1
|
Shaw AL, Suresh S, Parson MAH, Harris NJ, Jenkins ML, Yip CK, Burke JE. Structure of calcineurin bound to PI4KA reveals dual interface in both PI4KA and FAM126A. Structure 2024; 32:1973-1983.e6. [PMID: 39216471 DOI: 10.1016/j.str.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Phosphatidylinositol 4-kinase alpha (PI4KA) maintains the phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine pools of the plasma membrane. A key regulator of PI4KA is its association into a complex with TTC7 and FAM126 proteins. This complex can be regulated by the CNAβ1 isoform of the phosphatase calcineurin. We previously identified that CNAβ1 directly binds to FAM126A. Here, we report a cryoelectron microscopic (cryo-EM) structure of a truncated PI4KA complex bound to calcineurin, revealing a unique direct interaction between PI4KA and calcineurin. Hydrogen deuterium exchange mass spectrometry (HDX-MS) and computational analysis show that calcineurin forms a complex with an evolutionarily conserved IKISVT sequence in PI4KA's horn domain. We also characterized conserved LTLT and PSISIT calcineurin binding sequences in the C terminus of FAM126A. These dual sites in PI4KA and FAM126A are both in close proximity to phosphorylation sites in the PI4KA complex, suggesting key roles of calcineurin-regulated phosphosites in PI4KA regulation. This work reveals novel insight into how calcineurin can regulate PI4KA activity.
Collapse
Affiliation(s)
- Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
2
|
Stalder D, Yakunin I, Pereira C, Eden J, Gershlick DC. Recruitment of PI4KIIIβ to the Golgi by ACBD3 is dependent on an upstream pathway of a SNARE complex and golgins. Mol Biol Cell 2024; 35:ar20. [PMID: 38134218 PMCID: PMC7615549 DOI: 10.1091/mbc.e23-09-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
ACBD3 is a protein localised to the Golgi apparatus and recruits other proteins, such as PI4KIIIβ, to the Golgi. However, the mechanism through which ACBD3 itself is recruited to the Golgi is poorly understood. This study demonstrates there are two mechanisms for ACBD3 recruitment to the Golgi. First, we identified that an MWT374-376 motif in the unique region upstream of the GOLD domain in ACBD3 is essential for Golgi localization. Second, we use unbiased proteomics to demonstrate that ACBD3 interacts with SCFD1, a Sec1/Munc-18 (SM) protein, and a SNARE protein, SEC22B. CRISPR-KO of SCFD1 causes ACBD3 to become cytosolic. We also found that ACBD3 is redundantly recruited to the Golgi apparatus by two golgins: golgin-45 and giantin, which bind to ACBD3 through interaction with the MWT374-376 motif. Taken together, our results suggest that ACBD3 is recruited to the Golgi in a two-step sequential process, with the SCFD1-mediated interaction occurring upstream of the interaction with the golgins.
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Igor Yakunin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Jessica Eden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
3
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Jia J, Tang S, Yue X, Jing S, Zhu L, Tan C, Gao J, Du Y, Lee I, Qian Y. An A-Kinase Anchoring Protein (ACBD3) Coordinates Traffic-Induced PKA Activation At The Golgi. J Biol Chem 2023; 299:104696. [PMID: 37044218 DOI: 10.1016/j.jbc.2023.104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
KDEL receptor (KDELR) is a key protein that recycles escaped ER resident proteins from the Golgi apparatus back to the ER and maintains a dynamic balance between these two organelles in the early secretory pathway. Studies have shown that this retrograde transport pathway is partly regulated by two KDELR-interacting proteins, Acyl-CoA-binding domain-containing 3 (ACBD3), and cyclic AMP-dependent protein kinase A (PKA). However, whether Golgi-localized ACBD3, which was first discovered as a PKA-anchoring protein in mitochondria, directly interacts with PKA at the Golgi and coordinates its signaling in Golgi-to-ER traffic has remained unclear. In this study, we showed that the GOLD domain of ACBD3 directly interacts with the regulatory subunit II (RII) of PKA and effectively recruits PKA holoenzyme to the Golgi. Forward trafficking of proteins from the ER triggers activation of PKA by releasing the catalytic subunit from RII. Furthermore, we determined that depletion of ACBD3 reduces the Golgi fraction of RII, resulting in moderate, but constitutive activation of PKA and KDELR retrograde transport, independent of cargo influx from the ER. Taken together, these data demonstrate that ACBD3 coordinates the protein secretory pathway at the Golgi by facilitating KDELR/PKA-containing protein complex formation.
Collapse
Affiliation(s)
- Jie Jia
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuocheng Tang
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingkai Gao
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yulei Du
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| |
Collapse
|
5
|
Tan C, Du Y, Zhu L, Jing S, Gao J, Qian Y, Yue X, Lee I. KDEL Receptor Trafficking to the Plasma Membrane Is Regulated by ACBD3 and Rab4A-GTP. Cells 2023; 12:cells12071079. [PMID: 37048152 PMCID: PMC10093020 DOI: 10.3390/cells12071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
KDEL receptor-1 maintains homeostasis in the early secretory pathway by capturing and retrieving ER chaperones to the ER during heavy secretory activity. Unexpectedly, a fraction of the receptor is also known to reside in the plasma membrane (PM), although it is largely unknown exactly how the KDEL receptor gets exported from the Golgi and travels to the PM. We have previously shown that a Golgi scaffolding protein (ACBD3) facilitates KDEL receptor localization at the Golgi via the regulating cargo wave-induced cAMP/PKA-dependent signaling pathway. Upon endocytosis, surface-expressed KDEL receptor undergoes highly complex itineraries through the Golgi and the endo-lysosomal compartments, where the endocytosed receptor utilizes Rab14A- and Rab11A-positive recycling endosomes and clathrin-decorated tubulovesicular carriers. In this study, we sought to investigate the mechanism through which the KDEL receptor gets exported from the Golgi en route to the PM. We report here that ACBD3 depletion results in greatly increased trafficking of KDEL receptor to the PM via Rab4A-positive tubular carriers emanating from the Golgi. Expression of constitutively activated Rab4A mutant (Q72L) increases the surface expression of KDEL receptor up to 2~3-fold, whereas Rab4A knockdown or the expression of GDP-locked Rab4A mutant (S27N) inhibits KDEL receptor targeting of the PM. Importantly, KDELR trafficking from the Golgi to the PM is independent of PKA- and Src kinase-mediated mechanisms. Taken together, these results reveal that ACBD3 and Rab4A play a key role in regulating KDEL receptor trafficking to the cell surface.
Collapse
Affiliation(s)
- Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yulei Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jingkai Gao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Investigating how intrinsically disordered regions contribute to protein function using HDX-MS. Biochem Soc Trans 2022; 50:1607-1617. [DOI: 10.1042/bst20220206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
A large amount of the human proteome is composed of highly dynamic regions that do not adopt a single static conformation. These regions are defined as intrinsically disordered, and they are found in a third of all eukaryotic proteins. They play instrumental roles in many aspects of protein signaling, but can be challenging to characterize by biophysical methods. Intriguingly, many of these regions can adopt stable secondary structure upon interaction with a variety of binding partners, including proteins, lipids, and ligands. This review will discuss the application of Hydrogen-deuterium exchange mass spectrometry (HDX-MS) as a powerful biophysical tool that is particularly well suited for structural and functional characterization of intrinsically disordered regions in proteins. A focus will be on the theory of hydrogen exchange, and its practical application to identify disordered regions, as well as characterize how they participate in protein–protein and protein–membrane interfaces. A particular emphasis will be on how HDX-MS data can be presented specifically tailored for analysis of intrinsically disordered regions, as well as the technical aspects that are critical to consider when designing HDX-MS experiments for proteins containing intrinsically disordered regions.
Collapse
|
8
|
Mendes LFS, Costa-Filho AJ. A gold revision of the Golgi Dynamics (GOLD) domain structure and associated cell functionalities. FEBS Lett 2022; 596:973-990. [PMID: 35099811 DOI: 10.1002/1873-3468.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Abstract
The classical secretory pathway is the key membrane-based delivery system in eukaryotic cells. Several families of proteins involved in the secretory pathway, with functionalities going from cargo sorting receptors to the maintenance and dynamics of secretory organelles, share soluble globular domains predicted to mediate protein-protein interactions. One of them is "Golgi Dynamics" (GOLD) domain, named after its strong association with the Golgi apparatus. There are many GOLD-containing protein families, such as the Transmembrane emp24 domain-containing proteins (TMED/p24 family), animal SEC14-like proteins, Human Golgi resident protein ACBD3, a splice variant of TICAM2 called TRAM with GOLD domain and FYCO1. Here, we critically review the state-of-the-art knowledge of the structures and functions of the main representatives of GOLD-containing proteins in vertebrates. We provide the first unified description of the GOLD domain structure across different families since the first high-resolution structure was determined. With a brand-new update on the definition of the GOLD domain, we also discuss how its tertiary structure fits the β-sandwich-like fold map and give exciting new directions for forthcoming studies.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
9
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
10
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
11
|
Pays E. The function of apolipoproteins L (APOLs): relevance for kidney disease, neurotransmission disorders, cancer and viral infection. FEBS J 2021; 288:360-381. [PMID: 32530132 PMCID: PMC7891394 DOI: 10.1111/febs.15444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular ParasitologyIBMMUniversité Libre de BruxellesGosseliesBelgium
| |
Collapse
|
12
|
Dobbs JM, Jenkins ML, Burke JE. Escherichia coli and Sf9 Contaminant Databases to Increase Efficiency of Tandem Mass Spectrometry Peptide Identification in Structural Mass Spectrometry Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2202-2209. [PMID: 32869988 DOI: 10.1021/jasms.0c00283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Filtering of nonspecifically binding contaminant proteins from affinity purification mass spectrometry (AP-MS) data is a well-established strategy to improve statistical confidence in identified proteins. The CRAPome (contaminant repository for affinity purification) describes the contaminating background content present in many purification strategies. However, full contaminant lists for nickel-nitrilotriacetic acid (NiNTA) and glutathione S-transferase (GST) affinity matrices are lacking. Similarly, no Spodoptera frugiperda (Sf9) contaminants are available, and only the FLAG-purified contaminants are described for Escherichia coli. For MS experiments that use recombinant protein, such as structural mass spectrometry experiments (hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking, and radical foot-printing), failing to include these contaminants in the search database during the initial tandem MS (MS/MS) identification stage can result in complications in peptide identification. We have created contaminant FASTA databases for Sf9 and E. coli NiNTA or GST purification strategies and show that the use of these databases can effectively improve HDX-MS protein coverage, fragment count, and confidence in peptide identification. This approach provides a robust strategy toward the design of contaminant databases for any purification approach that will expand the complexity of systems able to be interrogated by HDX-MS.
Collapse
Affiliation(s)
- Joseph M Dobbs
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
13
|
Islinger M, Costello JL, Kors S, Soupene E, Levine TP, Kuypers FA, Schrader M. The diversity of ACBD proteins - From lipid binding to protein modulators and organelle tethers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118675. [PMID: 32044385 PMCID: PMC7057175 DOI: 10.1016/j.bbamcr.2020.118675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
14
|
Rivadulla E, Romalde JL. A Comprehensive Review on Human Aichi Virus. Virol Sin 2020; 35:501-516. [PMID: 32342286 PMCID: PMC7223127 DOI: 10.1007/s12250-020-00222-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Although norovirus, rotavirus, adenovirus and Astrovirus are considered the most important viral agents transmitted by food and water, in recent years other viruses, such as Aichi virus (AiV), have emerged as responsible for gastroenteritis outbreaks associated with different foods. AiV belongs to the genus Kobuvirus of the family Picornaviridae. It is a virus with icosahedral morphology that presents a single stranded RNA genome with positive sense (8280 nucleotides) and a poly (A) chain. AiV was first detected from clinical samples and in recent years has been involved in acute gastroenteritis outbreaks from different world regions. Furthermore, several studies conducted in Japan, Germany, France, Tunisia and Spain showed a high prevalence of AiV antibodies in adults (between 80% and 99%), which is indicative of a large exposure to this virus. The aim of this review is to bring together all the discovered information about the emerging pathogen human Aichi virus (AiV), discussing the possibles routes of transmission, new detection techniques and future research. Although AiV is responsible for a low percentage of gastroenteritis outbreaks, the high seroprevalence shown by human populations indicates an evident role as an enteric agent. The low percentage of AiV detection could be explained by the fact that the pathogen is more associated to subclinical infections. Further studies will be needed to clarify the real impact of AiV in human health and its importance as a causative gastroenteritis agent worldwide.
Collapse
Affiliation(s)
- Enrique Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago, Spain.
| |
Collapse
|
15
|
Lu Y, Song S, Zhang L. Emerging Role for Acyl-CoA Binding Domain Containing 3 at Membrane Contact Sites During Viral Infection. Front Microbiol 2020; 11:608. [PMID: 32322249 PMCID: PMC7156584 DOI: 10.3389/fmicb.2020.00608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Acyl-coenzyme A binding domain containing 3 (ACBD3) is a multifunctional protein residing in the Golgi apparatus and is involved in several signaling pathways. The current knowledge on ACBD3 has been extended to virology. ACBD3 has recently emerged as a key factor subverted by viruses, including kobuvirus, enterovirus, and hepatitis C virus. The ACBD3-PI4KB complex is critical for the role of ACBD3 in viral replication. In most cases, ACBD3 plays a positive role in viral infection. ACBD3 associates with viral 3A proteins from a variety of Picornaviridae family members at membrane contact sites (MCSs), which are used by diverse viruses to ensure lipid transfer to replication organelles (ROs). In this review, we discuss the mechanisms underlying the involvement of ACBD3 in viral infection at MCSs. Our review will highlight the current research and reveal potential avenues for future research.
Collapse
Affiliation(s)
- Yue Lu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Siqi Song
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Leiliang Zhang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
McPhail JA, Lyoo H, Pemberton JG, Hoffmann RM, van Elst W, Strating JRPM, Jenkins ML, Stariha JTB, Powell CJ, Boulanger MJ, Balla T, van Kuppeveld FJM, Burke JE. Characterization of the c10orf76-PI4KB complex and its necessity for Golgi PI4P levels and enterovirus replication. EMBO Rep 2020; 21:e48441. [PMID: 31829496 PMCID: PMC7001497 DOI: 10.15252/embr.201948441] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Heyrhyoung Lyoo
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Joshua G Pemberton
- Section on Molecular Signal TransductionEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Reece M Hoffmann
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Wendy van Elst
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Jeroen RPM Strating
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Meredith L Jenkins
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Jordan TB Stariha
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Cameron J Powell
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Martin J Boulanger
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| | - Tamas Balla
- Section on Molecular Signal TransductionEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Frank JM van Kuppeveld
- Department of Infectious Diseases & ImmunologyVirology DivisionFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - John E Burke
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanada
| |
Collapse
|
17
|
McPhail JA, Burke JE. Drugging the Phosphoinositide 3-Kinase (PI3K) and Phosphatidylinositol 4-Kinase (PI4K) Family of Enzymes for Treatment of Cancer, Immune Disorders, and Viral/Parasitic Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:203-222. [DOI: 10.1007/978-3-030-50621-6_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Dubankova A, Horova V, Klima M, Boura E. Structures of kobuviral and siciniviral polymerases reveal conserved mechanism of picornaviral polymerase activation. J Struct Biol 2019; 208:92-98. [PMID: 31415898 DOI: 10.1016/j.jsb.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/03/2023]
Abstract
RNA-dependent RNA polymerase 3Dpol is a key enzyme for the replication of picornaviruses. The viral genome is translated into a single polyprotein that is subsequently proteolytically processed into matured products. The 3Dpol enzyme arises from a stable 3CD precursor that has high proteolytic activity but no polymerase activity. Upon cleavage of the precursor the newly established N-terminus of 3Dpol is liberated and inserts itself into a pocket on the surface of the 3Dpol enzyme. The essential residue for this mechanism is the very first glycine that is conserved among almost all picornaviruses. However, kobuviruses and siciniviruses have a serine residue instead. Intrigued by this anomaly we sought to solve the crystal structure of these 3Dpol enzymes. The structures revealed a unique fold of the 3Dpol N-termini but the very first serine residues were inserted into a charged pocket in a similar manner as the glycine residue in other picornaviruses. These structures revealed a common underlying mechanism of 3Dpol activation that lies in activation of the α10 helix containing a key catalytical residue Asp238 that forms a hydrogen bond with the 2' hydroxyl group of the incoming NTP nucleotide.
Collapse
Affiliation(s)
- Anna Dubankova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Vladimira Horova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10 Prague 6, Czech Republic.
| |
Collapse
|
19
|
A Redundant Mechanism of Recruitment Underlies the Remarkable Plasticity of the Requirement of Poliovirus Replication for the Cellular ArfGEF GBF1. J Virol 2019; 93:JVI.00856-19. [PMID: 31375590 DOI: 10.1128/jvi.00856-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
The replication of many positive-strand RNA viruses [(+)RNA viruses] depends on the cellular protein GBF1, but its role in the replication process is not clear. In uninfected cells, GBF1 activates small GTPases of the Arf family and coordinates multiple steps of membrane metabolism, including functioning of the cellular secretory pathway. The nonstructural protein 3A of poliovirus and related viruses has been shown to directly interact with GBF1, likely mediating its recruitment to the replication complexes. Surprisingly, viral mutants with a severely reduced level of 3A-GBF1 interaction demonstrate minimal replication defects in cell culture. Here, we systematically investigated the conserved elements of GBF1 to understand which determinants are important to support poliovirus replication. We demonstrate that multiple GBF1 mutants inactive in cellular metabolism could still be fully functional in the replication complexes. Our results show that the Arf-activating property, but not the primary structure of the Sec7 domain, is indispensable for viral replication. They also suggest a redundant mechanism of recruitment of GBF1 to the replication sites, which is dependent not only on direct interaction of the protein with the viral protein 3A but also on determinants located in the noncatalytic C-terminal domains of GBF1. Such a double-targeting mechanism explains the previous observations of the remarkable tolerance of different levels of GBF1-3A interaction by the virus and likely constitutes an important element of the resilience of viral replication.IMPORTANCE Enteroviruses are a vast group of viruses associated with diverse human diseases, but only two of them could be controlled with vaccines, and effective antiviral therapeutics are lacking. Here, we investigated in detail the contribution of a cellular protein, GBF1, in the replication of poliovirus, a representative enterovirus. GBF1 supports the functioning of cellular membrane metabolism and is recruited to viral replication complexes upon infection. Our results demonstrate that the virus requires a limited subset of the normal GBF1 functions and reveal the elements of GBF1 essential to support viral replication under different conditions. Since diverse viruses often rely on the same cellular proteins for replication, understanding the mechanisms by which these proteins support infection is essential for the development of broad-spectrum antiviral therapeutics.
Collapse
|
20
|
Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites. PLoS Pathog 2019; 15:e1007962. [PMID: 31381608 PMCID: PMC6695192 DOI: 10.1371/journal.ppat.1007962] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/15/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Enteroviruses, members of the family of picornaviruses, are the most common viral infectious agents in humans causing a broad spectrum of diseases ranging from mild respiratory illnesses to life-threatening infections. To efficiently replicate within the host cell, enteroviruses hijack several host factors, such as ACBD3. ACBD3 facilitates replication of various enterovirus species, however, structural determinants of ACBD3 recruitment to the viral replication sites are poorly understood. Here, we present a structural characterization of the interaction between ACBD3 and the non-structural 3A proteins of four representative enteroviruses (poliovirus, enterovirus A71, enterovirus D68, and rhinovirus B14). In addition, we describe the details of the 3A-3A interaction causing the assembly of the ACBD3-3A heterotetramers and the interaction between the ACBD3-3A complex and the lipid bilayer. Using structure-guided identification of the point mutations disrupting these interactions, we demonstrate their roles in the intracellular localization of these proteins, recruitment of downstream effectors of ACBD3, and facilitation of enterovirus replication. These structures uncovered a striking convergence in the mechanisms of how enteroviruses and kobuviruses, members of a distinct group of picornaviruses that also rely on ACBD3, recruit ACBD3 and its downstream effectors to the sites of viral replication. Enteroviruses are the most common viruses infecting humans. They cause a broad spectrum of diseases ranging from common cold to life-threatening diseases, such as poliomyelitis. To date, no effective antiviral therapy for enteroviruses has been approved yet. To ensure efficient replication, enteroviruses hijack several host factors, recruit them to the sites of virus replication, and use their physiological functions for their own purposes. Here, we characterize the complexes composed of the host protein ACBD3 and the ACBD3-binding viral proteins (called 3A) of four representative enteroviruses. Our study reveals the atomic details of these complexes and identifies the amino acid residues important for the interaction. We found out that the 3A proteins of enteroviruses bind to the same regions of ACBD3 as the 3A proteins of kobuviruses, a distinct group of viruses that also rely on ACBD3, but are oriented in the opposite directions. This observation reveals a striking case of convergent evolutionary pathways that have evolved to allow enteroviruses and kobuviruses (which are two distinct groups of the Picornaviridae family) to recruit a common host target, ACBD3, and its downstream effectors to the sites of viral replication.
Collapse
|
21
|
Arita M. Essential domains of phosphatidylinositol-4 kinase III β required for enterovirus replication. Microbiol Immunol 2019; 63:285-288. [PMID: 31166044 DOI: 10.1111/1348-0421.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/23/2022]
Abstract
Phosphatidylinositol-4 kinase III β (PI4KB) is a host factor that is required for enterovirus (EV) replication. In this study, the importance of host proteins that interact with PI4KB in EV replication was analyzed by trans complementation with PI4KB mutants in a PI4KB-knockout cell line. Ectopically expressed PI4KB mutants, which lack binding regions for ACBD3, RAB11, and 14-3-3 proteins, rescued replication of poliovirus and enterovirus 71. These findings suggest that interaction of PI4KB with these host proteins is not essential for EV replication once PI4KB has been expressed and that PI4KB is functionally independent from these host proteins regarding EV replication.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
22
|
Kinome-Wide RNA Interference Screening Identifies Mitogen-Activated Protein Kinases and Phosphatidylinositol Metabolism as Key Factors for Rabies Virus Infection. mSphere 2019; 4:4/3/e00047-19. [PMID: 31118297 PMCID: PMC6531879 DOI: 10.1128/msphere.00047-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rabies virus relies on cellular machinery for its replication while simultaneously evading the host immune response. Despite their importance, little is known about the key host factors required for rabies virus infection. Here, we focused on the human kinome, at the core of many cellular pathways, to unveil a new understanding of the rabies virus infectious cycle and to discover new potential therapeutic targets in a small interfering RNA screening. The mitogen-activated protein kinase pathway and phosphatidylinositol metabolism were identified as prominent factors involved in rabies virus infection, and those findings were further confirmed in human neurons. While bringing a new insight into rabies virus biology, we also provide a new list of host factors involved in rabies virus infection. Throughout the rabies virus (RABV) infectious cycle, host-virus interactions define its capacity to replicate, escape the immune response, and spread. As phosphorylation is a key regulatory mechanism involved in most cellular processes, kinases represent a target of choice to identify host factors required for viral replication. A kinase and phosphatase small interfering RNA (siRNA) high-content screening was performed on a fluorescent protein-recombinant field isolate (Tha RABV). We identified 57 high-confidence key host factors important for RABV replication with a readout set at 18 h postinfection and 73 with a readout set at 36 h postinfection, including 24 common factors at all stages of the infection. Amongst them, gene clusters of the most prominent pathways were determined. Up to 15 mitogen-activated protein kinases (MAPKs) and effectors, including MKK7 (associated with Jun N-terminal protein kinase [JNK] signalization) and DUSP5, as well as 17 phosphatidylinositol (PI)-related proteins, including PIP5K1C and MTM1, were found to be involved in the later stage of RABV infection. The importance of these pathways was further validated, as small molecules Ro 31-8820 and PD 198306 inhibited RABV replication in human neurons. IMPORTANCE Rabies virus relies on cellular machinery for its replication while simultaneously evading the host immune response. Despite their importance, little is known about the key host factors required for rabies virus infection. Here, we focused on the human kinome, at the core of many cellular pathways, to unveil a new understanding of the rabies virus infectious cycle and to discover new potential therapeutic targets in a small interfering RNA screening. The mitogen-activated protein kinase pathway and phosphatidylinositol metabolism were identified as prominent factors involved in rabies virus infection, and those findings were further confirmed in human neurons. While bringing a new insight into rabies virus biology, we also provide a new list of host factors involved in rabies virus infection.
Collapse
|
23
|
Yue X, Qian Y, Gim B, Lee I. Acyl-CoA-Binding Domain-Containing 3 (ACBD3; PAP7; GCP60): A Multi-Functional Membrane Domain Organizer. Int J Mol Sci 2019; 20:ijms20082028. [PMID: 31022988 PMCID: PMC6514682 DOI: 10.3390/ijms20082028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023] Open
Abstract
Acyl-CoA-binding domain-containing 3 (ACBD3) is a multi-functional scaffolding protein, which has been associated with a diverse array of cellular functions, including steroidogenesis, embryogenesis, neurogenesis, Huntington’s disease (HD), membrane trafficking, and viral/bacterial proliferation in infected host cells. In this review, we aim to give a timely overview of recent findings on this protein, including its emerging role in membrane domain organization at the Golgi and the mitochondria. We hope that this review provides readers with useful insights on how ACBD3 may contribute to membrane domain organization along the secretory pathway and on the cytoplasmic surface of intracellular organelles, which influence many important physiological and pathophysiological processes in mammalian cells.
Collapse
Affiliation(s)
- Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.
| | - Bopil Gim
- School of Physical Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.
| |
Collapse
|
24
|
ACBD3 Is an Essential Pan-enterovirus Host Factor That Mediates the Interaction between Viral 3A Protein and Cellular Protein PI4KB. mBio 2019; 10:mBio.02742-18. [PMID: 30755512 PMCID: PMC6372799 DOI: 10.1128/mbio.02742-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enterovirus genus of the picornavirus family includes a large number of important human pathogens such as poliovirus, coxsackievirus, enterovirus A71, and rhinoviruses. Like all other positive-strand RNA viruses, genome replication of enteroviruses occurs on rearranged membranous structures called replication organelles (ROs). Phosphatidylinositol 4-kinase IIIβ (PI4KB) is required by all enteroviruses for RO formation. The enteroviral 3A protein recruits PI4KB to ROs, but the exact mechanism remains elusive. Here, we investigated the role of acyl-coenzyme A binding domain containing 3 (ACBD3) in PI4KB recruitment upon enterovirus replication using ACBD3 knockout (ACBD3KO) cells. ACBD3 knockout impaired replication of representative viruses from four enterovirus species and two rhinovirus species. PI4KB recruitment was not observed in the absence of ACBD3. The lack of ACBD3 also affected the localization of individually expressed 3A, causing 3A to localize to the endoplasmic reticulum instead of the Golgi. Reconstitution of wild-type (wt) ACBD3 restored PI4KB recruitment and 3A localization, while an ACBD3 mutant that cannot bind to PI4KB restored 3A localization, but not virus replication. Consistently, reconstitution of a PI4KB mutant that cannot bind ACBD3 failed to restore virus replication in PI4KBKO cells. Finally, by reconstituting ACBD3 mutants lacking specific domains in ACBD3KO cells, we show that acyl-coenzyme A binding (ACB) and charged-amino-acid region (CAR) domains are dispensable for 3A-mediated PI4KB recruitment and efficient enterovirus replication. Altogether, our data provide new insight into the central role of ACBD3 in recruiting PI4KB by enterovirus 3A and reveal the minimal domains of ACBD3 involved in recruiting PI4KB and supporting enterovirus replication.IMPORTANCE Similar to all other positive-strand RNA viruses, enteroviruses reorganize host cellular membranes for efficient genome replication. A host lipid kinase, PI4KB, plays an important role in this membrane rearrangement. The exact mechanism of how enteroviruses recruit PI4KB was unclear. Here, we revealed a role of a Golgi-residing protein, ACBD3, as a mediator of PI4KB recruitment upon enterovirus replication. ACBD3 is responsible for proper localization of enteroviral 3A proteins in host cells, which is important for 3A to recruit PI4KB. By testing ACBD3 and PI4KB mutants that abrogate the ACBD3-PI4KB interaction, we showed that this interaction is crucial for enterovirus replication. The importance of specific domains of ACBD3 was evaluated for the first time, and the domains that are essential for enterovirus replication were identified. Our findings open up a possibility for targeting ACBD3 or its interaction with enteroviruses as a novel strategy for the development of broad-spectrum antienteroviral drugs.
Collapse
|
25
|
Abstract
Since I started doing scientific research, I've been fascinated by the interplay of protein structure and dynamics and how they together mediate protein function. A particular area of interest has been in understanding the mechanistic basis of how lipid-signaling enzymes function on membrane surfaces. In this award lecture article, I will describe my laboratory's studies on the structure and dynamics of lipid-signaling enzymes on membrane surfaces. This is important, as many lipid-signaling enzymes are regulated through dynamic regulatory mechanisms that control their enzymatic activity. This article will discuss my continued enthusiasm in using a synergistic application of hydrogen-deuterium exchange MS (HDX-MS) with other structural biology techniques to probe the mechanistic basis for how membrane-localized signaling enzymes are regulated and how these approaches can be used to understand how they are misregulated in disease. I will discuss specific examples of how we have used HDX-MS to study phosphoinositide kinases and the protein kinase Akt. An important focus will be on a description of how HDX-MS can be used as a powerful tool to optimize the design of constructs for X-ray crystallography and EM. The use of a diverse toolbox of biophysical methods has revealed novel insight into the complex and varied regulatory networks that control the function of lipid-signaling enzymes and enabled unique insight into the mechanics of membrane recruitment.
Collapse
Affiliation(s)
- John E Burke
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
26
|
Chalupska D, Różycki B, Humpolickova J, Faltova L, Klima M, Boura E. Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins. Sci Rep 2019; 9:567. [PMID: 30679637 PMCID: PMC6345845 DOI: 10.1038/s41598-018-37158-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is a key enzyme of the Golgi system because it produces its lipid hallmark - the phosphatidylinositol 4-phosphate (PI4P). It is recruited to Golgi by the Golgi resident ACBD3 protein, regulated by 14-3-3 proteins and it also serves as an adaptor because it recruits the small GTPase Rab11. Here, we analyzed the protein complexes formed by PI4KB in vitro using small angle x-ray scattering (SAXS) and we discovered that these protein complexes are highly flexible. The 14-3-3:PI4KB:Rab11 protein complex has 2:1:1 stoichiometry and its different conformations are rather compact, however, the ACBD3:PI4KB protein complex has both, very compact and very extended conformations. Furthermore, in vitro reconstitution revealed that the membrane is necessary for the formation of ACBD3:PI4KB:Rab11 protein complex at physiological (nanomolar) concentrations.
Collapse
Affiliation(s)
- Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., Prague, Czech Republic
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., Prague, Czech Republic
| | - Lenka Faltova
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen, PSI, Switzerland
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., Prague, Czech Republic.
| |
Collapse
|
27
|
Soupene E, Kuypers FA. ACBD6 protein controls acyl chain availability and specificity of the N-myristoylation modification of proteins. J Lipid Res 2019; 60:624-635. [PMID: 30642881 DOI: 10.1194/jlr.m091397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Indexed: 11/20/2022] Open
Abstract
Members of the human acyl-CoA binding domain-containing (ACBD) family regulate processes as diverse as viral replication, stem-cell self-renewal, organelle organization, and protein acylation. These functions are defined by nonconserved motifs present downstream of the ACBD. The human ankyrin-repeat-containing ACBD6 protein supports the reaction catalyzed by the human and Plasmodium N-myristoyltransferase (NMT) enzymes. Likewise, the newly identified Plasmodium ACBD6 homologue regulates the activity of the NMT enzymes. The relatively low abundance of myristoyl-CoA in the cell limits myristoylation. Binding of myristoyl-CoA to NMT is competed by more abundant acyl-CoA species such as palmitoyl-CoA. ACBD6 also protects the Plasmodium NMT enzyme from lauryl-CoA and forces the utilization of the myristoyl-CoA substrate. The phosphorylation of two serine residues of the acyl-CoA binding domain of human ACBD6 improves ligand binding capacity, prevents competition by unbound acyl-CoAs, and further enhances the activity of NMT. Thus, ACBD6 proteins promote N-myristoylation in mammalian cells and in one of their intracellular parasites under unfavorable substrate-limiting conditions.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA
| | | |
Collapse
|
28
|
Vickers C, Liu F, Abe K, Salama-Alber O, Jenkins M, Springate CMK, Burke JE, Withers SG, Boraston AB. Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to α-l-fucosidases from GH29. J Biol Chem 2018; 293:18296-18308. [PMID: 30282808 DOI: 10.1074/jbc.ra118.005134] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Indexed: 11/06/2022] Open
Abstract
Fucoidans are chemically complex and highly heterogeneous sulfated marine fucans from brown macro algae. Possessing a variety of physicochemical and biological activities, fucoidans are used as gelling and thickening agents in the food industry and have anticoagulant, antiviral, antitumor, antibacterial, and immune activities. Although fucoidan-depolymerizing enzymes have been identified, the molecular basis of their activity on these chemically complex polysaccharides remains largely uninvestigated. In this study, we focused on three glycoside hydrolase family 107 (GH107) enzymes: MfFcnA and two newly identified members, P5AFcnA and P19DFcnA, from a bacterial species of the genus Psychromonas Using carbohydrate-PAGE, we show that P5AFcnA and P19DFcnA are active on fucoidans that differ from those depolymerized by MfFcnA, revealing differential substrate specificity within the GH107 family. Using a combination of X-ray crystallography and NMR analyses, we further show that GH107 family enzymes share features of their structures and catalytic mechanisms with GH29 α-l-fucosidases. However, we found that GH107 enzymes have the distinction of utilizing a histidine side chain as the proposed acid/base catalyst in its retaining mechanism. Further interpretation of the structural data indicated that the active-site architectures within this family are highly variable, likely reflecting the specificity of GH107 enzymes for different fucoidan substructures. Together, these findings begin to illuminate the molecular details underpinning the biological processing of fucoidans.
Collapse
Affiliation(s)
- Chelsea Vickers
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | - Feng Liu
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada, and
| | - Kento Abe
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | - Orly Salama-Alber
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | - Meredith Jenkins
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | | | - John E Burke
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada
| | - Stephen G Withers
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada, and
| | - Alisdair B Boraston
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia 8W 3P6, Canada,.
| |
Collapse
|
29
|
Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Mol Cell 2018; 71:653-673. [DOI: 10.1016/j.molcel.2018.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
30
|
Reuberson J, Horsley H, Franklin RJ, Ford D, Neuss J, Brookings D, Huang Q, Vanderhoydonck B, Gao LJ, Jang MY, Herdewijn P, Ghawalkar A, Fallah-Arani F, Khan AR, Henshall J, Jairaj M, Malcolm S, Ward E, Shuttleworth L, Lin Y, Li S, Louat T, Waer M, Herman J, Payne A, Ceska T, Doyle C, Pitt W, Calmiano M, Augustin M, Steinbacher S, Lammens A, Allen R. Discovery of a Potent, Orally Bioavailable PI4KIIIβ Inhibitor (UCB9608) Able To Significantly Prolong Allogeneic Organ Engraftment in Vivo. J Med Chem 2018; 61:6705-6723. [PMID: 29952567 DOI: 10.1021/acs.jmedchem.8b00521] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The primary target of a novel series of immunosuppressive 7-piperazin-1-ylthiazolo[5,4- d]pyrimidin-5-amines was identified as the lipid kinase, PI4KIIIβ. Evaluation of the series highlighted their poor solubility and unwanted off-target activities. A medicinal chemistry strategy was put in place to optimize physicochemical properties within the series, while maintaining potency and improving selectivity over other lipid kinases. Compound 22 was initially identified and profiled in vivo, before further modifications led to the discovery of 44 (UCB9608), a vastly more soluble, selective compound with improved metabolic stability and excellent pharmacokinetic profile. A co-crystal structure of 44 with PI4KIIIβ was solved, confirming the binding mode of this class of inhibitor. The much-improved in vivo profile of 44 positions it as an ideal tool compound to further establish the link between PI4KIIIβ inhibition and prolonged allogeneic organ engraftment, and suppression of immune responses in vivo.
Collapse
Affiliation(s)
- James Reuberson
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Helen Horsley
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Richard J Franklin
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Daniel Ford
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Judi Neuss
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Daniel Brookings
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Qiuya Huang
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Bart Vanderhoydonck
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Ling-Jie Gao
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Mi-Yeon Jang
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Piet Herdewijn
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Anant Ghawalkar
- SAI Life Sciences Ltd , International Biotech Park , Hinjewadi, Pune 411 057 , India
| | | | - Adnan R Khan
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Jamie Henshall
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Mark Jairaj
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Sarah Malcolm
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Eleanor Ward
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | | | - Yuan Lin
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Shengqiao Li
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Thierry Louat
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Mark Waer
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Jean Herman
- Interface Valorization Platform , KU Leuven , Campus St.-Rafaël, Blok I, 8°, Kapucijnenvoer 33 B 7001 , 3000 Leuven , Belgium
| | - Andrew Payne
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Tom Ceska
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Carl Doyle
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Will Pitt
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Mark Calmiano
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| | - Martin Augustin
- Proteros Biostructures GmbH , Bunsenstrasse 7a , 82152 Martinsried , Germany
| | - Stefan Steinbacher
- Proteros Biostructures GmbH , Bunsenstrasse 7a , 82152 Martinsried , Germany
| | - Alfred Lammens
- Proteros Biostructures GmbH , Bunsenstrasse 7a , 82152 Martinsried , Germany
| | - Rodger Allen
- UCB Pharma , 208 Bath Road , Slough , Berkshire SL1 3WE , United Kingdom
| |
Collapse
|
31
|
Desrochers GF, Cornacchia C, McKay CS, Pezacki JP. Activity-Based Phosphatidylinositol Kinase Probes Detect Changes to Protein-Protein Interactions During Hepatitis C Virus Replication. ACS Infect Dis 2018; 4:752-757. [PMID: 29509402 DOI: 10.1021/acsinfecdis.8b00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein-protein interactions are integral to host-virus interactions and can contribute significantly to enzyme regulation by changing the localization of both host and viral enzymes within the cell, inducing conformational change relevant to enzyme activity or recruiting other additional proteins to form functional complexes. Identifying the interactors of active enzymes using an activity-based protein profiling probe has allowed us to characterize both normal enzyme activation mechanisms and the manner by which these mechanisms are hijacked and altered by the hepatitis C virus (HCV). Here, we report use of a novel activity-based probe, PIKBPyne, which labels phosphatidylinositol kinases (PIKs) in an activity-based manner, to investigate HCV-dependent changes in protein-protein interactions for PI4KB. Herein, we report the synthesis of new variations on PIKBPyne, compare their ability to label the interacting partners of PI4KB, and demonstrate the utility of our approach in characterizing virus-mediated changes to host function.
Collapse
Affiliation(s)
- Geneviève F. Desrochers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Christina Cornacchia
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Craig S. McKay
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Rd., Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
32
|
Kim HS, Lee K, Kim SJ, Cho S, Shin HJ, Kim C, Kim JS. Arrayed CRISPR screen with image-based assay reliably uncovers host genes required for coxsackievirus infection. Genome Res 2018; 28:859-868. [PMID: 29712754 PMCID: PMC5991512 DOI: 10.1101/gr.230250.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 04/13/2018] [Indexed: 12/26/2022]
Abstract
Pooled CRISPR screens based on lentiviral systems have been widely applied to identify the effect of gene knockout on cellular phenotype. Although many screens were successful, they also have the limitation that genes conferring mild phenotypes or those essential for growth can be overlooked, as every genetic perturbation is incorporated in the same population. Arrayed screens, on the other hand, incorporate a single genetic perturbation in each well and could overcome these limitations. However, arrayed screens based on siRNA-mediated knockdown were recently criticized for low reproducibility caused by incomplete inhibition of gene expression. To overcome these limitations, we developed a novel arrayed CRISPR screen based on a plasmid library expressing a single guide RNA (sgRNA) and disrupted 1514 genes, encoding kinases, proteins related to endocytosis, and Golgi-localized proteins, individually using 4542 sgRNAs (three sgRNAs per gene). This screen revealed host factors required for infection by coxsackievirus B3 (CVB3) from Picornaviridae, which includes human pathogens causing diverse diseases. Many host factors that had been overlooked in a conventional pooled screen were identified for CVB3 infection, including entry-related factors, translational initiation factors, and several replication factors with different functions, demonstrating the advantage of the arrayed screen. This screen was quite reliable and reproducible, as most genes identified in the primary screen were confirmed in secondary screens. Moreover, ACBD3, whose phenotype was not affected by siRNA-mediated knockdown, was reliably identified. We propose that arrayed CRISPR screens based on sgRNA plasmid libraries are powerful tools for arrayed genetic screening and applicable to larger-scale screens.
Collapse
Affiliation(s)
- Heon Seok Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 151-747, South Korea.,Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Kyungjin Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju 28116, South Korea
| | - Hye Jin Shin
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Chonsaeng Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 151-747, South Korea.,Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|
33
|
Dubankova A, Humpolickova J, Klima M, Boura E. Negative charge and membrane-tethered viral 3B cooperate to recruit viral RNA dependent RNA polymerase 3D pol. Sci Rep 2017; 7:17309. [PMID: 29230036 PMCID: PMC5725453 DOI: 10.1038/s41598-017-17621-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 11/29/2017] [Indexed: 12/28/2022] Open
Abstract
Most single stranded plus RNA viruses hijack phosphatidylinositol 4-kinases (PI4Ks) to generate membranes highly enriched in phosphatidylinositol 4-phosphate (PI4P). These membranous compartments known as webs, replication factories or replication organelles are essential for viral replication because they provide protection from the innate intracellular immune response while serving as platforms for viral replication. Using purified recombinant proteins and biomimetic model membranes we show that the nonstructural viral 3A protein is sufficient to promote membrane hyper-phosphorylation given the proper intracellular cofactors (PI4KB and ACBD3). However, our bio-mimetic in vitro reconstitution assay revealed that rather than the presence of PI4P specifically, negative charge alone is sufficient for the recruitment of 3Dpol enzymes to the surface of the lipid bilayer. Additionally, we show that membrane tethered viral 3B protein (also known as Vpg) works in combination with the negative charge to increase the efficiency of membrane recruitment of 3Dpol.
Collapse
Affiliation(s)
- Anna Dubankova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
34
|
Abstract
The Aichi RNA virus remodels host membranes by conscripting two host proteins, PI4KIIIβ (to generate PI4P in the remodeled vesicle) and ACBD3 (that tightly binds PI4KIIIβ), and localizing them on target membranes via Aichi protein 3A. In this issue of Structure, McPhail et al. (2017) reveal structural glimpses of the interfaces involved in this protein threesome using HDX-MS.
Collapse
Affiliation(s)
- Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
35
|
Enterovirus 3A Facilitates Viral Replication by Promoting Phosphatidylinositol 4-Kinase IIIβ-ACBD3 Interaction. J Virol 2017; 91:JVI.00791-17. [PMID: 28701404 DOI: 10.1128/jvi.00791-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/05/2017] [Indexed: 01/27/2023] Open
Abstract
Like other enteroviruses, enterovirus 71 (EV71) relies on phosphatidylinositol 4-kinase IIIβ (PI4KB) for genome RNA replication. However, how PI4KB is recruited to the genome replication sites of EV71 remains elusive. Recently, we reported that a host factor, ACBD3, is needed for EV71 replication by interacting with viral 3A protein. Here, we show that ACBD3 is required for the recruitment of PI4KB to RNA replication sites. Overexpression of viral 3A or EV71 infection stimulates the interaction of PI4KB and ACBD3. Consistently, EV71 infection induces the production of phosphatidylinositol-4-phosphate (PI4P). Furthermore, PI4KB, ACBD3, and 3A are all localized to the viral-RNA replication sites. Accordingly, PI4KB or ACBD3 depletion by small interfering RNA (siRNA) leads to a reduction in PI4P production after EV71 infection. I44A or H54Y substitution in 3A interrupts the stimulation of PI4KB and ACBD3. Further analysis suggests that stimulation of ACBD3-PI4KB interaction is also important for the replication of enterovirus 68 but disadvantageous to human rhinovirus 16. These results reveal a mechanism of enterovirus replication that involves a selective strategy for recruitment of PI4KB to the RNA replication sites.IMPORTANCE Enterovirus 71, like other human enteroviruses, replicates its genome within host cells, where viral proteins efficiently utilize cellular machineries. While multiple factors are involved, it is largely unclear how viral replication is controlled. We show that the 3A protein of enterovirus 71 recruits an enzyme, phosphatidylinositol 4-kinase IIIβ, by interacting with ACBD3, which alters cellular membranes through the production of a lipid, PI4P. Consequently, the viral and host proteins form a large complex that is necessary for RNA synthesis at replication sites. Notably, PI4KB-ACBD3 interaction also differentially mediates the replication of enterovirus 68 and rhinovirus 16. These results provide new insight into the molecular network of enterovirus replication.
Collapse
|
36
|
Chalupska D, Eisenreichova A, Różycki B, Rezabkova L, Humpolickova J, Klima M, Boura E. Structural analysis of phosphatidylinositol 4-kinase IIIβ (PI4KB) - 14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. J Struct Biol 2017; 200:36-44. [PMID: 28864297 DOI: 10.1016/j.jsb.2017.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022]
Abstract
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is responsible for the synthesis of the Golgi and trans-Golgi network (TGN) pool of phosphatidylinositol 4-phospahte (PI4P). PI4P is the defining lipid hallmark of Golgi and TGN and also serves as a signaling lipid and as a precursor for higher phosphoinositides. In addition, PI4KB is hijacked by many single stranded plus RNA (+RNA) viruses to generate PI4P-rich membranes that serve as viral replication organelles. Given the importance of this enzyme in cells, it has to be regulated. 14-3-3 proteins bind PI4KB upon its phosphorylation by protein kinase D, however, the structural basis of PI4KB recognition by 14-3-3 proteins is unknown. Here, we characterized the PI4KB:14-3-3 protein complex biophysically and structurally. We discovered that the PI4KB:14-3-3 protein complex is tight and is formed with 2:2 stoichiometry. Surprisingly, the enzymatic activity of PI4KB is not directly modulated by 14-3-3 proteins. However, 14-3-3 proteins protect PI4KB from proteolytic degradation in vitro. Our structural analysis revealed that the PI4KB:14-3-3 protein complex is flexible but mostly within the disordered regions connecting the 14-3-3 binding site of the PI4KB with the rest of the PI4KB enzyme. It also predicted no direct modulation of PI4KB enzymatic activity by 14-3-3 proteins and that 14-3-3 binding will not interfere with PI4KB recruitment to the membrane by the ACBD3 protein. In addition, the structural analysis explains the observed protection from degradation; it revealed that several disordered regions of PI4KB become protected from proteolytical degradation upon 14-3-3 binding. All the structural predictions were subsequently biochemically validated.
Collapse
Affiliation(s)
- Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic.
| |
Collapse
|
37
|
Masson GR, Jenkins ML, Burke JE. An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery. Expert Opin Drug Discov 2017; 12:981-994. [PMID: 28770632 DOI: 10.1080/17460441.2017.1363734] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful methodology to study protein dynamics, protein folding, protein-protein interactions, and protein small molecule interactions. The development of novel methodologies and technical advancements in mass spectrometers has greatly expanded the accessibility and acceptance of this technique within both academia and industry. Areas covered: This review examines the theoretical basis of how amide exchange occurs, how different mass spectrometer approaches can be used for HDX-MS experiments, as well as the use of HDX-MS in drug development, specifically focusing on how HDX-MS is used to characterize bio-therapeutics, and its use in examining protein-protein and protein small molecule interactions. Expert opinion: HDX-MS has been widely accepted within the pharmaceutical industry for the characterization of bio-therapeutics as well as in the mapping of antibody drug epitopes. However, there is room for this technique to be more widely used in the drug discovery process. This is particularly true in the use of HDX-MS as a complement to other high-resolution structural approaches, as well as in the development of small molecule therapeutics that can target both active-site and allosteric binding sites.
Collapse
Affiliation(s)
- Glenn R Masson
- a Protein and Nucleic Acid Chemistry Division , MRC Laboratory of Molecular Biology , Cambridge , UK
| | - Meredith L Jenkins
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| | - John E Burke
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| |
Collapse
|
38
|
Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in PIK3CD and PIK3R1. Proc Natl Acad Sci U S A 2017; 114:1982-1987. [PMID: 28167755 DOI: 10.1073/pnas.1617244114] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activated PI3K Delta Syndrome (APDS) is a primary immunodeficiency disease caused by activating mutations in either the leukocyte-restricted p110δ catalytic (PIK3CD) subunit or the ubiquitously expressed p85α regulatory (PIK3R1) subunit of class IA phosphoinositide 3-kinases (PI3Ks). There are two classes of APDS: APDS1 that arises from p110δ mutations that are analogous to oncogenic mutations found in the broadly expressed p110α subunit and APDS2 that occurs from a splice mutation resulting in p85α with a central deletion (Δ434-475). As p85 regulatory subunits associate with and inhibit all class IA catalytic subunits, APDS2 mutations are expected to similarly activate p110α, β, and δ, yet APDS2 largely phenocopies APDS1 without dramatic effects outside the immune system. We have examined the molecular mechanism of activation of both classes of APDS mutations using a combination of biochemical assays and hydrogen-deuterium exchange mass spectrometry. Intriguingly, we find that an APDS2 mutation in p85α leads to substantial basal activation of p110δ (>300-fold) and disrupts inhibitory interactions from the nSH2, iSH2, and cSH2 domains of p85, whereas p110α is only minimally basally activated (∼2-fold) when associated with mutated p85α. APDS1 mutations in p110δ (N334K, E525K, E1021K) mimic the activation mechanisms previously discovered for oncogenic mutations in p110α. All APDS mutations were potently inhibited by the Food and Drug Administration-approved p110δ inhibitor idelalisib. Our results define the molecular basis of how PIK3CD and PIK3R1 mutations result in APDS and reveal a potential path to treatment for all APDS patients.
Collapse
|