1
|
Bachmann P, Afanasyev P, Boehringer D, Glockshuber R. Structures of the Escherichia coli type 1 pilus during pilus rod assembly and after assembly termination. Nat Commun 2025; 16:4988. [PMID: 40442073 PMCID: PMC12122975 DOI: 10.1038/s41467-025-60325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
Uropathogenic Escherichia coli strains use filamentous type 1 pili to adhere to and invade uroepithelial cells. The pilus consists of a flexible tip fibrillum, formed by the adhesin FimH and the subunits FimG and FimF. The pilus rod is a helical assembly of up to 3000 copies of the main subunit FimA, terminated by a single copy of the subunit FimI that anchors the rod to the assembly platform FimD in the outer membrane. Although type 1 pilus assembly can be completely reconstituted in vitro, the precise mechanism of assembly termination on FimD is still unknown. Here, we present cryo-electron microscopy structures of the fully assembled pilus with all its components prior to and after incorporation of FimI, capped with the assembly chaperone FimC. The structures reveal that FimD positions the proximal end of the pilus rod at an angle of ca. 50 degrees relative to the plane of the outer membrane. Specific interactions between FimI and FimC, absent in the equivalent FimA-FimC interface of the non-terminated pilus, stabilize the assembly-terminated state. In addition, we present structures of the transition region between the tip fibrillum and the helical rod, showing how FimF aligns the tip fibrillum along the rod axis.
Collapse
Affiliation(s)
- Paul Bachmann
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, Zürich, 8093, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub (CEMK), ETH Zürich, Otto-Stern-Weg 3, Zürich, 8093, Switzerland
| | - Daniel Boehringer
- Cryo-EM Knowledge Hub (CEMK), ETH Zürich, Otto-Stern-Weg 3, Zürich, 8093, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, Zürich, 8093, Switzerland.
| |
Collapse
|
2
|
Kawahara K, Oki H, Iimori M, Muramoto R, Imai T, Gerle C, Shigematsu H, Matsuda S, Iida T, Nakamura S. High-resolution cryo-EM analysis visualizes hydrated type I and IV pilus structures from enterotoxigenic Escherichia coli. Structure 2025:S0969-2126(25)00107-8. [PMID: 40220752 DOI: 10.1016/j.str.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Pathogenic bacteria utilize a variety of pilus filaments to colonize intestinal epithelia, including those synthesized by the chaperone-usher or type IV pilus assembly pathway. Despite the importance of these filaments as potential drug and vaccine targets, their large size and dynamic nature make high-resolution structure determination challenging. Here, we used cryo-electron microscopy (cryo-EM) and whole-genome sequencing to determine the structures of type I and IV pili expressed in enterotoxigenic Escherichia coli. Well-defined cryo-EM maps at resolutions of 2.2 and 1.8 Å for type I and IV pilus, respectively, facilitated the de novo structural modeling for these filaments, revealing side-chain structures in detail. We resolved thousands of hydrated water molecules around and within the inner core of the filaments, which stabilize the otherwise metastable quaternary subunit assembly. The high-resolution structures offer novel insights into subunit-subunit interactions, and provide important clues to understand pilus assembly, stability, and flexibility.
Collapse
Affiliation(s)
- Kazuki Kawahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hiroya Oki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Minato Iimori
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuki Muramoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Shigeaki Matsuda
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Iida
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Galeva AV, Zhao D, Syutkin AS, Topilina MY, Shchyogolev SY, Pavlova EY, Selivanova OM, Kireev II, Surin AK, Burygin GL, Liu J, Xiang H, Pyatibratov MG. Tat-fimbriae ("tafi"): An unusual type of haloarchaeal surface structure depending on the twin-arginine translocation pathway. iScience 2025; 28:111793. [PMID: 39949959 PMCID: PMC11821415 DOI: 10.1016/j.isci.2025.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
The surface structures of archaeal cells, many of which exist at high temperatures, high salinity, and non-physiological pH, are key factors for their adaptation to extreme living conditions. In the haloarchaeon Haloarcula hispanica, we have discovered a thin filamentous surface appendage called tat-fimbriae ("tafi"), which were identified to be composed of three protein subunits, TafA, TafC, and TafE, among which TafA is the major fimbrial subunit. Molecular genetic evidence demonstrates TafA was transported through the twin-arginine translocation pathway (Tat-pathway). Based on protein structure prediction (including AlphaFold 3), tafi exhibits a linear structure: TafC at the tip, TafE acting as an adapter, TafA forming the core filament, and they link the fourth subunit TafF, anchoring tafi to the cell wall. To our knowledge, this is the first case that the Tat-pathway has been linked to the secretion of protein subunits forming prokaryotic filamentous structures.
Collapse
Affiliation(s)
- Anna V. Galeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Alexey S. Syutkin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Marina Yu Topilina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Sergei Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
| | - Elena Yu Pavlova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Igor I. Kireev
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gori 1, Bldg 40, Moscow 119234, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
- Branch of the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow Region 142290, Russia
- State Research Center for Applied Microbiology & Biotechnology, Obolensk, Serpukhov District, Moscow Region 142279, Russia
| | - Gennady L. Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
- Vavilov Saratov State Agrarian University, 1 Teatralnaya Ploshchad, Saratov 410012, Russia
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Mikhail G. Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
4
|
Sleutel M, Sonani RR, Miller JG, Wang F, Socorro AG, Chen Y, Martin R, Demeler B, Rudolph MJ, Alva V, Remaut H, Egelman EH, Conticello VP. Donor Strand Complementation and Calcium Ion Coordination Drive the Chaperone-free Polymerization of Archaeal Cannulae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630787. [PMID: 39803462 PMCID: PMC11722229 DOI: 10.1101/2024.12.30.630787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon Pyrodictium abyssi during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of ex vivo cannulae and of in vitro protein assemblies derived from recombinant cannula-like proteins. Three-dimensional reconstructions of P. abyssi cannulae revealed that the structural interactions between protomers in the native and recombinant filaments were based on donor strand complementation, a form of non-covalent polymerization in which a donor β-strand from one subunit is inserted into an acceptor groove in a β-sheet of a neighboring subunit. Donor strand complementation in cannulae is reinforced through calcium ion coordination at the interfaces between structural subunits in the respective assemblies. While donor strand complementation occurs during the assembly of chaperone-usher pili, this process requires the participation of accessory proteins that are localized in the outer membrane. In contrast, we demonstrate that calcium ions can induce assembly of cannulae in the absence of other co-factors. Crystallographic analysis of a recombinant cannula-like protein monomer provided evidence that calcium ion binding primes the precursor for donor strand invasion through unblocking of the acceptor groove. Bioinformatic analysis suggested that structurally homologous cannula-like proteins occurred within the genomes of other hyperthermophilic archaea and were encompassed within the TasA superfamily of biomatrix proteins. CryoEM structural analyses of tubular filaments derived from in vitro assembly of a recombinant cannula-like protein from an uncultured Hyperthermus species revealed a common mode of assembly to the Pyrodictium cannulae, in which donor strand complementation and calcium ion binding stabilized longitudinal and lateral assembly in tubular 2D sheets.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jessalyn G Miller
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
- Biochemistry and Molecular Genetics Department, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | | | - Yang Chen
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Reece Martin
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Michael J Rudolph
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology Tübingen, Tübingen 72076, Germany
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Vincent P Conticello
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- The Robert P. Apkarian Integrated Electron Microscopy Core (IEMC), Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Zyla DS, Wiegand T, Bachmann P, Zdanowicz R, Giese C, Meier BH, Waksman G, Hospenthal MK, Glockshuber R. The assembly platform FimD is required to obtain the most stable quaternary structure of type 1 pili. Nat Commun 2024; 15:3032. [PMID: 38589417 PMCID: PMC11001860 DOI: 10.1038/s41467-024-47212-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.
Collapse
Affiliation(s)
- Dawid S Zyla
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
- La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA, 92037, USA
| | - Thomas Wiegand
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Paul Bachmann
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Rafal Zdanowicz
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Christoph Giese
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Beat H Meier
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK
| | - Manuela K Hospenthal
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK.
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| |
Collapse
|
6
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
7
|
Giese C, Puorger C, Ignatov O, Bečárová Z, Weber ME, Schärer MA, Capitani G, Glockshuber R. Stochastic chain termination in bacterial pilus assembly. Nat Commun 2023; 14:7718. [PMID: 38001074 PMCID: PMC10673952 DOI: 10.1038/s41467-023-43449-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Adhesive type 1 pili from uropathogenic Escherichia coli strains are filamentous, supramolecular protein complexes consisting of a short tip fibrillum and a long, helical rod formed by up to several thousand copies of the major pilus subunit FimA. Here, we reconstituted the entire type 1 pilus rod assembly reaction in vitro, using all constituent protein subunits in the presence of the assembly platform FimD, and identified the so-far uncharacterized subunit FimI as an irreversible assembly terminator. We provide a complete, quantitative model of pilus rod assembly kinetics based on the measured rate constants of FimD-catalyzed subunit incorporation. The model reliably predicts the length distribution of assembled pilus rods as a function of the ratio between FimI and the main pilus subunit FimA and is fully consistent with the length distribution of membrane-anchored pili assembled in vivo. The results show that the natural length distribution of adhesive pili formed via the chaperone-usher pathway results from a stochastic chain termination reaction. In addition, we demonstrate that FimI contributes to anchoring the pilus to the outer membrane and report the crystal structures of (i) FimI in complex with the assembly chaperone FimC, (ii) the FimI-FimC complex bound to the N-terminal domain of FimD, and (iii) a ternary complex between FimI, FimA and FimC that provides structural insights on pilus assembly termination and pilus anchoring by FimI.
Collapse
Affiliation(s)
- Christoph Giese
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland.
| | - Chasper Puorger
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Oleksandr Ignatov
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- V.I. Grishchenko Clinic of Reproductive Medicine, Blahovishchenska st.25, 61052, Kharkiv, Ukraine
| | - Zuzana Bečárová
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Marco E Weber
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Martin A Schärer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Guido Capitani
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
8
|
Fulton DA, Dura G, Peters DT. The polymer and materials science of the bacterial fimbriae Caf1. Biomater Sci 2023; 11:7229-7246. [PMID: 37791425 PMCID: PMC10628683 DOI: 10.1039/d3bm01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Fimbriae are long filamentous polymeric protein structures located upon the surface of bacteria. Often implicated in pathogenicity, the biosynthesis and function of fimbriae has been a productive topic of study for many decades. Evolutionary pressures have ensured that fimbriae possess unique structural and mechanical properties which are advantageous to bacteria. These properties are also difficult to engineer with well-known synthetic and natural fibres, and this has raised an intriguing question: can we exploit the unique properties of bacterial fimbriae in useful ways? Initial work has set out to explore this question by using Capsular antigen fragment 1 (Caf1), a fimbriae expressed naturally by Yersina pestis. These fibres have evolved to 'shield' the bacterium from the immune system of an infected host, and thus are rather bioinert in nature. Caf1 is, however, very amenable to structural mutagenesis which allows the incorporation of useful bioactive functions and the modulation of the fibre's mechanical properties. Its high-yielding recombinant synthesis also ensures plentiful quantities of polymer are available to drive development. These advantageous features make Caf1 an archetype for the development of new polymers and materials based upon bacterial fimbriae. Here, we cover recent advances in this new field, and look to future possibilities of this promising biopolymer.
Collapse
Affiliation(s)
- David A Fulton
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| | - Gema Dura
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
- Departamento de Química Inorgánica Orgánica y Bioquímica Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas-IRICAAvda, C. J. Cela, 10, Ciudad Real 13071, Spain
| | - Daniel T Peters
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
9
|
Nouri S, Boudet J, Dreher-Teo H, Allain FHT, Glockshuber R, Salmon L, Giese C. Elongated Bacterial Pili as a Versatile Alignment Medium for NMR Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202305120. [PMID: 37248171 DOI: 10.1002/anie.202305120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
In NMR spectroscopy, residual dipolar couplings (RDCs) have emerged as one of the most exquisite probes of biological structure and dynamics. The measurement of RDCs relies on the partial alignment of the molecule of interest, for example by using a liquid crystal as a solvent. Here, we establish bacterial type 1 pili as an alternative liquid-crystalline alignment medium for the measurement of RDCs. To achieve alignment at pilus concentrations that allow for efficient NMR sample preparation, we elongated wild-type pili by recombinant overproduction of the main structural pilus subunit. Building on the extraordinary stability of type 1 pili against spontaneous dissociation and unfolding, we show that the medium is compatible with challenging experimental conditions such as high temperature, the presence of detergents, organic solvents or very acidic pH, setting it apart from most established alignment media. Using human ubiquitin, HIV-1 TAR RNA and camphor as spectroscopic probes, we demonstrate the applicability of the medium for the determination of RDCs of proteins, nucleic acids and small molecules. Our results show that type 1 pili represent a very useful alternative to existing alignment media and may readily assist the characterization of molecular structure and dynamics by NMR.
Collapse
Affiliation(s)
- Sirine Nouri
- Centre de RMN à Très Hauts Champs, CNRS, ENSL, UCBL, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Hiang Dreher-Teo
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, CNRS, ENSL, UCBL, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Christoph Giese
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| |
Collapse
|
10
|
Roske Y, Lindemann F, Diehl A, Cremer N, Higman VA, Schlegel B, Leidert M, Driller K, Turgay K, Schmieder P, Heinemann U, Oschkinat H. TapA acts as specific chaperone in TasA filament formation by strand complementation. Proc Natl Acad Sci U S A 2023; 120:e2217070120. [PMID: 37068239 PMCID: PMC10151520 DOI: 10.1073/pnas.2217070120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/08/2023] [Indexed: 04/19/2023] Open
Abstract
Studying mechanisms of bacterial biofilm generation is of vital importance to understanding bacterial cell-cell communication, multicellular cohabitation principles, and the higher resilience of microorganisms in a biofilm against antibiotics. Biofilms of the nonpathogenic, gram-positive soil bacterium Bacillus subtilis serve as a model system with biotechnological potential toward plant protection. Its major extracellular matrix protein components are TasA and TapA. The nature of TasA filaments has been of debate, and several forms, amyloidic and non-Thioflavin T-stainable have been observed. Here, we present the three-dimensional structure of TapA and uncover the mechanism of TapA-supported growth of nonamyloidic TasA filaments. By analytical ultracentrifugation and NMR, we demonstrate TapA-dependent acceleration of filament formation from solutions of folded TasA. Solid-state NMR revealed intercalation of the N-terminal TasA peptide segment into subsequent protomers to form a filament composed of β-sandwich subunits. The secondary structure around the intercalated N-terminal strand β0 is conserved between filamentous TasA and the Fim and Pap proteins, which form bacterial type I pili, demonstrating such construction principles in a gram-positive organism. Analogous to the chaperones of the chaperone-usher pathway, the role of TapA is in donating its N terminus to serve for TasA folding into an Ig domain-similar filament structure by donor-strand complementation. According to NMR and since the V-set Ig fold of TapA is already complete, its participation within a filament beyond initiation is unlikely. Intriguingly, the most conserved residues in TasA-like proteins (camelysines) of Bacillaceae are located within the protomer interface.
Collapse
Affiliation(s)
- Yvette Roske
- Structural Biology, Max Delbrück Center for Molecular Medicine, 13125Berlin, Germany
| | - Florian Lindemann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Anne Diehl
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Nils Cremer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Victoria A. Higman
- Department for Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, LeicesterLE1 7HB, United Kingdom
| | - Brigitte Schlegel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Martina Leidert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Kristina Driller
- Max Planck Unit for the Science of Pathogens, 10117Berlin, Germany
- Institute of Microbiology, Leibniz Universität Hannover, 30419Hannover, Germany
| | - Kürşad Turgay
- Max Planck Unit for the Science of Pathogens, 10117Berlin, Germany
- Institute of Microbiology, Leibniz Universität Hannover, 30419Hannover, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
| | - Udo Heinemann
- Structural Biology, Max Delbrück Center for Molecular Medicine, 13125Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195Berlin, Germany
| |
Collapse
|
11
|
Doran MH, Baker JL, Dahlberg T, Andersson M, Bullitt E. Three structural solutions for bacterial adhesion pilus stability and superelasticity. Structure 2023; 31:529-540.e7. [PMID: 37001523 PMCID: PMC10164138 DOI: 10.1016/j.str.2023.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/22/2023]
Abstract
Bacterial adhesion pili are key virulence factors that mediate host-pathogen interactions in diverse epithelial environments. Deploying a multimodal approach, we probed the structural basis underpinning the biophysical properties of pili originating from enterotoxigenic (ETEC) and uropathogenic bacteria. Using cryo-electron microscopy we solved the structures of three vaccine target pili from ETEC bacteria, CFA/I, CS17, and CS20. Pairing these and previous pilus structures with force spectroscopy and steered molecular dynamics simulations, we find a strong correlation between subunit-subunit interaction energies and the force required for pilus unwinding, irrespective of genetic similarity. Pili integrate three structural solutions for stabilizing their assemblies: layer-to-layer interactions, N-terminal interactions to distant subunits, and extended loop interactions from adjacent subunits. Tuning of these structural solutions alters the biophysical properties of pili and promotes the superelastic behavior that is essential for sustained bacterial attachment.
Collapse
Affiliation(s)
- Matthew H Doran
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ 08628, USA
| | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
12
|
Gaines MC, Isupov MN, Sivabalasarma S, Haque RU, McLaren M, Mollat CL, Tripp P, Neuhaus A, Gold VAM, Albers SV, Daum B. Electron cryo-microscopy reveals the structure of the archaeal thread filament. Nat Commun 2022; 13:7411. [PMID: 36456543 PMCID: PMC9715654 DOI: 10.1038/s41467-022-34652-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022] Open
Abstract
Pili are filamentous surface extensions that play roles in bacterial and archaeal cellular processes such as adhesion, biofilm formation, motility, cell-cell communication, DNA uptake and horizontal gene transfer. The model archaeaon Sulfolobus acidocaldarius assembles three filaments of the type-IV pilus superfamily (archaella, archaeal adhesion pili and UV-inducible pili), as well as a so-far uncharacterised fourth filament, named "thread". Here, we report on the cryo-EM structure of the archaeal thread. The filament is highly glycosylated and consists of subunits of the protein Saci_0406, arranged in a head-to-tail manner. Saci_0406 displays structural similarity, but low sequence homology, to bacterial type-I pilins. Thread subunits are interconnected via donor strand complementation, a feature reminiscent of bacterial chaperone-usher pili. However, despite these similarities in overall architecture, archaeal threads appear to have evolved independently and are likely assembled by a distinct mechanism.
Collapse
Affiliation(s)
- Matthew C Gaines
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, Exeter, UK
| | - Shamphavi Sivabalasarma
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Risat Ul Haque
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Clara L Mollat
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Patrick Tripp
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Alexander Neuhaus
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBBS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK.
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK.
| |
Collapse
|
13
|
Vigué A, Vautier D, Kaytoue A, Senger B, Arntz Y, Ball V, Ben Mlouka A, Gribova V, Hajjar-Garreau S, Hardouin J, Jouenne T, Lavalle P, Ploux L. Escherichia coli Biofilm Formation, Motion and Protein Patterns on Hyaluronic Acid and Polydimethylsiloxane Depend on Surface Stiffness. J Funct Biomater 2022; 13:jfb13040237. [PMID: 36412878 PMCID: PMC9680287 DOI: 10.3390/jfb13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To answer this question, we used PDMS (polydimethylsiloxane, 9-574 kPa) and HA (hyaluronic acid gels, 44 Pa-2 kPa) differing in their hydration. We showed that the softest HA inhibited Escherichia coli biofilm growth, while the stiffest PDMS activated it. The bacterial mechanical environment significantly regulated the MscS mechanosensitive channel in higher abundance on the least colonized HA-44Pa, while Type-1 pili (FimA) showed regulation in higher abundance on the most colonized PDMS-9kPa. Type-1 pili regulated the free motion (the capacity of bacteria to move far from their initial position) necessary for biofilm growth independent of the substrate surface stiffness. In contrast, the total length travelled by the bacteria (diffusion coefficient) varied positively with the surface stiffness but not with the biofilm growth. The softest, hydrated HA, the least colonized surface, revealed the least diffusive and the least free-moving bacteria. Finally, this shows that customizing the surface elasticity and hydration, together, is an efficient means of affecting the bacteria's mobility and attachment to the surface and thus designing biomedical surfaces to prevent biofilm growth.
Collapse
Affiliation(s)
- Annabelle Vigué
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Dominique Vautier
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amad Kaytoue
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Bernard Senger
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Youri Arntz
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Vincent Ball
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Amine Ben Mlouka
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
| | - Varvara Gribova
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Samar Hajjar-Garreau
- Mulhouse Materials Science Institute, CNRS/Haute Alsace University, 68057 Mulhouse, France
| | - Julie Hardouin
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Thierry Jouenne
- PISSARO Proteomic Facility, IRIB, 76130 Mont-Saint-Aignan, France
- Polymers, Biopolymers, Surfaces Laboratory, CNRS/UNIROUEN/INSA Rouen, Normandie University, 76821 Rouen, France
| | - Philippe Lavalle
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
| | - Lydie Ploux
- INSERM UMR-S 1121 Biomaterial Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
- Faculty of Dentistry, University of Strasbourg, 67000 Strasbourg, France
- CNRS, 67037 Strasbourg, France
- Correspondence:
| |
Collapse
|
14
|
Pakharukova N, Malmi H, Tuittila M, Dahlberg T, Ghosal D, Chang YW, Myint SL, Paavilainen S, Knight SD, Lamminmäki U, Uhlin BE, Andersson M, Jensen G, Zavialov AV. Archaic chaperone-usher pili self-secrete into superelastic zigzag springs. Nature 2022; 609:335-340. [PMID: 35853476 PMCID: PMC9452303 DOI: 10.1038/s41586-022-05095-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Henri Malmi
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Minna Tuittila
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Tobias Dahlberg
- Department of Physics, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Si Lhyam Myint
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sari Paavilainen
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Stefan David Knight
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Bernt Eric Uhlin
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Magnus Andersson
- Department of Physics, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Grant Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anton V Zavialov
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland.
| |
Collapse
|
15
|
Wang F, Cvirkaite-Krupovic V, Krupovic M, Egelman EH. Archaeal bundling pili of Pyrobaculum calidifontis reveal similarities between archaeal and bacterial biofilms. Proc Natl Acad Sci U S A 2022; 119:e2207037119. [PMID: 35727984 PMCID: PMC9245690 DOI: 10.1073/pnas.2207037119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a β-strand from one subunit is incorporated into a β-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 75015 Paris, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
16
|
Dahlberg T, Baker JL, Bullitt E, Andersson M. Unveiling molecular interactions that stabilize bacterial adhesion pili. Biophys J 2022; 121:2096-2106. [PMID: 35491503 PMCID: PMC9247471 DOI: 10.1016/j.bpj.2022.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Adhesion pili assembled by the chaperone-usher pathway are superelastic helical filaments on the surface of bacteria, optimized for attachment to target cells. Here, we investigate the biophysical function and structural interactions that stabilize P pili from uropathogenic bacteria. Using optical tweezers, we measure P pilus subunit-subunit interaction dynamics and show that pilus compliance is contour-length dependent. Atomic details of subunit-subunit interactions of pili under tension are shown using steered molecular dynamics (sMD) simulations. sMD results also indicate that the N-terminal "staple" region of P pili, which provides interactions with pilins that are four and five subunits away, significantly stabilizes the helical filament structure. These data are consistent with previous structural data, and suggest that more layer-to-layer interactions could compensate for the lack of a staple in type 1 pili. This study informs our understanding of essential structural and dynamic features of adhesion pili, supporting the hypothesis that the function of pili is critically dependent on their structure and biophysical properties.
Collapse
Affiliation(s)
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
17
|
Shapiro DM, Mandava G, Yalcin SE, Arranz-Gibert P, Dahl PJ, Shipps C, Gu Y, Srikanth V, Salazar-Morales AI, O'Brien JP, Vanderschuren K, Vu D, Batista VS, Malvankar NS, Isaacs FJ. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis. Nat Commun 2022; 13:829. [PMID: 35149672 PMCID: PMC8837800 DOI: 10.1038/s41467-022-28206-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Advances in synthetic biology permit the genetic encoding of synthetic chemistries at monomeric precision, enabling the synthesis of programmable proteins with tunable properties. Bacterial pili serve as an attractive biomaterial for the development of engineered protein materials due to their ability to self-assemble into mechanically robust filaments. However, most biomaterials lack electronic functionality and atomic structures of putative conductive proteins are not known. Here, we engineer high electronic conductivity in pili produced by a genomically-recoded E. coli strain. Incorporation of tryptophan into pili increased conductivity of individual filaments >80-fold. Computationally-guided ordering of the pili into nanostructures increased conductivity 5-fold compared to unordered pili networks. Site-specific conjugation of pili with gold nanoparticles, facilitated by incorporating the nonstandard amino acid propargyloxy-phenylalanine, increased filament conductivity ~170-fold. This work demonstrates the sequence-defined production of highly-conductive protein nanowires and hybrid organic-inorganic biomaterials with genetically-programmable electronic functionalities not accessible in nature or through chemical-based synthesis. Bacterial hairs called pili become highly-conductive electric wires upon addition of both natural and synthetic amino acids conjugated with gold nanoparticles. Here the authors use computationally-guided ordering further increasing their conductivity, thus yielding genetically-programmable materials.
Collapse
Affiliation(s)
- Daniel Mark Shapiro
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Gunasheil Mandava
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Pol Arranz-Gibert
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Peter J Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Catharine Shipps
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Yangqi Gu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Vishok Srikanth
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Aldo I Salazar-Morales
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - J Patrick O'Brien
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Koen Vanderschuren
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Dennis Vu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| | - Farren J Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA. .,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
18
|
Garnett JA, Atherton J. Structure Determination of Microtubules and Pili: Past, Present, and Future Directions. Front Mol Biosci 2022; 8:830304. [PMID: 35096976 PMCID: PMC8795688 DOI: 10.3389/fmolb.2021.830304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Historically proteins that form highly polymeric and filamentous assemblies have been notoriously difficult to study using high resolution structural techniques. This has been due to several factors that include structural heterogeneity, their large molecular mass, and available yields. However, over the past decade we are now seeing a major shift towards atomic resolution insight and the study of more complex heterogenous samples and in situ/ex vivo examination of multi-subunit complexes. Although supported by developments in solid state nuclear magnetic resonance spectroscopy (ssNMR) and computational approaches, this has primarily been due to advances in cryogenic electron microscopy (cryo-EM). The study of eukaryotic microtubules and bacterial pili are good examples, and in this review, we will give an overview of the technical innovations that have enabled this transition and highlight the advancements that have been made for these two systems. Looking to the future we will also describe systems that remain difficult to study and where further technical breakthroughs are required.
Collapse
Affiliation(s)
- James A. Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
19
|
Du M, Yuan Z, Werneburg GT, Henderson NS, Chauhan H, Kovach A, Zhao G, Johl J, Li H, Thanassi DG. Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis. Nat Commun 2021; 12:5207. [PMID: 34471127 PMCID: PMC8410936 DOI: 10.1038/s41467-021-25522-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
Uropathogenic Escherichia coli assemble surface structures termed pili or fimbriae to initiate infection of the urinary tract. P pili facilitate bacterial colonization of the kidney and pyelonephritis. P pili are assembled through the conserved chaperone-usher pathway. Much of the structural and functional understanding of the chaperone-usher pathway has been gained through investigations of type 1 pili, which promote binding to the bladder and cystitis. In contrast, the structural basis for P pilus biogenesis at the usher has remained elusive. This is in part due to the flexible and variable-length P pilus tip fiber, creating structural heterogeneity, and difficulties isolating stable P pilus assembly intermediates. Here, we circumvent these hindrances and determine cryo-electron microscopy structures of the activated PapC usher in the process of secreting two- and three-subunit P pilus assembly intermediates, revealing processive steps in P pilus biogenesis and capturing new conformational dynamics of the usher assembly machine. Escherichia coli form pili structures in order to initiate infection of the urinary tract. Here, Thanassi et al., have solved the structures of pili assembly intermediates and provided insights into their biogenesis and assembly.
Collapse
Affiliation(s)
- Minge Du
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Zuanning Yuan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Glenn T Werneburg
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA.,Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nadine S Henderson
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA
| | - Hemil Chauhan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA.,SUNY Downstate College of Medicine, Brooklyn, New York, NY, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Gongpu Zhao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Jessica Johl
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - David G Thanassi
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA. .,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA.
| |
Collapse
|
20
|
Baker JL, Dahlberg T, Bullitt E, Andersson M. Impact of an alpha helix and a cysteine-cysteine disulfide bond on the resistance of bacterial adhesion pili to stress. Proc Natl Acad Sci U S A 2021; 118:e2023595118. [PMID: 34011607 PMCID: PMC8166124 DOI: 10.1073/pnas.2023595118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli express adhesion pili that mediate attachment to host cell surfaces and are exposed to body fluids in the urinary and gastrointestinal tracts. Pilin subunits are organized into helical polymers, with a tip adhesin for specific host binding. Pili can elastically unwind when exposed to fluid flow forces, reducing the adhesin load, thereby facilitating sustained attachment. Here we investigate biophysical and structural differences of pili commonly expressed on bacteria that inhabit the urinary and intestinal tracts. Optical tweezers measurements reveal that class 1a pili of uropathogenic E. coli (UPEC), as well as class 1b of enterotoxigenic E. coli (ETEC), undergo an additional conformational change beyond pilus unwinding, providing significantly more elasticity to their structure than ETEC class 5 pili. Examining structural and steered molecular dynamics simulation data, we find that this difference in class 1 pili subunit behavior originates from an α-helical motif that can unfold when exposed to force. A disulfide bond cross-linking β-strands in class 1 pili stabilizes subunits, allowing them to tolerate higher forces than class 5 pili that lack this covalent bond. We suggest that these extra contributions to pilus resiliency are relevant for the UPEC niche, since resident bacteria are exposed to stronger, more transient drag forces compared to those experienced by ETEC bacteria in the mucosa of the intestinal tract. Interestingly, class 1b ETEC pili include the same structural features seen in UPEC pili, while requiring lower unwinding forces that are more similar to those of class 5 ETEC pili.
Collapse
Affiliation(s)
- Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ 08628;
| | | | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118
| | | |
Collapse
|
21
|
Discovery of Bacterial Fimbria-Glycan Interactions Using Whole-Cell Recombinant Escherichia coli Expression. mBio 2021; 12:mBio.03664-20. [PMID: 33622724 PMCID: PMC8545135 DOI: 10.1128/mbio.03664-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli alone. Some E. coli CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other E. coli CU fimbria types remains poorly characterized. Here, we used a recombinant E. coli strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant E. coli expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease.
Collapse
|
22
|
Heidler TV, Ernits K, Ziolkowska A, Claesson R, Persson K. Porphyromonas gingivalis fimbrial protein Mfa5 contains a von Willebrand factor domain and an intramolecular isopeptide. Commun Biol 2021; 4:106. [PMID: 33495563 PMCID: PMC7835359 DOI: 10.1038/s42003-020-01621-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
The Gram-negative bacterium Porphyromonas gingivalis is a secondary colonizer of the oral biofilm and is involved in the onset and progression of periodontitis. Its fimbriae, of type-V, are important for attachment to other microorganisms in the biofilm and for adhesion to host cells. The fimbriae are assembled from five proteins encoded by the mfa1 operon, of which Mfa5 is one of the ancillary tip proteins. Here we report the X-ray structure of the N-terminal half of Mfa5, which reveals a von Willebrand factor domain and two IgG-like domains. One of the IgG-like domains is stabilized by an intramolecular isopeptide bond, which is the first such bond observed in a Gram-negative bacterium. These features make Mfa5 structurally more related to streptococcal adhesins than to the other P. gingivalis Mfa proteins. The structure reported here indicates that horizontal gene transfer has occurred among the bacteria within the oral biofilm.
Collapse
Affiliation(s)
- Thomas V. Heidler
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Karin Ernits
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Agnieszka Ziolkowska
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Rolf Claesson
- grid.12650.300000 0001 1034 3451Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Karina Persson
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
23
|
He LH, Wang H, Liu Y, Kang M, Li T, Li CC, Tong AP, Zhu YB, Song YJ, Savarino SJ, Prouty MG, Xia D, Bao R. Chaperone-tip adhesin complex is vital for synergistic activation of CFA/I fimbriae biogenesis. PLoS Pathog 2020; 16:e1008848. [PMID: 33007034 PMCID: PMC7531860 DOI: 10.1371/journal.ppat.1008848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
Colonization factor CFA/I defines the major adhesive fimbriae of enterotoxigenic Escherichia coli and mediates bacterial attachment to host intestinal epithelial cells. The CFA/I fimbria consists of a tip-localized minor adhesive subunit, CfaE, and thousands of copies of the major subunit CfaB polymerized into an ordered helical rod. Biosynthesis of CFA/I fimbriae requires the assistance of the periplasmic chaperone CfaA and outer membrane usher CfaC. Although the CfaE subunit is proposed to initiate the assembly of CFA/I fimbriae, how it performs this function remains elusive. Here, we report the establishment of an in vitro assay for CFA/I fimbria assembly and show that stabilized CfaA-CfaB and CfaA-CfaE binary complexes together with CfaC are sufficient to drive fimbria formation. The presence of both CfaA-CfaE and CfaC accelerates fimbria formation, while the absence of either component leads to linearized CfaB polymers in vitro. We further report the crystal structure of the stabilized CfaA-CfaE complex, revealing features unique for biogenesis of Class 5 fimbriae.
Collapse
Affiliation(s)
- Li-hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Yang Liu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Mei Kang
- Department of Laboratory medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-ping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Stephen J. Savarino
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Michael G. Prouty
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Vance TDR, Ye Q, Conroy B, Davies PL. Essential role of calcium in extending RTX adhesins to their target. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100036. [PMID: 32984811 PMCID: PMC7493085 DOI: 10.1016/j.yjsbx.2020.100036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022]
Abstract
Elongated beta-sandwich repeats are a major part of bacterial RTX adhesins. The repeats are arranged in tandem to extend away from the bacterial surface. Calcium ions are coordinated in the linkers between repeats to stiffen the protein. Rigidification of the tandem repeats further helps extension of the adhesin. The repeats differ greatly between species, but all have Ca2+ in their linkers.
RTX adhesins are long, multi-domain proteins present on the outer membrane of many Gram-negative bacteria. From this vantage point, adhesins use their distal ligand-binding domains for surface attachment leading to biofilm formation. To expand the reach of the ligand-binding domains, RTX adhesins maintain a central extender region of multiple tandem repeats, which makes up most of the proteins’ large molecular weight. Alignments of the 10-15-kDa extender domains show low sequence identity between adhesins. Here we have produced and structurally characterized protein constructs of four tandem repeats (tetra-tandemers) from two different RTX adhesins. In comparing the tetra-tandemers to each other and already solved structures from Marinomonas primoryensis and Salmonella enterica, the extender domains fold as diverse beta-sandwich structures with widely differing calcium contents. However, all the tetra-tandemers have at least one calcium ion coordinated in the linker region between beta-sandwich domains whose role appears to be the rigidification of the extender region to help the adhesin extend its reach.
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| | - Qilu Ye
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| | - Brigid Conroy
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Science, Queen's University Kingston ON, Canada
| |
Collapse
|
25
|
Zyla D, Echeverria B, Glockshuber R. Donor strand sequence, rather than donor strand orientation, determines the stability and non-equilibrium folding of the type 1 pilus subunit FimA. J Biol Chem 2020; 295:12437-12448. [PMID: 32651228 DOI: 10.1074/jbc.ra120.014324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/07/2020] [Indexed: 11/06/2022] Open
Abstract
FimA is the main structural subunit of adhesive type 1 pili from uropathogenic Escherichia coli strains. Up to 3000 copies of FimA assemble to the helical pilus rod through a mechanism termed donor strand complementation, in which the incomplete immunoglobulin-like fold of each FimA subunit is complemented by the N-terminal extension (Nte) of the next subunit. The Nte of FimA, which exhibits a pseudo-palindromic sequence, is inserted in an antiparallel orientation relative to the last β-strand of the preceding subunit in the pilus. The resulting subunit-subunit interactions are extraordinarily stable against dissociation and unfolding. Alternatively, FimA can fold to a self-complemented monomer with anti-apoptotic activity, in which the Nte inserts intramolecularly into the FimA core in the opposite, parallel orientation. The FimA monomers, however, show dramatically lower thermodynamic stability compared with FimA subunits in the assembled pilus. Using self-complemented FimA variants with reversed, pseudo-palindromic extensions, we demonstrate that the high stability of FimA polymers is primarily caused by the specific interactions between the side chains of the Nte residues and the FimA core and not by the antiparallel orientation of the donor strand alone. In addition, we demonstrate that nonequilibrium two-state folding, a hallmark of FimA with the Nte inserted in the pilus rod-like, antiparallel orientation, only depends on the identity of the inserted Nte side chains and not on Nte orientation.
Collapse
Affiliation(s)
- Dawid Zyla
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Blanca Echeverria
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol 2020; 18:211-226. [PMID: 32071440 DOI: 10.1038/s41579-020-0324-0] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are common, recurrent infections that can be mild to life-threatening. The continued emergence of antibiotic resistance, together with our increasing understanding of the detrimental effects conferred by broad-spectrum antibiotic use on the health of the beneficial microbiota of the host, has underscored the weaknesses in our current treatment paradigm for UTIs. In this Review, we discuss how recent microbiological, structural, genetic and immunological studies have expanded our understanding of host-pathogen interactions during UTI pathogenesis. These basic scientific findings have the potential to shift the strategy for UTI treatment away from broad-spectrum antibiotics targeting conserved aspects of bacterial replication towards pathogen-specific antibiotic-sparing therapeutics that target core determinants of bacterial virulence at the host-pathogen interface.
Collapse
|
27
|
Zheng W, Andersson M, Mortezaei N, Bullitt E, Egelman E. Cryo-EM structure of the CFA/I pilus rod. IUCRJ 2019; 6:815-821. [PMID: 31576215 PMCID: PMC6760452 DOI: 10.1107/s2052252519007966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are common agents of diarrhea for travelers and a major cause of mortality in children in developing countries. To attach to intestinal cells ETEC express colonization factors, among them CFA/I, which are the most prevalent factors and are the archetypical representative of class 5 pili. The helical quaternary structure of CFA/I can be unwound under tensile force and it has been shown that this mechanical property helps bacteria to withstand shear forces from fluid motion. We report in this work the CFA/I pilus structure at 4.3 Å resolution from electron cryomicroscopy (cryo-EM) data, and report details of the donor strand complementation. The CfaB pilins modeled into the cryo-EM map allow us to identify the buried surface area between subunits, and these regions are correlated to quaternary structural stability in class 5 and chaperone-usher pili. In addition, from the model built using the EM structure we also predicted that residue 13 (proline) of the N-terminal β-strand could have a major impact on the filament's structural stability. Therefore, we used optical tweezers to measure and compare the stability of the quaternary structure of wild type CFA/I and a point-mutated CFA/I with a propensity for unwinding. We found that pili with this mutated CFA/I require a lower force to unwind, supporting our hypothesis that Pro13 is important for structural stability. The high-resolution CFA/I pilus structure presented in this work and the analysis of structural stability will be useful for the development of novel antimicrobial drugs that target adhesion pili needed for initial attachment and sustained adhesion of ETEC.
Collapse
Affiliation(s)
- Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | | | - Esther Bullitt
- Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Edward Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
28
|
Hughes SA, Wang F, Wang S, Kreutzberger MAB, Osinski T, Orlova A, Wall JS, Zuo X, Egelman EH, Conticello VP. Ambidextrous helical nanotubes from self-assembly of designed helical hairpin motifs. Proc Natl Acad Sci U S A 2019; 116:14456-14464. [PMID: 31262809 PMCID: PMC6642399 DOI: 10.1073/pnas.1903910116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tandem repeat proteins exhibit native designability and represent potentially useful scaffolds for the construction of synthetic biomimetic assemblies. We have designed 2 synthetic peptides, HEAT_R1 and LRV_M3Δ1, based on the consensus sequences of single repeats of thermophilic HEAT (PBS_HEAT) and Leucine-Rich Variant (LRV) structural motifs, respectively. Self-assembly of the peptides afforded high-aspect ratio helical nanotubes. Cryo-electron microscopy with direct electron detection was employed to analyze the structures of the solvated filaments. The 3D reconstructions from the cryo-EM maps led to atomic models for the HEAT_R1 and LRV_M3Δ1 filaments at resolutions of 6.0 and 4.4 Å, respectively. Surprisingly, despite sequence similarity at the lateral packing interface, HEAT_R1 and LRV_M3Δ1 filaments adopt the opposite helical hand and differ significantly in helical geometry, while retaining a local conformation similar to previously characterized repeat proteins of the same class. The differences in the 2 filaments could be rationalized on the basis of differences in cohesive interactions at the lateral and axial interfaces. These structural data reinforce previous observations regarding the structural plasticity of helical protein assemblies and the need for high-resolution structural analysis. Despite these observations, the native designability of tandem repeat proteins offers the opportunity to engineer novel helical nanotubes. Moreover, the resultant nanotubes have independently addressable and chemically distinguishable interior and exterior surfaces that would facilitate applications in selective recognition, transport, and release.
Collapse
Affiliation(s)
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Shengyuan Wang
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Tomasz Osinski
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Joseph S Wall
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | | |
Collapse
|
29
|
Abstract
The chaperone-usher (CU) pathway is a conserved secretion system dedicated to the assembly of a superfamily of virulence-associated surface structures by a wide range of Gram-negative bacteria. Pilus biogenesis by the CU pathway requires two specialized assembly components: a dedicated periplasmic chaperone and an integral outer membrane assembly and secretion platform termed the usher. The CU pathway assembles a variety of surface fibers, ranging from thin, flexible filaments to rigid, rod-like organelles. Pili typically act as adhesins and function as virulence factors that mediate contact with host cells and colonization of host tissues. Pilus-mediated adhesion is critical for early stages of infection, allowing bacteria to establish a foothold within the host. Pili are also involved in modulation of host cell signaling pathways, bacterial invasion into host cells, and biofilm formation. Pili are critical for initiating and sustaining infection and thus represent attractive targets for the development of antivirulence therapeutics. Such therapeutics offer a promising alternative to broad-spectrum antibiotics and provide a means to combat antibiotic resistance and treat infection while preserving the beneficial microbiota. A number of strategies have been taken to develop antipilus therapeutics, including vaccines against pilus proteins, competitive inhibitors of pilus-mediated adhesion, and small molecules that disrupt pilus biogenesis. Here we provide an overview of the function and assembly of CU pili and describe current efforts aimed at interfering with these critical virulence structures.
Collapse
|
30
|
Hwang S, Öster C, Chevelkov V, Giller K, Lange S, Becker S, Lange A. Characterization of H/D exchange in type 1 pili by proton-detected solid-state NMR and molecular dynamics simulations. JOURNAL OF BIOMOLECULAR NMR 2019; 73:281-291. [PMID: 31028572 PMCID: PMC6692446 DOI: 10.1007/s10858-019-00247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Uropathogenic Escherichia coli invades and colonizes hosts by attaching to cells using adhesive pili on the bacterial surface. Although many biophysical techniques have been used to study the structure and mechanical properties of pili, many important details are still unknown. Here we use proton-detected solid-state NMR experiments to investigate solvent accessibility and structural dynamics. Deuterium back-exchange at labile sites of the perdeuterated, fully proton back-exchanged pili was conducted to investigate hydrogen/deuterium (H/D) exchange patterns of backbone amide protons in pre-assembled pili. We found distinct H/D exchange patterns in lateral and axial intermolecular interfaces in pili. Amide protons protected from H/D exchange in pili are mainly located in the core region of the monomeric subunit and in the lateral intermolecular interface, whereas the axial intermolecular interface and the exterior region of pili are highly exposed to H/D exchange. Additionally, we performed molecular dynamics simulations of the type 1 pilus rod and estimated the probability of H/D exchange based on hydrogen bond dynamics. The comparison of the experimental observables and simulation data provides insights into stability and mechanical properties of pili.
Collapse
Affiliation(s)
- Songhwan Hwang
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sascha Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Institut für Biologie, Humboldt-Universität Zu Berlin, Berlin, Germany.
| |
Collapse
|
31
|
Classical chaperone-usher (CU) adhesive fimbriome: uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Folia Microbiol (Praha) 2019; 65:45-65. [DOI: 10.1007/s12223-019-00719-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
|
32
|
Żyła DS, Prota AE, Capitani G, Glockshuber R. Alternative folding to a monomer or homopolymer is a common feature of the type 1 pilus subunit FimA from enteroinvasive bacteria. J Biol Chem 2019; 294:10553-10563. [PMID: 31126987 PMCID: PMC6615685 DOI: 10.1074/jbc.ra119.008610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/21/2019] [Indexed: 12/30/2022] Open
Abstract
Adhesive type 1 pili from enteroinvasive, Gram-negative bacteria mediate attachment to host cells. Up to 3000 copies of the main pilus subunit, FimA, assemble into the filamentous, helical quaternary structure of the pilus rod via a mechanism termed donor-strand complementation, in which the N-terminal extension of each subunit, the donor strand, is inserted into the incomplete immunoglobulin-like fold of the preceding FimA subunit. For FimA from Escherichia coli, it has been previously shown that the protein can also adopt a monomeric, self-complemented conformation in which the donor strand is inserted intramolecularly in the opposite orientation relative to that observed for FimA polymers. Notably, soluble FimA monomers can act as apoptosis inhibitors in epithelial cells after uptake of type 1-piliated pathogens. Here, we show that the FimA orthologues from Escherichia coli, Shigella flexneri, and Salmonella enterica can all fold to form self-complemented monomers. We solved X-ray structures of all three FimA monomers at 0.89–1.69 Å resolutions, revealing identical, intramolecular donor-strand complementation mechanisms. Our results also showed that the pseudo-palindromic sequences of the donor strands in all FimA proteins permit their alternative folding possibilities. All FimA monomers proved to be 50–60 kJ/mol less stable against unfolding than their pilus rod-like counterparts (which exhibited very high energy barriers of unfolding and refolding). We conclude that the ability of FimA to adopt an alternative, monomeric state with anti-apoptotic activity is a general feature of FimA proteins of type 1-piliated bacteria.
Collapse
Affiliation(s)
- Dawid S Żyła
- From the Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich and
| | - Andrea E Prota
- the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Guido Capitani
- the Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Rudi Glockshuber
- From the Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich and
| |
Collapse
|
33
|
Tamadonfar KO, Omattage NS, Spaulding CN, Hultgren SJ. Reaching the End of the Line: Urinary Tract Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0014-2019. [PMID: 31172909 PMCID: PMC11314827 DOI: 10.1128/microbiolspec.bai-0014-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
Urinary tract infections (UTIs) cause a substantial health care burden. UTIs (i) are most often caused by uropathogenic Escherichia coli (UPEC), (ii) primarily affect otherwise healthy females (50% of women will have a UTI), (iii) are associated with significant morbidity and economic impact, (iv) can become chronic, and (v) are highly recurrent. A history of UTI is a significant risk factor for a recurrent UTI (rUTI). In otherwise healthy women, an acute UTI leads to a 25 to 50% chance of rUTI within months of the initial infection. Interestingly, rUTIs are commonly caused by the same strain of E. coli that led to the initial infection, arguing that there exist host-associated reservoirs, like the gastrointestinal tract and underlying bladder tissue, that can seed rUTIs. Additionally, catheter-associated UTIs (CAUTI), caused by Enterococcus and Staphylococcus as well as UPEC, represent a major health care concern. The host's response of depositing fibrinogen at the site of infection has been found to be critical to establishing CAUTI. The Drug Resistance Index, an evaluation of antibiotic resistance, indicates that UTIs have become increasingly difficult to treat since the mid-2000s. Thus, UTIs are a "canary in the coal mine," warning of the possibility of a return to the preantibiotic era, where some common infections are untreatable with available antibiotics. Numerous alternative strategies for both the prevention and treatment of UTIs are being pursued, with a focus on the development of vaccines and small-molecule inhibitors targeting virulence factors, in the hopes of reducing the burden of urogenital tract infections in an antibiotic-sparing manner.
Collapse
Affiliation(s)
- Kevin O Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Natalie S Omattage
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Caitlin N Spaulding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Harvard University School of Public Health, Boston, MA 02115
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Women's Infectious Disease Research, Washington University, School of Medicine, St. Louis, MO 63110
| |
Collapse
|
34
|
Abstract
Type 1 and P pili are important virulence factors of uropathogenic Escherichia coli, the leading cause of urinary tract infections. In this issue of Structure, Hospenthal et al. (2017) describe a near-atomic resolution cryo-EM structure of the type 1 pilus rod, providing molecular insights into rod uncoiling in two pili.
Collapse
|
35
|
Hospenthal MK, Waksman G. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0010-2018. [PMID: 30681068 PMCID: PMC11588285 DOI: 10.1128/microbiolspec.psib-0010-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 01/02/2023] Open
Abstract
Chaperone-usher (CU) pili are long, supramolecular protein fibers tethered to the surface of numerous bacterial pathogens. These virulence factors function primarily in bacterial adhesion to host tissues, but they also mediate biofilm formation. Type 1 and P pili of uropathogenic Escherichia coli (UPEC) are the two best-studied CU pilus examples, and here we primarily focus on the former. UPEC can be transmitted to the urinary tract by fecal shedding. It can then ascend up the urinary tract and cause disease by invading and colonizing host tissues of the bladder, causing cystitis, and the kidneys, causing pyelonephritis. FimH is the subunit displayed at the tip of type 1 pili and mediates adhesion to mannosylated host cells via a unique catch-bond mechanism. In response to shear forces caused by urine flow, FimH can transition from a low-affinity to high-affinity binding mode. This clever allosteric mechanism allows UPEC cells to remain tightly attached during periods of urine flow, while loosening their grip to allow dissemination through the urinary tract during urine stasis. Moreover, the bulk of a CU pilus is made up of the rod, which can reversibly uncoil in response to urine flow to evenly spread the tensile forces over the entire pilus length. We here explore the novel structural and mechanistic findings relating to the type 1 pilus FimH catch-bond and rod uncoiling and explain how they function together to enable successful attachment, spread, and persistence in the hostile urinary tract.
Collapse
Affiliation(s)
- Manuela K Hospenthal
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
| |
Collapse
|
36
|
Willaert RG. Adhesins of Yeasts: Protein Structure and Interactions. J Fungi (Basel) 2018; 4:jof4040119. [PMID: 30373267 PMCID: PMC6308950 DOI: 10.3390/jof4040119] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of yeast cells to adhere to other cells or substrates is crucial for many yeasts. The budding yeast Saccharomyces cerevisiae can switch from a unicellular lifestyle to a multicellular one. A crucial step in multicellular lifestyle adaptation is self-recognition, self-interaction, and adhesion to abiotic surfaces. Infectious yeast diseases such as candidiasis are initiated by the adhesion of the yeast cells to host cells. Adhesion is accomplished by adhesin proteins that are attached to the cell wall and stick out to interact with other cells or substrates. Protein structures give detailed insights into the molecular mechanism of adhesin-ligand interaction. Currently, only the structures of a very limited number of N-terminal adhesion domains of adhesins have been solved. Therefore, this review focuses on these adhesin protein families. The protein architectures, protein structures, and ligand interactions of the flocculation protein family of S. cerevisiae; the epithelial adhesion family of C. glabrata; and the agglutinin-like sequence protein family of C. albicans are reviewed and discussed.
Collapse
Affiliation(s)
- Ronnie G Willaert
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), IJRG VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
- Department Bioscience Engineering, University Antwerp, 2020 Antwerp, Belgium.
| |
Collapse
|
37
|
Atomic insights into the genesis of cellular filaments by globular proteins. Nat Struct Mol Biol 2018; 25:705-714. [PMID: 30076408 PMCID: PMC6185745 DOI: 10.1038/s41594-018-0096-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/21/2018] [Indexed: 02/04/2023]
Abstract
Self-assembly of proteins into filaments, such as actin and tubulin filaments, underlies essential cellular processes in all three domains of life. The early emergence of filaments in evolutionary history suggests that filament genesis might be a robust process. Here we describe the fortuitous construction of GFP fusion proteins that self-assemble as fluorescent polar filaments in Escherichia coli. Filament formation is achieved by appending as few as 12 residues. Crystal structures reveal that the protomers each donate an appendage to fill a groove between two following protomers along the filament. This exchange of appendages resembles runaway domain swapping but is distinguished by higher efficiency because monomers cannot competitively bind their own appendages. Ample evidence of this “runaway domain coupling” mechanism in nature suggests it could facilitate the evolutionary pathway from globular protein to polar filament, requiring a minimal extension of protein sequence and no significant refolding.
Collapse
|
38
|
Abstract
Nosocomial infections and infections of indwelling devices are major healthcare problems worldwide. These infections are strongly associated with the ability of pathogens to form biofilms on biotic and abiotic surfaces. Panantibiotic-resistant Acinetobacter baumannii is one of the most troublesome pathogens, capable of colonizing medical devices by means of Csu pili, an adhesive organelle that belongs to the widespread class of archaic chaperone–usher pili. Here, we report an atomic-resolution insight into the mechanism of bacterial attachment to abiotic surfaces. We show that archaic pili use a binding mechanism that enables bacterial adhesion to structurally variable substrates. The results suggest a simple and cheap solution to reduce infections of A. baumannii and related pathogens. Acinetobacter baumannii—a leading cause of nosocomial infections—has a remarkable capacity to persist in hospital environments and medical devices due to its ability to form biofilms. Biofilm formation is mediated by Csu pili, assembled via the “archaic” chaperone–usher pathway. The X-ray structure of the CsuC-CsuE chaperone–adhesin preassembly complex reveals the basis for bacterial attachment to abiotic surfaces. CsuE exposes three hydrophobic finger-like loops at the tip of the pilus. Decreasing the hydrophobicity of these abolishes bacterial attachment, suggesting that archaic pili use tip-fingers to detect and bind to hydrophobic cavities in substrates. Antitip antibody completely blocks biofilm formation, presenting a means to prevent the spread of the pathogen. The use of hydrophilic materials instead of hydrophobic plastics in medical devices may represent another simple and cheap solution to reduce pathogen spread. Phylogenetic analysis suggests that the tip-fingers binding mechanism is shared by all archaic pili carrying two-domain adhesins. The use of flexible fingers instead of classical receptor-binding cavities is presumably more advantageous for attachment to structurally variable substrates, such as abiotic surfaces.
Collapse
|
39
|
Spaulding CN, Schreiber HL, Zheng W, Dodson KW, Hazen JE, Conover MS, Wang F, Svenmarker P, Luna-Rico A, Francetic O, Andersson M, Hultgren S, Egelman EH. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. eLife 2018; 7:31662. [PMID: 29345620 PMCID: PMC5798934 DOI: 10.7554/elife.31662] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases. Escherichia coli, or E. coli for short, is a type of bacteria commonly found in the guts of people and animals. Certain types of E. coli can cause urinary tract infections (UTIs): they travel from the digestive tract up to the bladder (and sometimes to the kidneys) where they provoke painful symptoms. To cause the infection, the bacteria must become solidly attached to the lining of the bladder; otherwise they will get flushed out whenever urine is expelled. Pili are hair-like structures that cover a bacterium and allow it to attach to surfaces. E. coli has many different types of pili, but one seems particularly important in UTIs: type 1 pili. These pili are formed of subunits that assemble into a long coil-shaped rod, which is tipped by adhesive molecules that can stick to body surfaces. The current hypothesis is that the pili act as shock absorbers: when the bladder empties, the pili’s coil-like structure can unwind into a flexible straight fiber. This would take some of the forces off the adhesive molecules that are attached to the bladder, and help the bacteria to remain in place when urine flows out. However, the exact structure of type 1 pili is still unclear, and the essential role of their coil-like shape unconfirmed. Here, Spaulding, Schreiber, Zheng et al. use a microscopy method called cryo-EM to reveal the structure of the type 1 pili at near atomic-level, and identify the key units necessary for their coiling properties. The experiments show that pili with certain mutations in these units unwind much more easily when the bacteria carrying them are ‘tugged on’ with molecular tweezers. The bacteria with mutant pili are also less able to cause UTIs in mice. The coiling ability of the type 1 pili is therefore essential for E. coli to invade and colonize the bladder. Every year, over 150 million people worldwide experience a UTI; for 25% of women, the infection regularly returns. Antibiotics usually treat the problem but bacteria are becoming resistant to these drugs. New treatments could be designed if scientists understand what roles pili play in the infection mechanisms.
Collapse
Affiliation(s)
- Caitlin N Spaulding
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Henry Louis Schreiber
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| | - Karen W Dodson
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Jennie E Hazen
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Matt S Conover
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| | | | - Areli Luna-Rico
- Department of Structural Biology and Chemistry, Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | - Olivera Francetic
- Department of Structural Biology and Chemistry, Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | | | - Scott Hultgren
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| |
Collapse
|