1
|
Ito S, Sugita Y. Free-energy landscapes of transmembrane homodimers by bias-exchange adaptively biased molecular dynamics. Biophys Chem 2024; 307:107190. [PMID: 38290241 DOI: 10.1016/j.bpc.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Membrane proteins play essential roles in various biological functions within the cell. One of the most common functional regulations involves the dimerization of two single-pass transmembrane (TM) helices. Glycophorin A (GpA) and amyloid precursor protein (APP) form TM homodimers in the membrane, which have been investigated both experimentally and computationally. The homodimer structures are well characterized using only four collective variables (CVs) when each TM helix is stable. The CVs are the interhelical distance, the crossing angle, and the Crick angles for two TM helices. However, conformational sampling with multi-dimensional replica-exchange umbrella sampling (REUS) requires too many replicas to sample all the CVs for exploring the conformational landscapes. Here, we show that the bias-exchange adaptively biased molecular dynamics (BE-ABMD) with the four CVs effectively explores the free-energy landscapes of the TM helix dimers of GpA, wild-type APP and its mutants in the IMM1 implicit membrane. Compared to the original ABMD, the bias-exchange algorithm in BE-ABMD can provide a more rapidly converged conformational landscape. The BE-ABMD simulations could also reveal TM packing interfaces of the membrane proteins and the dependence of the free-energy landscapes on the membrane thickness. This approach is valuable for numerous other applications, including those involving explicit solvent and a lipid bilayer in all-atom force fields or Martini coarse-grained models, and enhances our understanding of protein-protein interactions in biological membranes.
Collapse
Affiliation(s)
- Shingo Ito
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
2
|
Sun J, Kulandaisamy A, Ru J, Gromiha MM, Cribbs AP. TMKit: a Python interface for computational analysis of transmembrane proteins. Brief Bioinform 2023; 24:bbad288. [PMID: 37594311 PMCID: PMC10516361 DOI: 10.1093/bib/bbad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Transmembrane proteins are receptors, enzymes, transporters and ion channels that are instrumental in regulating a variety of cellular activities, such as signal transduction and cell communication. Despite tremendous progress in computational capacities to support protein research, there is still a significant gap in the availability of specialized computational analysis toolkits for transmembrane protein research. Here, we introduce TMKit, an open-source Python programming interface that is modular, scalable and specifically designed for processing transmembrane protein data. TMKit is a one-stop computational analysis tool for transmembrane proteins, enabling users to perform database wrangling, engineer features at the mutational, domain and topological levels, and visualize protein-protein interaction interfaces. In addition, TMKit includes seqNetRR, a high-performance computing library that allows customized construction of a large number of residue connections. This library is particularly well suited for assigning correlation matrix-based features at a fast speed. TMKit should serve as a useful tool for researchers in assisting the study of transmembrane protein sequences and structures. TMKit is publicly available through https://github.com/2003100127/tmkit and https://tmkit-guide.herokuapp.com/doc/overview.
Collapse
Affiliation(s)
- Jianfeng Sun
- Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington, Oxford OX3 7LD, UK
| | - Arulsamy Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Adam P Cribbs
- Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington, Oxford OX3 7LD, UK
| |
Collapse
|
3
|
Li J, Sawhney A, Lee JY, Liao L. Improving Inter-Helix Contact Prediction With Local 2D Topological Information. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3001-3012. [PMID: 37155404 DOI: 10.1109/tcbb.2023.3274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Inter-helix contact prediction is to identify residue contact across different helices in α-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.
Collapse
|
4
|
Kegulian NC, Langen R, Moradian-Oldak J. The Dynamic Interactions of a Multitargeting Domain in Ameloblastin Protein with Amelogenin and Membrane. Int J Mol Sci 2023; 24:3484. [PMID: 36834897 PMCID: PMC9966149 DOI: 10.3390/ijms24043484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The enamel matrix protein Ameloblastin (Ambn) has critical physiological functions, including regulation of mineral formation, cell differentiation, and cell-matrix adhesion. We investigated localized structural changes in Ambn during its interactions with its targets. We performed biophysical assays and used liposomes as a cell membrane model. The xAB2N and AB2 peptides were rationally designed to encompass regions of Ambn that contained self-assembly and helix-containing membrane-binding motifs. Electron paramagnetic resonance (EPR) on spin-labeled peptides showed localized structural gains in the presence of liposomes, amelogenin (Amel), and Ambn. Vesicle clearance and leakage assays indicated that peptide-membrane interactions were independent from peptide self-association. Tryptophan fluorescence and EPR showed competition between Ambn-Amel and Ambn-membrane interactions. We demonstrate localized structural changes in Ambn upon interaction with different targets via a multitargeting domain, spanning residues 57 to 90 of mouse Ambn. Structural changes of Ambn following its interaction with different targets have relevant implications for the multifunctionality of Ambn in enamel formation.
Collapse
Affiliation(s)
- Natalie C. Kegulian
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Sun J, Kulandaisamy A, Liu J, Hu K, Gromiha MM, Zhang Y. Machine learning in computational modelling of membrane protein sequences and structures: From methodologies to applications. Comput Struct Biotechnol J 2023; 21:1205-1226. [PMID: 36817959 PMCID: PMC9932300 DOI: 10.1016/j.csbj.2023.01.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Membrane proteins mediate a wide spectrum of biological processes, such as signal transduction and cell communication. Due to the arduous and costly nature inherent to the experimental process, membrane proteins have long been devoid of well-resolved atomic-level tertiary structures and, consequently, the understanding of their functional roles underlying a multitude of life activities has been hampered. Currently, computational tools dedicated to furthering the structure-function understanding are primarily focused on utilizing intelligent algorithms to address a variety of site-wise prediction problems (e.g., topology and interaction sites), but are scattered across different computing sources. Moreover, the recent advent of deep learning techniques has immensely expedited the development of computational tools for membrane protein-related prediction problems. Given the growing number of applications optimized particularly by manifold deep neural networks, we herein provide a review on the current status of computational strategies mainly in membrane protein type classification, topology identification, interaction site detection, and pathogenic effect prediction. Meanwhile, we provide an overview of how the entire prediction process proceeds, including database collection, data pre-processing, feature extraction, and method selection. This review is expected to be useful for developing more extendable computational tools specific to membrane proteins.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7LD, UK
| | - Arulsamy Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Jacklyn Liu
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Kai Hu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India,Corresponding authors.
| | - Yuan Zhang
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China,Corresponding authors.
| |
Collapse
|
6
|
Sala D, Del Alamo D, Mchaourab HS, Meiler J. Modeling of protein conformational changes with Rosetta guided by limited experimental data. Structure 2022; 30:1157-1168.e3. [PMID: 35597243 PMCID: PMC9357069 DOI: 10.1016/j.str.2022.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Conformational changes are an essential component of functional cycles of many proteins, but their characterization often requires an integrative structural biology approach. Here, we introduce and benchmark ConfChangeMover (CCM), a new method built into the widely used macromolecular modeling suite Rosetta that is tailored to model conformational changes in proteins using sparse experimental data. CCM can rotate and translate secondary structural elements and modify their backbone dihedral angles in regions of interest. We benchmarked CCM on soluble and membrane proteins with simulated Cα-Cα distance restraints and sparse experimental double electron-electron resonance (DEER) restraints, respectively. In both benchmarks, CCM outperformed state-of-the-art Rosetta methods, showing that it can model a diverse array of conformational changes. In addition, the Rosetta framework allows a wide variety of experimental data to be integrated with CCM, thus extending its capability beyond DEER restraints. This method will contribute to the biophysical characterization of protein dynamics.
Collapse
Affiliation(s)
- Davide Sala
- Institute for Drug Discovery, Leipzig University, Leipzig, Saxony 04103, Germany
| | - Diego Del Alamo
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University, Leipzig, Saxony 04103, Germany; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Seffernick JT, Lindert S. Hybrid methods for combined experimental and computational determination of protein structure. J Chem Phys 2020; 153:240901. [PMID: 33380110 PMCID: PMC7773420 DOI: 10.1063/5.0026025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural information, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data, which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimentally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded significant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental data, specifically for protein folding, protein-protein docking, and molecular dynamics simulations. We describe methods that incorporate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future directions.
Collapse
Affiliation(s)
- Justin T. Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
8
|
Capturing Peptide-GPCR Interactions and Their Dynamics. Molecules 2020; 25:molecules25204724. [PMID: 33076289 PMCID: PMC7587574 DOI: 10.3390/molecules25204724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Many biological functions of peptides are mediated through G protein-coupled receptors (GPCRs). Upon ligand binding, GPCRs undergo conformational changes that facilitate the binding and activation of multiple effectors. GPCRs regulate nearly all physiological processes and are a favorite pharmacological target. In particular, drugs are sought after that elicit the recruitment of selected effectors only (biased ligands). Understanding how ligands bind to GPCRs and which conformational changes they induce is a fundamental step toward the development of more efficient and specific drugs. Moreover, it is emerging that the dynamic of the ligand–receptor interaction contributes to the specificity of both ligand recognition and effector recruitment, an aspect that is missing in structural snapshots from crystallography. We describe here biochemical and biophysical techniques to address ligand–receptor interactions in their structural and dynamic aspects, which include mutagenesis, crosslinking, spectroscopic techniques, and mass-spectrometry profiling. With a main focus on peptide receptors, we present methods to unveil the ligand–receptor contact interface and methods that address conformational changes both in the ligand and the GPCR. The presented studies highlight a wide structural heterogeneity among peptide receptors, reveal distinct structural changes occurring during ligand binding and a surprisingly high dynamics of the ligand–GPCR complexes.
Collapse
|
9
|
Sun J, Frishman D. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks. J Struct Biol 2020; 212:107574. [PMID: 32663598 DOI: 10.1016/j.jsb.2020.107574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023]
Abstract
Accurate prediction of amino acid residue contacts is an important prerequisite for generating high-quality 3D models of transmembrane (TM) proteins. While a large number of compositional, evolutionary, and structural properties of proteins can be used to train contact prediction methods, recent research suggests that coevolution between residues provides the strongest indication of their spatial proximity. We have developed a deep learning approach, DeepHelicon, to predict inter-helical residue contacts in TM proteins by considering only coevolutionary features. DeepHelicon comprises a two-stage supervised learning process by residual neural networks for a gradual refinement of contact maps, followed by variance reduction by an ensemble of models. We present a benchmark study of 12 contact predictors and conclude that DeepHelicon together with the two other state-of-the-art methods DeepMetaPSICOV and Membrain2 outperforms the 10 remaining algorithms on all datasets and at all settings. On a set of 44 TM proteins with an average length of 388 residues DeepHelicon achieves the best performance among all benchmarked methods in predicting the top L/5 and L/2 inter-helical contacts, with the mean precision of 87.42% and 77.84%, respectively. On a set of 57 relatively small TM proteins with an average length of 298 residues DeepHelicon ranks second best after DeepMetaPSICOV. DeepHelicon produces the most accurate predictions for large proteins with more than 10 transmembrane helices. Coevolutionary features alone allow to predict inter-helical residue contacts with an accuracy sufficient for generating acceptable 3D models for up to 30% of proteins using a fully automated modeling method such as CONFOLD2.
Collapse
Affiliation(s)
- Jianfeng Sun
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
10
|
Del Alamo D, Tessmer MH, Stein RA, Feix JB, Mchaourab HS, Meiler J. Rapid Simulation of Unprocessed DEER Decay Data for Protein Fold Prediction. Biophys J 2020; 118:366-375. [PMID: 31892409 PMCID: PMC6976798 DOI: 10.1016/j.bpj.2019.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Despite advances in sampling and scoring strategies, Monte Carlo modeling methods still struggle to accurately predict de novo the structures of large proteins, membrane proteins, or proteins of complex topologies. Previous approaches have addressed these shortcomings by leveraging sparse distance data gathered using site-directed spin labeling and electron paramagnetic resonance spectroscopy to improve protein structure prediction and refinement outcomes. However, existing computational implementations entail compromises between coarse-grained models of the spin label that lower the resolution and explicit models that lead to resource-intense simulations. These methods are further limited by their reliance on distance distributions, which are calculated from a primary refocused echo decay signal and contain uncertainties that may require manual refinement. Here, we addressed these challenges by developing RosettaDEER, a scoring method within the Rosetta software suite capable of simulating double electron-electron resonance spectroscopy decay traces and distance distributions between spin labels fast enough to fold proteins de novo. We demonstrate that the accuracy of resulting distance distributions match or exceed those generated by more computationally intensive methods. Moreover, decay traces generated from these distributions recapitulate intermolecular background coupling parameters even when the time window of data collection is truncated. As a result, RosettaDEER can discriminate between poorly folded and native-like models by using decay traces that cannot be accurately converted into distance distributions using regularized fitting approaches. Finally, using two challenging test cases, we demonstrate that RosettaDEER leverages these experimental data for protein fold prediction more effectively than previous methods. These benchmarking results confirm that RosettaDEER can effectively leverage sparse experimental data for a wide array of modeling applications built into the Rosetta software suite.
Collapse
Affiliation(s)
- Diego Del Alamo
- Department of Chemistry and Center for Structural Biology; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | | | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hassane S Mchaourab
- Department of Chemistry and Center for Structural Biology; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology; Institut for Drug Discovery, Leipzig University, Leipzig, Germany.
| |
Collapse
|