1
|
Son A, Kim W, Park J, Lee W, Lee Y, Choi S, Kim H. Utilizing Molecular Dynamics Simulations, Machine Learning, Cryo-EM, and NMR Spectroscopy to Predict and Validate Protein Dynamics. Int J Mol Sci 2024; 25:9725. [PMID: 39273672 PMCID: PMC11395565 DOI: 10.3390/ijms25179725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Protein dynamics play a crucial role in biological function, encompassing motions ranging from atomic vibrations to large-scale conformational changes. Recent advancements in experimental techniques, computational methods, and artificial intelligence have revolutionized our understanding of protein dynamics. Nuclear magnetic resonance spectroscopy provides atomic-resolution insights, while molecular dynamics simulations offer detailed trajectories of protein motions. Computational methods applied to X-ray crystallography and cryo-electron microscopy (cryo-EM) have enabled the exploration of protein dynamics, capturing conformational ensembles that were previously unattainable. The integration of machine learning, exemplified by AlphaFold2, has accelerated structure prediction and dynamics analysis. These approaches have revealed the importance of protein dynamics in allosteric regulation, enzyme catalysis, and intrinsically disordered proteins. The shift towards ensemble representations of protein structures and the application of single-molecule techniques have further enhanced our ability to capture the dynamic nature of proteins. Understanding protein dynamics is essential for elucidating biological mechanisms, designing drugs, and developing novel biocatalysts, marking a significant paradigm shift in structural biology and drug discovery.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yerim Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Seongyun Choi
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Bao J, Song X, Tian F, Shi H, Liang S, Wang S, Zeng M, Xue Y, Hong C, Xu Z. Biomass Separators as a "Lifesaver" for Safe and Long-Life Lithium Metal Batteries. Chemistry 2023; 29:e202302236. [PMID: 37705492 DOI: 10.1002/chem.202302236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
The growth of lithium dendrites and the shuttle of polysulfides in lithium metal batteries (LMBs) have hindered their development. In LMBs, the cathode and anode are separated by a separator, although this does not solve the battery's issues. The use of biomass materials is widespread for modifying the separator due to their porous structure and abundant functional groups. LMBs perform more electrochemically when lithium ions are deposited uniformly and polysulfide shuttling is reduced using biomass separators. In this review, we analyze the growth of lithium dendrite and the shuttle of polysulfide in LMBs, summarize the types of biomass separator materials and the mechanisms of action (providing mechanical barriers, promoting uniform deposition of metal ions, capturing polysulfides, shielding polysulfide). The prospect of developing new separator materials from the perspective of regulating ion transport and physical sieving efficiency as well as the application of advanced technologies such as synchrotron radiation to characterize the mechanism of action of biomass separators is also proposed.
Collapse
Affiliation(s)
- Jinxi Bao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xiaohui Song
- Tianjin Kinfa Advanced Materials Co., Ltd., Tianjin, 300000, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuaitong Liang
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Shuo Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Ming Zeng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chunxia Hong
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
3
|
Abstract
Protein Data Bank is the single worldwide archive of experimentally determined macromolecular structure data. Established in 1971 as the first open access data resource in biology, the PDB archive is managed by the worldwide Protein Data Bank (wwPDB) consortium which has four partners-the RCSB Protein Data Bank (RCSB PDB; rcsb.org), the Protein Data Bank Japan (PDBj; pdbj.org), the Protein Data Bank in Europe (PDBe; pdbe.org), and BioMagResBank (BMRB; www.bmrb.wisc.edu ). The PDB archive currently includes ~175,000 entries. The wwPDB has established a number of task forces and working groups that bring together experts form the community who provide recommendations on improving data standards and data validation for improving data quality and integrity. The wwPDB members continue to develop the joint deposition, biocuration, and validation system (OneDep) to improve data quality and accommodate new data from emerging techniques such as 3DEM. Each PDB entry contains coordinate model and associated metadata for all experimentally determined atomic structures, experimental data for the traditional structure determination techniques (X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy), validation reports, and additional information on quaternary structures. The wwPDB partners are committed to following the FAIR (Findability, Accessibility, Interoperability, and Reproducibility) principles and have implemented a DOI resolution mechanism that provides access to all the relevant files for a given PDB entry. On average, >250 new entries are added to the archive every week and made available by each wwPDB partner via FTP area. The wwPDB partner sites also develop data access and analysis tools and make these available via their websites. wwPDB continues to work with experts in the community to establish a federation of archives for archiving structures determined using integrative/hybrid method where multiple experimental techniques are used.
Collapse
Affiliation(s)
- Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jeffrey C Hoch
- BioMagResBank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - John L Markley
- BioMagResBank, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach. Methods Mol Biol 2020; 2112:219-240. [PMID: 32006288 DOI: 10.1007/978-1-0716-0270-6_15] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We describe a Bayesian/Maximum entropy (BME) procedure and software to construct a conformational ensemble of a biomolecular system by integrating molecular simulations and experimental data. First, an initial conformational ensemble is constructed using, for example, Molecular Dynamics or Monte Carlo simulations. Due to potential inaccuracies in the model and finite sampling effects, properties predicted from simulations may not agree with experimental data. In BME we use the experimental data to refine the simulation so that the new conformational ensemble has the following properties: (1) the calculated averages are close to the experimental values taking uncertainty into account and (2) it maximizes the relative Shannon entropy with respect to the original simulation ensemble. The output of this procedure is a set of optimized weights that can be used to calculate other properties and distributions of these. Here, we provide a practical guide on how to obtain and use such weights, how to choose adjustable parameters and discuss shortcomings of the method.
Collapse
|
5
|
Harnessing the Combined Power of SAXS and NMR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:171-180. [DOI: 10.1007/978-981-13-2200-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Borges JC, Seraphim TV, Dores-Silva PR, Barbosa LRS. A review of multi-domain and flexible molecular chaperones studies by small-angle X-ray scattering. Biophys Rev 2016; 8:107-120. [PMID: 28510050 PMCID: PMC5425780 DOI: 10.1007/s12551-016-0194-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
Intrinsic flexibility is closely related to protein function, and a plethora of important regulatory proteins have been found to be flexible, multi-domain or even intrinsically disordered. On the one hand, understanding such systems depends on how these proteins behave in solution. On the other, small-angle X-ray scattering (SAXS) is a technique that fulfills the requirements to study protein structure and dynamics relatively quickly with few experimental limitations. Molecular chaperones from Hsp70 and Hsp90 families are multi-domain proteins containing flexible and/or disordered regions that play central roles in cellular proteostasis. Here, we review the structure and function of these proteins by SAXS. Our general approach includes the use of SAXS data to determine size and shape parameters, as well as protein shape reconstruction and their validation by using accessory biophysical tools. Some remarkable examples are presented that exemplify the potential of the SAXS technique. Protein structure can be determined in solution even at limiting protein concentrations (for example, human mortalin, a mitochondrial Hsp70 chaperone). The protein organization, flexibility and function (for example, the J-protein co-chaperones), oligomeric status, domain organization, and flexibility (for the Hsp90 chaperone and the Hip and Hep1 co-chaperones) may also be determined. Lastly, the shape, structural conservation, and protein dynamics (for the Hsp90 chaperone and both p23 and Aha1 co-chaperones) may be studied by SAXS. We believe this review will enhance the application of the SAXS technique to the study of the molecular chaperones.
Collapse
Affiliation(s)
- Júlio C Borges
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| | - Thiago V Seraphim
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Paulo R Dores-Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | |
Collapse
|
7
|
Yabukarski F, Leyrat C, Martinez N, Communie G, Ivanov I, Ribeiro EA, Buisson M, Gerard FC, Bourhis JM, Jensen MR, Bernadó P, Blackledge M, Jamin M. Ensemble Structure of the Highly Flexible Complex Formed between Vesicular Stomatitis Virus Unassembled Nucleoprotein and its Phosphoprotein Chaperone. J Mol Biol 2016; 428:2671-94. [PMID: 27107640 DOI: 10.1016/j.jmb.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
Abstract
Nucleocapsid assembly is an essential process in the replication of the non-segmented, negative-sense RNA viruses (NNVs). Unassembled nucleoprotein (N(0)) is maintained in an RNA-free and monomeric form by its viral chaperone, the phosphoprotein (P), forming the N(0)-P complex. Our earlier work solved the structure of vesicular stomatitis virus complex formed between an N-terminally truncated N (NΔ21) and a peptide of P (P60) encompassing the N(0)-binding site, but how the full-length P interacts with N(0) remained unknown. Here, we combine several experimental biophysical methods including size exclusion chromatography with detection by light scattering and refractometry, small-angle X-ray and neutron scattering and nuclear magnetic resonance spectroscopy with molecular dynamics simulation and computational modeling to characterize the NΔ21(0)-PFL complex formed with dimeric full-length P. We show that for multi-molecular complexes, simultaneous multiple-curve fitting using small-angle neutron scattering data collected at varying contrast levels provides additional information and can help refine structural ensembles. We demonstrate that (a) vesicular stomatitis virus PFL conserves its high flexibility within the NΔ21(0)-PFL complex and interacts with NΔ21(0) only through its N-terminal extremity; (b) each protomer of P can chaperone one N(0) client protein, leading to the formation of complexes with stoichiometries 1N:P2 and 2N:P2; and (c) phosphorylation of residues Ser60, Thr62 and Ser64 provides no additional interactions with N(0) but creates a metal binding site in PNTR. A comparison with the structures of Nipah virus and Ebola virus N(0)-P core complex suggests a mechanism for the control of nucleocapsid assembly that is common to all NNVs.
Collapse
Affiliation(s)
- Filip Yabukarski
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France
| | - Cedric Leyrat
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France
| | - Nicolas Martinez
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France; Institut Laue Langevin, Grenoble, France
| | - Guillaume Communie
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France
| | - Ivan Ivanov
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France; Institut Laue Langevin, Grenoble, France
| | - Euripedes A Ribeiro
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France
| | - Marlyse Buisson
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France; Laboratoire de Virologie, Centre Hospitalo-Universitaire de Grenoble, Grenoble, France
| | - Francine C Gerard
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France
| | - Malene Ringkjøbing Jensen
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France
| | - Marc Jamin
- Institut de Biologie Structurale (IBS), CEA, CNRS, Université Grenoble Alpes, Grenoble 38044, France.
| |
Collapse
|