1
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
2
|
Xie J, Zhang Y, Li B, Xi W, Wang Y, Li L, Liu C, Shen L, Han B, Kong Y, Yao H, Zhang Z. Inhibition of OGFOD1 by FG4592 confers neuroprotection by activating unfolded protein response and autophagy after ischemic stroke. J Transl Med 2024; 22:248. [PMID: 38454480 PMCID: PMC10921652 DOI: 10.1186/s12967-024-04993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Acute ischemic stroke is a common neurological disease with a significant financial burden but lacks effective drugs. Hypoxia-inducible factor (HIF) and prolyl hydroxylases (PHDs) participate in the pathophysiological process of ischemia. However, whether FG4592, the first clinically approved PHDs inhibitor, can alleviate ischemic brain injury remains unclear. METHODS The infarct volumes and behaviour tests were first analyzed in mice after ischemic stroke with systemic administration of FG4592. The knockdown of HIF-1α and pretreatments of HIF-1/2α inhibitors were then used to verify whether the neuroprotection of FG4592 is HIF-dependent. The targets predicting and molecular docking methods were applied to find other targets of FG4592. Molecular, cell biological and gene knockdown methods were finally conducted to explore the potential neuroprotective mechanisms of FG4592. RESULTS We found that the systemic administration of FG4592 decreased infarct volume and improved neurological defects of mice after transient or permanent ischemia. Meanwhile, FG4592 also activated autophagy and inhibited apoptosis in peri-infarct tissue of mice brains. However, in vitro and in vivo results suggested that the neuroprotection of FG4592 was not classical HIF-dependent. 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) was found to be a novel target of FG4592 and regulated the Pro-62 hydroxylation in the small ribosomal protein s23 (Rps23) with the help of target predicting and molecular docking methods. Subsequently, the knockdown of OGFOD1 protected the cell against ischemia/reperfusion injury and activated unfolded protein response (UPR) and autophagy. Moreover, FG4592 was also found to activate UPR and autophagic flux in HIF-1α independent manner. Blocking UPR attenuated the neuroprotection, pro-autophagy effect and anti-apoptosis ability of FG4592. CONCLUSION This study demonstrated that FG4592 could be a candidate drug for treating ischemic stroke. The neuroprotection of FG4592 might be mediated by inhibiting alternative target OGFOD1, which activated the UPR and autophagy and inhibited apoptosis after ischemic injury. The inhibition of OGFOD1 is a novel therapy for ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bin Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Wen Xi
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yu Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lu Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Chenchen Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - HongHong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, Jiangsu, China.
- The Brain Cognition and Brain Disease Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
3
|
Perugino F, Pedroni L, Galaverna G, Dall'Asta C, Dellafiora L. Virtual display of targets: A new level to rise the current understanding of ochratoxin A toxicity from a molecular standpoint. Toxicology 2024; 503:153765. [PMID: 38432407 DOI: 10.1016/j.tox.2024.153765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Ochratoxin A (OTA) is a mycotoxin spread worldwide contaminating several food and feed commodities and rising concerns for humans and animals. OTA toxicity has been thoroughly assessed over the last 60 years revealing a variety of adverse effects, including nephrotoxicity, hepatotoxicity and possible carcinogenicity. However, the underpinning mechanisms of action have yet to be completely displayed and understood. In this framework, we applied a virtual pipeline based on molecular docking, dynamics and umbrella simulations to display new OTA potential targets. The results collected consistently identified OGFOD1, a key player in protein translation, as possibly inhibited by OTA and its 2'R diastereomer. This is consistent with the current knowledge of OTA's molecular toxicology and may fill some gaps from a mechanistic standpoint. This could pave the way for further dedicated analysis focusing their attention on the OTA-OGFOD1 interaction, expanding the current understanding of OTA toxicity at a molecular level.
Collapse
Affiliation(s)
- Florinda Perugino
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
4
|
Fujisaki T, Saito K, Kikuchi T, Kondo E. The prolyl hydroxylase OGFOD1 promotes cancer cell proliferation by regulating the expression of cell cycle regulators. FEBS Lett 2022; 597:1073-1085. [PMID: 36464654 DOI: 10.1002/1873-3468.14547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
OGFOD1, a prolyl-hydroxylase, has been reported to translocate from the nucleus to the cytoplasm in response to cellular stress. Here, we demonstrate that OGFOD1 regulates the transcription and post-transcriptional stabilization of cell cycle-related genes. OGFOD1 knockdown in lung cancer cells induced cell cycle arrest through the specific depletion of cyclin-dependent kinase (CDK) 1, CDK2 and cyclin B1 (CCNB1) mRNAs and the nuclear accumulation of p21Cip1 . Analysis of the mRNA dynamics in these cells revealed that CDK1 decreased in a time-dependent manner, reflecting post-transcriptional regulation by OGFOD1 and the RNA-binding protein HuR. In contrast, the depletion of CDK2 and CCNB1 resulted from decreased transcription mediated by OGFOD1. These results indicate that OGFOD1 is required to maintain the function of specific cell cycle regulators during cancer cell proliferation.
Collapse
Affiliation(s)
- Toshiya Fujisaki
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Japan.,Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Ken Saito
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Japan.,Division of Tumor Pathology, Near Infrared Photo-Immunotherapy Research Institute, Kansai Medical University, Osaka, Japan
| |
Collapse
|
5
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Rabe P, Walla CC, Goodyear NK, Welsh J, Southwart R, Clifton I, Linyard JDS, Tumber A, Claridge TDW, Myers WK, Schofield CJ. Spectroscopic studies reveal details of substrate-induced conformational changes distant from the active site in isopenicillin N synthase. J Biol Chem 2022; 298:102249. [PMID: 35835215 PMCID: PMC9403350 DOI: 10.1016/j.jbc.2022.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022] Open
Abstract
Isopenicillin N synthase (IPNS) catalyzes formation of the β-lactam and thiazolidine rings of isopenicillin N from its linear tripeptide l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) substrate in an iron- and dioxygen (O2)-dependent four-electron oxidation without precedent in current synthetic chemistry. Recent X-ray free-electron laser studies including time-resolved serial femtosecond crystallography show that binding of O2 to the IPNS–Fe(II)–ACV complex induces unexpected conformational changes in α-helices on the surface of IPNS, in particular in α3 and α10. However, how substrate binding leads to conformational changes away from the active site is unknown. Here, using detailed 19F NMR and electron paramagnetic resonance experiments with labeled IPNS variants, we investigated motions in α3 and α10 induced by binding of ferrous iron, ACV, and the O2 analog nitric oxide, using the less mobile α6 for comparison. 19F NMR studies were carried out on singly and doubly labeled α3, α6, and α10 variants at different temperatures. In addition, double electron–electron resonance electron paramagnetic resonance analysis was carried out on doubly spin-labeled variants. The combined spectroscopic and crystallographic results reveal that substantial conformational changes in regions of IPNS including α3 and α10 are induced by binding of ACV and nitric oxide. Since IPNS is a member of the structural superfamily of 2-oxoglutarate-dependent oxygenases and related enzymes, related conformational changes may be of general importance in nonheme oxygenase catalysis.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| | - Carla C Walla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Noelle K Goodyear
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jordan Welsh
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Rebecca Southwart
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ian Clifton
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - James D S Linyard
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tim D W Claridge
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - William K Myers
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
7
|
Liu X, Yuan Z, Su H, Hou X, Deng Z, Xu H, Guo B, Yin D, Sheng X, Rao Y. Molecular Basis of the Unusual Seven-Membered Methylenedioxy Bridge Formation Catalyzed by Fe(II)/α-KG-Dependent Oxygenase CTB9. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuanzhong Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences and National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P. R. China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Dejing Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences and National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
8
|
Harris M, Sun J, Keeran K, Aponte A, Singh K, Springer D, Gucek M, Pirooznia M, Cockman ME, Murphy E, Kennedy LM. Ogfod1 deletion increases cardiac beta-alanine levels and protects mice against ischemia-reperfusion injury. Cardiovasc Res 2021; 118:2847-2858. [PMID: 34668514 DOI: 10.1093/cvr/cvab323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/09/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Prolyl hydroxylation is a post-translational modification that regulates protein stability, turnover, and activity. The proteins that catalyze prolyl hydroxylation belong to the 2-oxoglutarate- and iron-dependent oxygenase family of proteins. 2-oxoglutarate- and iron-dependent oxygenase domain-containing protein 1 (Ogfod1), which hydroxylates a proline in ribosomal protein s23 is a newly-described member of this family. The aims of this study were to investigate roles for Ogfod1 in the heart, and in the heart's response to stress. METHODS AND RESULTS We isolated hearts from wild type (WT) and Ogfod1 knockout (KO) mice and performed quantitative proteomics using Tandem Mass Tag labelling coupled to Liquid Chromatography and tandem Mass Spectrometry (LC-MS/MS) to identify protein changes. Ingenuity Pathway Analysis identified "Urate Biosynthesis/Inosine 5'-phosphate Degradation" and "Purine Nucleotides Degradation II (Aerobic)" as the most significantly-enriched pathways. We performed metabolomics analysis and found that both purine and pyrimidine pathways were altered with the purine nucleotide inosine 5'-monophosphate (IMP) showing a 3.5-fold enrichment in KO hearts (P = 0.011) and the pyrimidine catabolism product beta-alanine showing a 1.7-fold enrichment in KO hearts (P = 0.014). As changes in these pathways have been shown to contribute to cardioprotection, we subjected isolated perfused hearts to ischemia and reperfusion (I/R). KO hearts showed a 41.4% decrease in infarct size and a 34% improvement in cardiac function compared to WT hearts. This protection was also evident in an in vivo I/R model. Additionally, our data show that treating isolated perfused WT hearts with carnosine, a metabolite of beta-alanine, improved protection in the context of I/R injury, whereas treating KO hearts with carnosine had no impact on recovery of function or infarct size. CONCLUSIONS Taken together, these data show that Ogfod1 deletion alters the myocardial proteome and metabolome to confer protection against I/R injury. TRANSLATIONAL PERSPECTIVE Heart disease is the leading cause of death in the US. In characterizing the cardiovascular effects of deleting the prolyl hydroxylase Ogfod1 and investigating its role in disease pathology, we found that deleting Ogfod1 protected hearts against ex vivo and in vivo I/R injury. Ogfod1-KO hearts showed significant metabolomic and proteomic changes that supported altered purine and pyrimidine nucleotide synthesis and turnover. Beta-alanine, a precursor of the anti-oxidant carnosine and a product of pyrimidine degradation, accumulated in KO hearts to help confer cardioprotection. Altogether, these data suggest a role for Ogfod1 downregulation as a therapeutic strategy for heart disease.
Collapse
Affiliation(s)
- Michael Harris
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Junhui Sun
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Karen Keeran
- Animal Surgery and Resources Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Angel Aponte
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Komudi Singh
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Danielle Springer
- Murine Phenotyping Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Marjan Gucek
- Proteomics Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Elizabeth Murphy
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Leslie M Kennedy
- Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Iron in Translation: From the Beginning to the End. Microorganisms 2021; 9:microorganisms9051058. [PMID: 34068342 PMCID: PMC8153317 DOI: 10.3390/microorganisms9051058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.
Collapse
|
10
|
Chowdhury R, Abboud MI, McAllister TE, Banerji B, Bhushan B, Sorensen JL, Kawamura A, Schofield CJ. Use of cyclic peptides to induce crystallization: case study with prolyl hydroxylase domain 2. Sci Rep 2020; 10:21964. [PMID: 33319810 PMCID: PMC7738489 DOI: 10.1038/s41598-020-76307-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Crystallization is the bottleneck in macromolecular crystallography; even when a protein crystallises, crystal packing often influences ligand-binding and protein-protein interaction interfaces, which are the key points of interest for functional and drug discovery studies. The human hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) readily crystallises as a homotrimer, but with a sterically blocked active site. We explored strategies aimed at altering PHD2 crystal packing by protein modification and molecules that bind at its active site and elsewhere. Following the observation that, despite weak inhibition/binding in solution, succinamic acid derivatives readily enable PHD2 crystallization, we explored methods to induce crystallization without active site binding. Cyclic peptides obtained via mRNA display bind PHD2 tightly away from the active site. They efficiently enable PHD2 crystallization in different forms, both with/without substrates, apparently by promoting oligomerization involving binding to the C-terminal region. Although our work involves a specific case study, together with those of others, the results suggest that mRNA display-derived cyclic peptides may be useful in challenging protein crystallization cases.
Collapse
Affiliation(s)
- Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Tom E McAllister
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Biswadip Banerji
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Bhaskar Bhushan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - John L Sorensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
11
|
Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. J Biol Chem 2020; 295:16545-16561. [PMID: 32934009 PMCID: PMC7864055 DOI: 10.1074/jbc.ra120.013998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.
Collapse
Affiliation(s)
- Tongri Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Adam P Hardy
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Elisabete Pires
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - James Wickens
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Christopher M West
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
12
|
Holt‐Martyn JP, Chowdhury R, Tumber A, Yeh T, Abboud MI, Lippl K, Lohans CT, Langley GW, Figg W, McDonough MA, Pugh CW, Ratcliffe PJ, Schofield CJ. Structure-Activity Relationship and Crystallographic Studies on 4-Hydroxypyrimidine HIF Prolyl Hydroxylase Domain Inhibitors. ChemMedChem 2020; 15:270-273. [PMID: 31751494 PMCID: PMC7496690 DOI: 10.1002/cmdc.201900557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Indexed: 02/06/2023]
Abstract
The 2-oxoglutarate-dependent hypoxia inducible factor prolyl hydroxylases (PHDs) are targets for treatment of a variety of diseases including anaemia. One PHD inhibitor is approved for use for the treatment of renal anaemia and others are in late stage clinical trials. The number of reported templates for PHD inhibition is limited. We report structure-activity relationship and crystallographic studies on a promising class of 4-hydroxypyrimidine-containing PHD inhibitors.
Collapse
Affiliation(s)
- James P. Holt‐Martyn
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Rasheduzzaman Chowdhury
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Anthony Tumber
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Tzu‐Lan Yeh
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Martine I. Abboud
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Kerstin Lippl
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Christopher T. Lohans
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Gareth W. Langley
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - William Figg
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Michael A. McDonough
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Peter J. Ratcliffe
- NDM Research BuildingUniversity of OxfordOxfordOX3 7FZUK
- The Francis Crick InstituteLondonNW1 1ATUK
| | - Christopher J. Schofield
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
13
|
Islam MS, McDonough MA, Chowdhury R, Gault J, Khan A, Pires E, Schofield CJ. Biochemical and structural investigations clarify the substrate selectivity of the 2-oxoglutarate oxygenase JMJD6. J Biol Chem 2019; 294:11637-11652. [PMID: 31147442 PMCID: PMC6663879 DOI: 10.1074/jbc.ra119.008693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
JmjC domain-containing protein 6 (JMJD6) is a 2-oxoglutarate (2OG)-dependent oxygenase linked to various cellular processes, including splicing regulation, histone modification, transcriptional pause release, hypoxia sensing, and cancer. JMJD6 is reported to catalyze hydroxylation of lysine residue(s) of histones, the tumor-suppressor protein p53, and splicing regulatory proteins, including u2 small nuclear ribonucleoprotein auxiliary factor 65-kDa subunit (U2AF65). JMJD6 is also reported to catalyze N-demethylation of N-methylated (both mono- and di-methylated) arginine residues of histones and other proteins, including HSP70 (heat-shock protein 70), estrogen receptor α, and RNA helicase A. Here, we report MS- and NMR-based kinetic assays employing purified JMJD6 and multiple substrate fragment sequences, the results of which support the assignment of purified JMJD6 as a lysyl hydroxylase. By contrast, we did not observe N-methyl arginyl N-demethylation with purified JMJD6. Biophysical analyses, including crystallographic analyses of JMJD6Δ344-403 in complex with iron and 2OG, supported its assignment as a lysyl hydroxylase rather than an N-methyl arginyl-demethylase. The screening results supported some, but not all, of the assigned JMJD6 substrates and identified other potential JMJD6 substrates. We envision these results will be useful in cellular and biological work on the substrates and functions of JMJD6 and in the development of selective inhibitors of human 2OG oxygenases.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A McDonough
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Rasheduzzaman Chowdhury
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Gault
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Amjad Khan
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Elisabete Pires
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
14
|
Admiraal SJ, Eyler DE, Baldwin MR, Brines EM, Lohans CT, Schofield CJ, O'Brien PJ. Expansion of base excision repair compensates for a lack of DNA repair by oxidative dealkylation in budding yeast. J Biol Chem 2019; 294:13629-13637. [PMID: 31320474 PMCID: PMC6746446 DOI: 10.1074/jbc.ra119.009813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
The Mag1 and Tpa1 proteins from budding yeast (Saccharomyces cerevisiae) have both been reported to repair alkylation damage in DNA. Mag1 initiates the base excision repair pathway by removing alkylated bases from DNA, and Tpa1 has been proposed to directly repair alkylated bases as does the prototypical oxidative dealkylase AlkB from Escherichia coli. However, we found that in vivo repair of methyl methanesulfonate (MMS)-induced alkylation damage in DNA involves Mag1 but not Tpa1. We observed that yeast strains without tpa1 are no more sensitive to MMS than WT yeast, whereas mag1-deficient yeast are ∼500-fold more sensitive to MMS. We therefore investigated the substrate specificity of Mag1 and found that it excises alkylated bases that are known AlkB substrates. In contrast, purified recombinant Tpa1 did not repair these alkylated DNA substrates, but it did exhibit the prolyl hydroxylase activity that has also been ascribed to it. A comparison of several of the kinetic parameters of Mag1 and its E. coli homolog AlkA revealed that Mag1 catalyzes base excision from known AlkB substrates with greater efficiency than does AlkA, consistent with an expanded role of yeast Mag1 in repair of alkylation damage. Our results challenge the proposal that Tpa1 directly functions in DNA repair and suggest that Mag1-initiated base excision repair compensates for the absence of oxidative dealkylation of alkylated nucleobases in budding yeast. This expanded role of Mag1, as compared with alkylation repair glycosylases in other organisms, could explain the extreme sensitivity of Mag1-deficient S. cerevisiae toward alkylation damage.
Collapse
Affiliation(s)
- Suzanne J Admiraal
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Daniel E Eyler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Michael R Baldwin
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Emily M Brines
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | | | | | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| |
Collapse
|
15
|
Pickel C, Günter J, Ruiz-Serrano A, Spielmann P, Fabrizio JA, Wolski W, Peet DJ, Wenger RH, Scholz CC. Oxygen-dependent bond formation with FIH regulates the activity of the client protein OTUB1. Redox Biol 2019; 26:101265. [PMID: 31299612 PMCID: PMC6624438 DOI: 10.1016/j.redox.2019.101265] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022] Open
Abstract
Protein:protein interactions are the basis of molecular communication and are usually of transient non-covalent nature, while covalent interactions other than ubiquitination are rare. For cellular adaptations, the cellular oxygen and peroxide sensor factor inhibiting HIF (FIH) confers oxygen and oxidant stress sensitivity to the hypoxia inducible factor (HIF) by asparagine hydroxylation. We investigated whether FIH contributes to hypoxia adaptation also through other mechanisms and identified a hypoxia sensitive, likely covalent, bond formation by FIH with several client proteins, including the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1). Biochemical analyses were consistent with a co-translational amide bond formation between FIH and OTUB1, occurring within mammalian and bacterial cells but not between separately purified proteins. Bond formation is catalysed by FIH and highly dependent on oxygen availability in the cellular microenvironment. Within cells, a heterotrimeric complex is formed, consisting of two FIH and one covalently linked OTUB1. Complexation of OTUB1 by FIH regulates OTUB1 deubiquitinase activity. Our findings reveal an alternative mechanism for hypoxia adaptation with remarkably high oxygen sensitivity, mediated through covalent protein-protein interactions catalysed by an asparagine modifying dioxygenase. FIH forms a (likely amide) bond with client proteins. Bond formation is highly hypoxia sensitive and occurs co-translationally. FIH forms a heterotrimer with the client protein OTUB1 (FIH2OTUB11). Complex formation between OTUB1 and FIH regulates OTUB1 deubiquitinase activity. Bond formation by hydroxylases is an alternative mechanism for hypoxia adaptation.
Collapse
Affiliation(s)
- Christina Pickel
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland
| | | | - Patrick Spielmann
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Witold Wolski
- Functional Genomics Center Zurich, University of Zurich, 8057, Zurich, Switzerland
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland; National Centre of Competence in Research 'Kidney.CH', Switzerland.
| |
Collapse
|
16
|
Langley GW, Abboud MI, Lohans CT, Schofield CJ. Inhibition of a viral prolyl hydroxylase. Bioorg Med Chem 2019; 27:2405-2412. [PMID: 30737136 DOI: 10.1016/j.bmc.2019.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
The hydroxylation of prolyl-residues in eukaryotes is important in collagen biosynthesis and in hypoxic signalling. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are drug targets for the treatment of anaemia, while the procollagen prolyl hydroxylases and other 2-oxoglutarate dependent oxygenases are potential therapeutic targets for treatment of cancer, fibrotic disease, and infection. We describe assay development and inhibition studies for a procollagen prolyl hydroxylase from Paramecium bursaria chlorella virus 1 (vCPH). The results reveal HIF PHD inhibitors in clinical trials also inhibit vCPH. Implications for the targeting of the human PHDs and microbial prolyl hydroxylases are discussed.
Collapse
Affiliation(s)
- Gareth W Langley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
17
|
Vijayasarathy M, Balaram P. Cone snail prolyl-4-hydroxylase α-subunit sequences derived from transcriptomic data and mass spectrometric analysis of variable proline hydroxylation in C. amadis venom. J Proteomics 2019; 194:37-48. [DOI: 10.1016/j.jprot.2018.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
|
18
|
Hydroxylation of protein constituents of the human translation system: structural aspects and functional assignments. Future Med Chem 2019; 11:357-369. [PMID: 30802140 DOI: 10.4155/fmc-2018-0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the current decade, data on the post-translational hydroxylation of specific amino acid residues of some ribosomal proteins and translation factors in both eukaryotes and eubacteria have accumulated. The reaction is catalyzed by dedicated oxygenases (so-called ribosomal oxygenases), whose action is impaired under hypoxia conditions. The modification occurs at amino acid residues directly involved in the formation of the main functional sites of ribosomes and factors. This review summarizes currently available data on the specific hydroxylation of protein constituents of eukaryotic and eubacterial translation systems with a special emphasis on the human system, as well as on the links between hypoxia impacts on the operation of ribosomal oxygenases, the functioning of the translational apparatus and human health problems.
Collapse
|
19
|
Thinnes CC, Lohans CT, Abboud MI, Yeh T, Tumber A, Nowak RP, Attwood M, Cockman ME, Oppermann U, Loenarz C, Schofield CJ. Selective Inhibitors of a Human Prolyl Hydroxylase (OGFOD1) Involved in Ribosomal Decoding. Chemistry 2019; 25:2019-2024. [PMID: 30427558 PMCID: PMC6471485 DOI: 10.1002/chem.201804790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 12/12/2022]
Abstract
Human prolyl hydroxylases are involved in the modification of transcription factors, procollagen, and ribosomal proteins, and are current medicinal chemistry targets. To date, there are few reports on inhibitors selective for the different types of prolyl hydroxylases. We report a structurally informed template-based strategy for the development of inhibitors selective for the human ribosomal prolyl hydroxylase OGFOD1. These inhibitors did not target the other human oxygenases tested, including the structurally similar hypoxia-inducible transcription factor prolyl hydroxylase, PHD2.
Collapse
Affiliation(s)
| | | | | | - Tzu‐Lan Yeh
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Anthony Tumber
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Structural Genomics ConsortiumUniversity of OxfordHeadingtonOX3 7DQUK
| | - Radosław P. Nowak
- Structural Genomics ConsortiumUniversity of OxfordHeadingtonOX3 7DQUK
- Department of Cancer BiologyDana-Farber Cancer InstituteBoston, MA02215USA
| | - Martin Attwood
- Centre for Cellular and Molecular PhysiologyUniversity of OxfordOxfordOX3 7BNUK
| | - Matthew E. Cockman
- Centre for Cellular and Molecular PhysiologyUniversity of OxfordOxfordOX3 7BNUK
| | - Udo Oppermann
- Structural Genomics ConsortiumUniversity of OxfordHeadingtonOX3 7DQUK
| | - Christoph Loenarz
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität Freiburg79104FreiburgGermany
| | | |
Collapse
|
20
|
Mayer M, Fey K, Heinze E, Wick CR, Abboud MI, Yeh TL, Tumber A, Orth N, Schley G, Buchholz B, Clark T, Schofield CJ, Willam C, Burzlaff N. A Fluorescent Benzo[g]isoquinoline-Based HIF Prolyl Hydroxylase Inhibitor for Cellular Imaging. ChemMedChem 2019; 14:94-99. [PMID: 30380199 DOI: 10.1002/cmdc.201800483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/08/2018] [Indexed: 12/19/2022]
Abstract
Prolyl hydroxylation domain (PHD) enzymes catalyze the hydroxylation of the transcription factor hypoxia-inducible factor (HIF) and serve as cellular oxygen sensors. HIF and the PHD enzymes regulate numerous potentially tissue-protective target genes which can adapt cells to metabolic and ischemic stress. We describe a fluorescent PHD inhibitor (1-chloro-4-hydroxybenzo[g]isoquinoline-3-carbonyl)glycine which is suited to fluorescence-based detection assays and for monitoring PHD inhibitors in biological systems. In cell-based assays, application of the fluorescent PHD inhibitor allowed co-localization with a cellular PHD enzyme and led to live cell imaging of processes involved in cellular oxygen sensing.
Collapse
Affiliation(s)
- Marleen Mayer
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kerstin Fey
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Eva Heinze
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Christian R Wick
- Department of Chemistry and Pharmacy, Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
- Institute for Theoretical Physics I, PULS Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 49b, 91052, Erlangen, Germany
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Tzu-Lan Yeh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Nicole Orth
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Björn Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
21
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
22
|
Molecular architecture of the multifunctional collagen lysyl hydroxylase and glycosyltransferase LH3. Nat Commun 2018; 9:3163. [PMID: 30089812 PMCID: PMC6082870 DOI: 10.1038/s41467-018-05631-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022] Open
Abstract
Lysyl hydroxylases catalyze hydroxylation of collagen lysines, and sustain essential roles in extracellular matrix (ECM) maturation and remodeling. Malfunctions in these enzymes cause severe connective tissue disorders. Human lysyl hydroxylase 3 (LH3/PLOD3) bears multiple enzymatic activities, as it catalyzes collagen lysine hydroxylation and also their subsequent glycosylation. Our understanding of LH3 functions is currently hampered by lack of molecular structure information. Here, we present high resolution crystal structures of full-length human LH3 in complex with cofactors and donor substrates. The elongated homodimeric LH3 architecture shows two distinct catalytic sites at the N- and C-terminal boundaries of each monomer, separated by an accessory domain. The glycosyltransferase domain displays distinguishing features compared to other known glycosyltransferases. Known disease-related mutations map in close proximity to the catalytic sites. Collectively, our results provide a structural framework characterizing the multiple functions of LH3, and the molecular mechanisms of collagen-related diseases involving human lysyl hydroxylases. Lysyl hydroxylase 3 (LH3) catalyzes collagen lysine hydroxylation and their subsequent O-linked glycosylation. Here the authors provide mechanistic insights into the lysyl hydroxylase and glycosyltransferase activities of LH3 by determining the crystal structures of full-length human LH3 bound to cofactors and donor substrates.
Collapse
|
23
|
Herr CQ, Hausinger RP. Amazing Diversity in Biochemical Roles of Fe(II)/2-Oxoglutarate Oxygenases. Trends Biochem Sci 2018; 43:517-532. [PMID: 29709390 DOI: 10.1016/j.tibs.2018.04.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
Since their discovery in the 1960s, the family of Fe(II)/2-oxoglutarate-dependent oxygenases has undergone a tremendous expansion to include enzymes catalyzing a vast diversity of biologically important reactions. Recent examples highlight roles in controlling chromatin modification, transcription, mRNA demethylation, and mRNA splicing. Others generate modifications in tRNA, translation factors, ribosomes, and other proteins. Thus, oxygenases affect all components of molecular biology's central dogma, in which information flows from DNA to RNA to proteins. These enzymes also function in biosynthesis and catabolism of cellular metabolites, including antibiotics and signaling molecules. Due to their critical importance, ongoing efforts have targeted family members for the development of specific therapeutics. This review provides a general overview of recently characterized oxygenase reactions and their key biological roles.
Collapse
Affiliation(s)
- Caitlyn Q Herr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
24
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
25
|
Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe 2+-binding. Nat Commun 2018; 9:512. [PMID: 29410444 PMCID: PMC5802723 DOI: 10.1038/s41467-018-02859-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/04/2018] [Indexed: 11/30/2022] Open
Abstract
Collagen lysyl hydroxylases (LH1-3) are Fe2+- and 2-oxoglutarate (2-OG)-dependent oxygenases that maintain extracellular matrix homeostasis. High LH2 levels cause stable collagen cross-link accumulations that promote fibrosis and cancer progression. However, developing LH antagonists will require structural insights. Here, we report a 2 Å crystal structure and X-ray scattering on dimer assemblies for the LH domain of L230 in Acanthamoeba polyphaga mimivirus. Loop residues in the double-stranded β-helix core generate a tail-to-tail dimer. A stabilizing hydrophobic leucine locks into an aromatic tyrosine-pocket on the opposite subunit. An active site triad coordinates Fe2+. The two active sites flank a deep surface cleft that suggest dimerization creates a collagen-binding site. Loss of Fe2+-binding disrupts the dimer. Dimer disruption and charge reversal in the cleft increase Km and reduce LH activity. Ectopic L230 expression in tumors promotes collagen cross-linking and metastasis. These insights suggest inhibitor targets for fibrosis and cancer. Collagen lysyl hydroxylases promote cancer progression. Here the authors present the crystal structure of the lysyl hydroxylase domain of L230 from Acanthamoeba polyphagamimivirus, which is of interest for LH inhibitor development, and show that ectopic expression of L230 in tumors promotes collagen cross-linking and metastasis.
Collapse
|
26
|
Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT, Leung IKH, Morcrette H, Clifton IJ, Claridge TDW, Kawamura A, Flashman E, Lu X, Ratcliffe PJ, Chowdhury R, Pugh CW, Schofield CJ. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem Sci 2017; 8:7651-7668. [PMID: 29435217 PMCID: PMC5802278 DOI: 10.1039/c7sc02103h] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1-3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The 'clinical' PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-α oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations.
Collapse
Affiliation(s)
- Tzu-Lan Yeh
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
| | - Thomas M Leissing
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Ludwig Institute for Cancer Research , Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7DQ , UK
| | - Martine I Abboud
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Cyrille C Thinnes
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Onur Atasoylu
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - James P Holt-Martyn
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Dong Zhang
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Anthony Tumber
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Kerstin Lippl
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Christopher T Lohans
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Ivanhoe K H Leung
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Helen Morcrette
- Radcliffe Department of Medicine , Division of Cardiovascular Medicine , BHF Centre of Research Excellence , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - Ian J Clifton
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Timothy D W Claridge
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Akane Kawamura
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Radcliffe Department of Medicine , Division of Cardiovascular Medicine , BHF Centre of Research Excellence , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - Emily Flashman
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Xin Lu
- Ludwig Institute for Cancer Research , Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7DQ , UK
| | - Peter J Ratcliffe
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
- The Francis Crick Institute , 1 Midland Road , London NW1 1AT , UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Christopher W Pugh
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
| | - Christopher J Schofield
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| |
Collapse
|
27
|
Clasen SJ, Shao W, Gu H, Espenshade PJ. Prolyl dihydroxylation of unassembled uS12/Rps23 regulates fungal hypoxic adaptation. eLife 2017; 6:28563. [PMID: 29083304 PMCID: PMC5690285 DOI: 10.7554/elife.28563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
The prolyl-3,4-dihydroxylase Ofd1 and nuclear import adaptor Nro1 regulate the hypoxic response in fission yeast by controlling activity of the sterol regulatory element-binding protein transcription factor Sre1. Here, we identify an extra-ribosomal function for uS12/Rps23 central to this regulatory system. Nro1 binds Rps23, and Ofd1 dihydroxylates Rps23 P62 in complex with Nro1. Concurrently, Nro1 imports Rps23 into the nucleus for assembly into 40S ribosomes. Low oxygen inhibits Ofd1 hydroxylase activity and stabilizes the Ofd1-Rps23-Nro1 complex, thereby sequestering Ofd1 from binding Sre1, which is then free to activate hypoxic gene expression. In vitro studies demonstrate that Ofd1 directly binds Rps23, Nro1, and Sre1 through a consensus binding sequence. Interestingly, Rps23 expression modulates Sre1 activity by changing the Rps23 substrate pool available to Ofd1. To date, oxygen is the only known signal to Sre1, but additional nutrient signals may tune the hypoxic response through control of unassembled Rps23 or Ofd1 activity. Animals, plants, and fungi need oxygen to release energy within their cells and for other chemical reactions. Enzymes that use oxygen typically become less active when less oxygen is available, and this makes them well suited to help cells sense oxygen. These enzymes include oxygenases, some of which modify proteins by adding oxygen to specific sites in a reaction called hydroxylation. Oxygenases control how mammals adapt to low levels of oxygen – a condition referred to as hypoxia. These enzymes achieve this by hydroxylating a protein – specifically a transcription factor – that turns on genes for survival in low oxygen. Cells quickly destroy the hydroxylated transcription factor but when oxygen is limiting, it remains unmodified. This means that, rather than being destroyed, the transcription factor binds DNA, and activates genes that keep the cells alive and growing in low oxygen. In fission yeast, an oxygenase called Ofd1 controls the activity of a transcription factor called Sre1. Yeast requires Sre1 to grow when oxygen is limiting. Exactly how Ofd1 regulates Sre1 is unknown, but the mechanism is different from that in mammals because regulation of gene expression does not need Sre1 to be hydroxylated. Now, Clasen et al. report that Ofd1 actually hydroxylates another protein called Rps23. This protein is one of about 80 that form the cell’s protein-building machinery, the ribosome. It turns out that, before Rps23 becomes part of the ribosome, it binds Ofd1 in a complex with other proteins. The multi-protein complex then acts to hydroxylate and transport Rps23 into the nucleus, where ribosomes are built and where the cell stores its DNA. When little oxygen is around, Ofd1 cannot hydroxylate Rps23. This stops the complex from falling apart and traps Ofd1 away from the transcription factor Sre1. When not bound by Ofd1, Sre1 is free to turn on genes that allow growth at low levels of oxygen. Finally, Clasen et al. show that more unassembled Rps23 means less Ofd1 is available to inhibit Sre1, which controls the yeast cell’s response to hypoxia. Humans have proteins similar to Ofd1 and Rps23. As such, this pathway for sensing oxygen in yeast may occur in humans too. Further work is now needed to explore if other enzymes that hydroxylate ribosomal proteins work in a similar way.
Collapse
Affiliation(s)
- Sara J Clasen
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Wei Shao
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - He Gu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
28
|
Schnicker NJ, Razzaghi M, Guha Thakurta S, Chakravarthy S, Dey M. Bacillus anthracis Prolyl 4-Hydroxylase Interacts with and Modifies Elongation Factor Tu. Biochemistry 2017; 56:5771-5785. [PMID: 28981257 DOI: 10.1021/acs.biochem.7b00601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prolyl hydroxylation is a very common post-translational modification and plays many roles in eukaryotes such as collagen stabilization, hypoxia sensing, and controlling protein transcription and translation. There is a growing body of evidence that suggests that prokaryotes contain prolyl 4-hydroxylases (P4Hs) homologous to the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes that act on elongation factor Tu (EFTu) and are likely involved in the regulation of bacterial translation. Recent biochemical and structural studies with a PHD from Pseudomonas putida (PPHD) determined that it forms a complex with EFTu and hydroxylates a prolyl residue of EFTu. Moreover, while animal, plant, and viral P4Hs act on peptidyl proline, most prokaryotic P4Hs have been known to target free l-proline; the exceptions include PPHD and a P4H from Bacillus anthracis (BaP4H) that modifies collagen-like proline-rich peptides. Here we use biophysical and mass spectrometric methods to demonstrate that BaP4H recognizes full-length BaEFTu and a BaEFTu 9-mer peptide for site-specific proline hydroxylation. Using size-exclusion chromatography coupled small-angle X-ray scattering (SEC-SAXS) and binding studies, we determined that BaP4H forms a 1:1 heterodimeric complex with BaEFTu. The SEC-SAXS studies reveal dissociation of BaP4H dimeric subunits upon interaction with BaEFTu. While BaP4H is unusual within bacteria in that it is structurally and functionally similar to the animal PHDs and collagen P4Hs, respectively, this work provides further evidence of its promiscuous substrate recognition. It is possible that the enzyme might have evolved to hydroxylate a universally conserved protein in prokaryotes, similar to the PHDs, and implies a functional role in B. anthracis.
Collapse
Affiliation(s)
- Nicholas J Schnicker
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Mortezaali Razzaghi
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Sanjukta Guha Thakurta
- Department of Cell Biology, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Mishtu Dey
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
29
|
Timmins A, Saint-André M, de Visser SP. Understanding How Prolyl-4-hydroxylase Structure Steers a Ferryl Oxidant toward Scission of a Strong C-H Bond. J Am Chem Soc 2017; 139:9855-9866. [PMID: 28657747 DOI: 10.1021/jacs.7b02839] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prolyl-4-hydroxylase (P4H) is a non-heme iron hydroxylase that regio- and stereospecifically hydroxylates proline residues in a peptide chain into R-4-hydroxyproline, which is essential for collagen cross-linking purposes in the human body. Surprisingly, in P4H, a strong aliphatic C-H bond is activated, while thermodynamically much weaker aliphatic C-H groups, that is, at the C3 and C5 positions, are untouched. Little is known on the origins of the high regio- and stereoselectivity of P4H and many non-heme and heme enzymes in general, and insight into this matter may be relevant to Biotechnology as well as Drug Development. The active site of the protein contains two aromatic residues (Tyr140 and Trp243) that we expected to be crucial for guiding the regioselectivity of the reaction. We performed a detailed quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) study on wild-type and mutant structures. The work shows that Trp243 is involved in key protein loop-loop interactions that affect the shape and size of the substrate binding pocket and its mutation has major long-range effects. By contrast, the Tyr140 residue is shown to guide the regio- and stereoselectivity by holding the substrate and ferryl oxidant in a specific orientation through hydrogen bonding and π-stacking interactions. Compelling evidence is found that the Tyr140 residue is involved in expelling the product from the binding pocket after the reaction is complete. It is shown that mutations where the hydrogen bonding network that involves the Tyr140 and Trp243 residues is disrupted lead to major changes in folding of the protein and the size and shape of the substrate binding pocket. Specifically, the Trp243 residue positions the amino acid side chains of Arg161 and Glu127 in specific orientations with substrate. As such, the P4H enzyme is a carefully designed protein with a subtle and rigid secondary structure that enables the binding of substrate, guides the regioselectivity, and expels product efficiently.
Collapse
Affiliation(s)
- Amy Timmins
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Maud Saint-André
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
30
|
Schnicker NJ, Dey M. Bacillus anthracis Prolyl 4-Hydroxylase Modifies Collagen-like Substrates in Asymmetric Patterns. J Biol Chem 2016; 291:13360-74. [PMID: 27129244 DOI: 10.1074/jbc.m116.725432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
Proline hydroxylation is the most prevalent post-translational modification in collagen. The resulting product trans-4-hydroxyproline (Hyp) is of critical importance for the stability and thus function of collagen, with defects leading to several diseases. Prolyl 4-hydroxylases (P4Hs) are mononuclear non-heme iron α-ketoglutarate (αKG)-dependent dioxygenases that catalyze Hyp formation. Although animal and plant P4Hs target peptidyl proline, prokaryotes have been known to use free l-proline as a precursor to form Hyp. The P4H from Bacillus anthracis (BaP4H) has been postulated to act on peptidyl proline in collagen peptides, making it unusual within the bacterial clade, but its true physiological substrate remains enigmatic. Here we use mass spectrometry, fluorescence binding, x-ray crystallography, and docking experiments to confirm that BaP4H recognizes and acts on peptidyl substrates but not free l-proline, using elements characteristic of an Fe(II)/αKG-dependent dioxygenases. We further show that BaP4H can hydroxylate unique peptidyl proline sites in collagen-derived peptides with asymmetric hydroxylation patterns. The cofactor-bound crystal structures of BaP4H reveal active site conformational changes that define open and closed forms and mimic "ready" and "product-released" states of the enzyme in the catalytic cycle. These results help to clarify the role of BaP4H as well as provide broader insights into human collagen P4H and proteins with poly-l-proline type II helices.
Collapse
Affiliation(s)
- Nicholas J Schnicker
- From the Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727
| | - Mishtu Dey
- From the Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727
| |
Collapse
|
31
|
Longbotham JE, Levy C, Johannissen LO, Tarhonskaya H, Jiang S, Loenarz C, Flashman E, Hay S, Schofield CJ, Scrutton NS. Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase. Biochemistry 2015; 54:6093-105. [PMID: 26368022 PMCID: PMC4613865 DOI: 10.1021/acs.biochem.5b00789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
Fe(II)- and 2-oxoglutarate (2-OG)-dependent dioxygenases comprise
a large and diverse enzyme superfamily the members of which have multiple
physiological roles. Despite this diversity, these enzymes share a
common chemical mechanism and a core structural fold, a double-stranded
β-helix (DSBH), as well as conserved active site residues. The
prolyl hydroxylases are members of this large superfamily. Prolyl
hydroxylases are involved in collagen biosynthesis and oxygen sensing
in mammalian cells. Structural–mechanistic studies with prolyl
hydroxylases have broader implications for understanding mechanisms
in the Fe(II)- and 2-OG-dependent dioxygenase superfamily. Here, we
describe crystal structures of an N-terminally truncated viral collagen
prolyl hydroxylase (vCPH). The crystal structure shows that vCPH contains
the conserved DSBH motif and iron binding active site residues of
2-OG oxygenases. Molecular dynamics simulations are used to delineate
structural changes in vCPH upon binding its substrate. Kinetic investigations
are used to report on reaction cycle intermediates and compare them
to the closest homologues of vCPH. The study highlights the utility
of vCPH as a model enzyme for broader mechanistic analysis of Fe(II)-
and 2-OG-dependent dioxygenases, including those of biomedical interest.
Collapse
Affiliation(s)
- James E Longbotham
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Colin Levy
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Linus O Johannissen
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Hanna Tarhonskaya
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Shuo Jiang
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christoph Loenarz
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Sam Hay
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Nigel S Scrutton
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester , Manchester M1 7DN, United Kingdom
| |
Collapse
|