardiac ion channels, among them the cardiac voltage-gated potassium (Kv) channels KCNQ1 and hERG as well as the voltage-gated sodium (Nav) channel encoded by SCN5A. Each channel performs a highly distinct function, despite sharing a common topology and structural components. These three channels are also the primary proteins mutated in congenital long QT syndrome (LQTS), a genetic condition that predisposes to cardiac arrhythmia and sudden cardiac death due to impaired repolarization of the action potential and has a particular proclivity for reentrant ventricular arrhythmias. Recent cryo-electron microscopy structures of human KCNQ1 and hERG, along with the rat homolog of SCN5A and other mammalian sodium channels, provide atomic-level insight into the structure and function of these proteins that advance our understanding of their distinct functions in the cardiac action potential, as well as the molecular basis of LQTS. In this review, the gating, regulation, LQTS mechanisms, and pharmacological properties of KCNQ1, hERG, and SCN5A are discussed in light of these recent structural findings.
Collapse
Affiliation(s)
- Kathryn R. Brewer
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Carlos G. Vanoye
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
42
|
Dürvanger Z, Harmat V. Structural Diversity in Calmodulin - Peptide Interactions. Curr Protein Pept Sci 2020; 20:1102-1111. [PMID: 31553290 DOI: 10.2174/1389203720666190925101937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/13/2019] [Accepted: 04/12/2019] [Indexed: 01/17/2023]
Abstract
Calmodulin (CaM) is a highly conserved eukaryotic Ca2+ sensor protein that is able to bind a large variety of target sequences without a defined consensus sequence. The recognition of this diverse target set allows CaM to take part in the regulation of several vital cell functions. To fully understand the structural basis of the regulation functions of CaM, the investigation of complexes of CaM and its targets is essential. In this minireview we give an outline of the different types of CaM - peptide complexes with 3D structure determined, also providing an overview of recently determined structures. We discuss factors defining the orientations of peptides within the complexes, as well as roles of anchoring residues. The emphasis is on complexes where multiple binding modes were found.
Collapse
Affiliation(s)
- Zsolt Dürvanger
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Protein Modelling Research Group, Budapest, Hungary
| |
Collapse
|
43
|
Núñez E, Muguruza-Montero A, Villarroel A. Atomistic Insights of Calmodulin Gating of Complete Ion Channels. Int J Mol Sci 2020; 21:ijms21041285. [PMID: 32075037 PMCID: PMC7072864 DOI: 10.3390/ijms21041285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium is essential for many physiological processes, from neuronal signaling and exocytosis to muscle contraction and bone formation. Ca2+ signaling from the extracellular medium depends both on membrane potential, especially controlled by ion channels selective to K+, and direct permeation of this cation through specialized channels. Calmodulin (CaM), through direct binding to these proteins, participates in setting the membrane potential and the overall permeability to Ca2+. Over the past years many structures of complete channels in complex with CaM at near atomic resolution have been resolved. In combination with mutagenesis-function, structural information of individual domains and functional studies, different mechanisms employed by CaM to control channel gating are starting to be understood at atomic detail. Here, new insights regarding four types of tetrameric channels with six transmembrane (6TM) architecture, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1–5, and its regulation by CaM are described structurally. Different CaM regions, N-lobe, C-lobe and EF3/EF4-linker play prominent signaling roles in different complexes, emerging the realization of crucial non-canonical interactions between CaM and its target that are only evidenced in the full-channel structure. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effect through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar alpha-helices, they do so using different docking strategies. We discuss how this allows selective action of drugs with great therapeutic potential.
Collapse
|
44
|
Sun J, MacKinnon R. Structural Basis of Human KCNQ1 Modulation and Gating. Cell 2019; 180:340-347.e9. [PMID: 31883792 DOI: 10.1016/j.cell.2019.12.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/25/2019] [Accepted: 12/04/2019] [Indexed: 01/04/2023]
Abstract
KCNQ1, also known as Kv7.1, is a voltage-dependent K+ channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue-specific manner through co-assembly with beta subunits KCNE1-5. In non-excitable cells, KCNQ1 forms a complex with KCNE3, which suppresses channel closure at negative membrane voltages that otherwise would close it. Pore opening is regulated by the signaling lipid PIP2. Using cryoelectron microscopy (cryo-EM), we show that KCNE3 tucks its single-membrane-spanning helix against KCNQ1, at a location that appears to lock the voltage sensor in its depolarized conformation. Without PIP2, the pore remains closed. Upon addition, PIP2 occupies a site on KCNQ1 within the inner membrane leaflet, which triggers a large conformational change that leads to dilation of the pore's gate. It is likely that this mechanism of PIP2 activation is conserved among Kv7 channels.
Collapse
Affiliation(s)
- Ji Sun
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
45
|
Chen J, Liu Z, Creagh J, Zheng R, McDonald TV. Physical and functional interaction sites in cytoplasmic domains of KCNQ1 and KCNE1 channel subunits. Am J Physiol Heart Circ Physiol 2019; 318:H212-H222. [PMID: 31834838 DOI: 10.1152/ajpheart.00459.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cardiac potassium IKs current is carried by a channel complex formed from α-subunits encoded by KCNQ1 and β-subunits encoded by KCNE1. Deleterious mutations in either gene are associated with hereditary long QT syndrome. Interactions between the transmembrane domains of the α- and β-subunits determine the activation kinetics of IKs. A physical and functional interaction between COOH termini of the proteins has also been identified that impacts deactivation rate and voltage dependence of activation. We sought to explore the specific physical interactions between the COOH termini of the subunits that confer such control. Hydrogen/deuterium exchange coupled to mass spectrometry narrowed down the region of interaction to KCNQ1 residues 352-374 and KCNE1 residues 70-81, and provided evidence of secondary structure within these segments. Key mutations of residues in these regions tended to shift voltage dependence of activation toward more depolarizing voltages. Double-mutant cycle analysis then revealed energetic coupling between KCNQ1-I368 and KCNE1-D76 during channel activation. Our results suggest that the proximal COOH-terminal regions of KCNQ1 and KCNE1 participate in a physical and functional interaction during channel opening that is sensitive to perturbation and may explain the clustering of long QT mutations in the region.NEW & NOTEWORTHY Interacting ion channel subunits KCNQ1 and KCNE1 have received intense investigation due to their critical importance to human cardiovascular health. This work uses physical (hydrogen/deuterium exchange with mass spectrometry) and functional (double-mutant cycle analyses) studies to elucidate precise and important areas of interaction between the two proteins in an area that has eluded structural definition of the complex. It highlights the importance of pathogenic mutations in these regions.
Collapse
Affiliation(s)
- Jerri Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York.,Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - John Creagh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Renjian Zheng
- Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | - Thomas V McDonald
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York.,Department of Cardiovascular Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
46
|
The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183148. [PMID: 31825788 DOI: 10.1016/j.bbamem.2019.183148] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ion channels play crucial roles in cellular biology, physiology, and communication including sensory perception. Voltage-gated potassium (Kv) channels execute their function by sensor activation, pore-coupling, and pore opening leading to K+ conductance. SCOPE OF REVIEW This review focuses on a voltage-gated K+ ion channel KCNQ1 (Kv 7.1). Firstly, discussing its positioning in the human ion chanome, and the role of KCNQ1 in the multitude of cellular processes. Next, we discuss the overall channel architecture and current structural insights on KCNQ1. Finally, the gating mechanism involving members of the KCNE family and its interaction with non-KCNE partners. MAJOR CONCLUSIONS KCNQ1 executes its important physiological functions via interacting with KCNE1 and non-KCNE1 proteins/molecules: calmodulin, PIP2, PKA. Although, KCNQ1 has been studied in great detail, several aspects of the channel structure and function still remain unexplored. This review emphasizes the structural and biophysical studies of KCNQ1, its interaction with KCNE1 and non-KCNE1 proteins and focuses on several seminal findings showing the role of VSD and the pore domain in the channel activation and gating properties. GENERAL SIGNIFICANCE KCNQ1 mutations can result in channel defects and lead to several diseases including atrial fibrillation and long QT syndrome. Therefore, a thorough structure-function understanding of this channel complex is essential to understand its role in both normal and disease biology. Moreover, unraveling the molecular mechanisms underlying the regulation of this channel complex will help to find therapeutic strategies for several diseases.
Collapse
|
47
|
Kuenze G, Duran AM, Woods H, Brewer KR, McDonald EF, Vanoye CG, George AL, Sanders CR, Meiler J. Upgraded molecular models of the human KCNQ1 potassium channel. PLoS One 2019; 14:e0220415. [PMID: 31518351 PMCID: PMC6743773 DOI: 10.1371/journal.pone.0220415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
Abstract
The voltage-gated potassium channel KCNQ1 (KV7.1) assembles with the KCNE1 accessory protein to generate the slow delayed rectifier current, IKS, which is critical for membrane repolarization as part of the cardiac action potential. Loss-of-function (LOF) mutations in KCNQ1 are the most common cause of congenital long QT syndrome (LQTS), type 1 LQTS, an inherited genetic predisposition to cardiac arrhythmia and sudden cardiac death. A detailed structural understanding of KCNQ1 is needed to elucidate the molecular basis for KCNQ1 LOF in disease and to enable structure-guided design of new anti-arrhythmic drugs. In this work, advanced structural models of human KCNQ1 in the resting/closed and activated/open states were developed by Rosetta homology modeling guided by newly available experimentally-based templates: X. leavis KCNQ1 and various resting voltage sensor structures. Using molecular dynamics (MD) simulations, the capacity of the models to describe experimentally established channel properties including state-dependent voltage sensor gating charge interactions and pore conformations, PIP2 binding sites, and voltage sensor–pore domain interactions were validated. Rosetta energy calculations were applied to assess the utility of each model in interpreting mutation-evoked KCNQ1 dysfunction by predicting the change in protein thermodynamic stability for 50 experimentally characterized KCNQ1 variants with mutations located in the voltage-sensing domain. Energetic destabilization was successfully predicted for folding-defective KCNQ1 LOF mutants whereas wild type-like mutants exhibited no significant energetic frustrations, which supports growing evidence that mutation-induced protein destabilization is an especially common cause of KCNQ1 dysfunction. The new KCNQ1 Rosetta models provide helpful tools in the study of the structural basis for KCNQ1 function and can be used to generate hypotheses to explain KCNQ1 dysfunction.
Collapse
Affiliation(s)
- Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Amanda M. Duran
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Hope Woods
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kathryn R. Brewer
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Eli Fritz McDonald
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
48
|
Genetic intolerance analysis as a tool for protein science. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183058. [PMID: 31494120 DOI: 10.1016/j.bbamem.2019.183058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Recent advances in whole genome and exome sequencing have dramatically increased the database of human gene variations. There are now enough sequenced human exomes and genomes to begin to identify gene variations that are notable because they are NOT observed in sequenced human genomes, apparently because they are subject to "purifying selection", exemplifying genetic intolerance. Such "dysprocreative" gene variations are embryonic lethal or prevent reproduction through any one of a number of possible mechanisms. Here we review an emerging quantitative approach, "Missense Tolerance Ratio" (MTR) analysis, that is used to assess protein-encoding gene (cDNA) sequence intolerance to missense mutations based on analysis of the >100 K and growing number of currently available human genome and exome sequences. This approach is already useful for analyzing intolerance to mutations in cDNA segments with a resolution on the order of 90 bases. Moreover, as the number of sequenced genomes/exomes increases by orders of magnitude it may eventually be possible to assess mutational tolerance in a statistically robust manner at or near single site resolution. Here we focus on how cDNA intolerance analysis complements other bioinformatic methods to illuminate structure-folding-function relationships for the encoded proteins. A set of disease-linked membrane proteins is employed to provide examples.
Collapse
|
49
|
Meisel E, Tobelaim W, Dvir M, Haitin Y, Peretz A, Attali B. Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions. Channels (Austin) 2019; 12:89-99. [PMID: 29451064 PMCID: PMC5972808 DOI: 10.1080/19336950.2018.1441649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inactivation is an intrinsic property of numerous voltage-gated K+ (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.
Collapse
Affiliation(s)
- Eshcar Meisel
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - William Tobelaim
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - Meidan Dvir
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - Yoni Haitin
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - Asher Peretz
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| | - Bernard Attali
- a Department of Physiology & Pharmacology , the Sackler Faculty of Medicine and Sagol School of Neurosciences, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
50
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|