1
|
Bowler E, Oltean S. Alternative Splicing in Angiogenesis. Int J Mol Sci 2019; 20:E2067. [PMID: 31027366 PMCID: PMC6540211 DOI: 10.3390/ijms20092067] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing of pre-mRNA allows the generation of multiple splice isoforms from a given gene, which can have distinct functions. In fact, splice isoforms can have opposing functions and there are many instances whereby a splice isoform acts as an inhibitor of canonical isoform function, thereby adding an additional layer of regulation to important processes. Angiogenesis is an important process that is governed by alternative splicing mechanisms. This review focuses on the alternative spliced isoforms of key genes that are involved in the angiogenesis process; VEGF-A, VEGFR1, VEGFR2, NRP-1, FGFRs, Vasohibin-1, Vasohibin-2, HIF-1α, Angiopoietin-1 and Angiopoietin-2.
Collapse
Affiliation(s)
- Elizabeth Bowler
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| |
Collapse
|
2
|
Ning F, Li X, Yu L, Zhang B, Zhao Y, Liu Y, Zhao B, Shang Y, Hu X. Hes1 attenuates type I IFN responses via VEGF-C and WDFY1. J Exp Med 2019; 216:1396-1410. [PMID: 31015298 PMCID: PMC6547865 DOI: 10.1084/jem.20180861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 12/26/2022] Open
Abstract
Transcription factor Hes1 acts as a homeostatic negative regulator of type I interferon production to restrain interferon-mediated immune responses, including antiviral immunity and autoimmune conditions. Mechanistically, Hes1 suppresses interferon expression by targeting a regulatory circuit composed of WDFY1 and VEGF-C. Induction of type I interferons (IFNs) is critical for eliciting competent immune responses, especially antiviral immunity. However, uncontrolled IFN production contributes to pathogenesis of autoimmune and inflammatory diseases. We found that transcription factor Hes1 suppressed production of type I IFNs and expression of IFN-stimulated genes. Functionally, Hes1-deficient mice displayed a heightened IFN signature in vivo, mounted enhanced resistance against encephalomyocarditis virus infection, and showed signs of exacerbated experimental lupus nephritis. Mechanistically, Hes1 did not suppress IFNs via direct transcriptional repression of IFN-encoding genes. Instead, Hes1 attenuated activation of TLR upstream signaling by inhibition of an adaptor molecule, WDFY1. Genome-wide assessment of Hes1 occupancy revealed that suppression of WDFY1 was secondary to direct binding and thus enhancement of expression of VEGF-C by Hes1, making Vegfc a rare example of an Hes1 positively regulated gene. In summary, these results identified Hes1 as a homeostatic negative regulator of type I IFNs for the maintenance of immune balance in the context of antiviral immunity and autoimmune diseases.
Collapse
Affiliation(s)
- Fei Ning
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Xiaoyu Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Li Yu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Yuna Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control & Prevention, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yu Liu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Yingli Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control & Prevention, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
3
|
Guo HF, Vander Kooi CW. Neuropilin Functions as an Essential Cell Surface Receptor. J Biol Chem 2015; 290:29120-6. [PMID: 26451046 DOI: 10.1074/jbc.r115.687327] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Neuropilins (Nrps) are a family of essential cell surface receptors involved in multiple fundamental cellular signaling cascades. Nrp family members have key functions in VEGF-dependent angiogenesis and semaphorin-dependent axon guidance, controlling signaling and cross-talk between these fundamental physiological processes. More recently, Nrp function has been found in diverse signaling and adhesive functions, emphasizing their role as pleiotropic co-receptors. Pathological Nrp function has been shown to be important in aberrant activation of both canonical and alternative pathways. Here we review key recent insights into Nrp function in human health and disease.
Collapse
Affiliation(s)
- Hou-Fu Guo
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Craig W Vander Kooi
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|