1
|
Parves MR, Solares MJ, Dearnaley WJ, Kelly DF. Elucidating structural variability in p53 conformers using combinatorial refinement strategies and molecular dynamics. Cancer Biol Ther 2024; 25:2290732. [PMID: 38073067 PMCID: PMC10732606 DOI: 10.1080/15384047.2023.2290732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Low molecular weight proteins and protein assemblies can now be investigated using cryo-electron microscopy (EM) as a complement to traditional structural biology techniques. It is important, however, to not lose sight of the dynamic information inherent in macromolecules that give rise to their exquisite functionality. As computational methods continue to advance the field of biomedical imaging, so must strategies to resolve the minute details of disease-related entities. Here, we employed combinatorial modeling approaches to assess flexible properties among low molecular weight proteins (~100 kDa or less). Through a blend of rigid body refinement and simulated annealing, we determined new hidden conformations for wild type p53 monomer and dimer forms. Structures for both states converged to yield new conformers, each revealing good stereochemistry and dynamic information about the protein. Based on these insights, we identified fluid parts of p53 that complement the stable central core of the protein responsible for engaging DNA. Molecular dynamics simulations corroborated the modeling results and helped pinpoint the more flexible residues in wild type p53. Overall, the new computational methods may be used to shed light on other small protein features in a vast ensemble of structural data that cannot be easily delineated by other algorithms.
Collapse
Affiliation(s)
- Md Rimon Parves
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
- Biochemistry, Microbiology, and Molecular Biology Graduate Program, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Maria J. Solares
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - William J. Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Benoit MPMH, Rao L, Asenjo AB, Gennerich A, Sosa H. Cryo-EM unveils kinesin KIF1A's processivity mechanism and the impact of its pathogenic variant P305L. Nat Commun 2024; 15:5530. [PMID: 38956021 PMCID: PMC11219953 DOI: 10.1038/s41467-024-48720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.5 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and β-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.
Collapse
Affiliation(s)
- Matthieu P M H Benoit
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Hernando Sosa
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
3
|
Wang C, Jiang W, Leitz J, Yang K, Esquivies L, Wang X, Shen X, Held RG, Adams DJ, Basta T, Hampton L, Jian R, Jiang L, Stowell MHB, Baumeister W, Guo Q, Brunger AT. Structure and topography of the synaptic V-ATPase-synaptophysin complex. Nature 2024; 631:899-904. [PMID: 38838737 PMCID: PMC11269182 DOI: 10.1038/s41586-024-07610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.
Collapse
Affiliation(s)
- Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Wenhong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xing Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaotao Shen
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Richard G Held
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Daniel J Adams
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tamara Basta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Lucas Hampton
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Wolfgang Baumeister
- Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University, Stanford, CA, USA.
- Department of Photon Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Begley M, Aragon M, Baker RW. A structure-based mechanism for initiation of AP-3 coated vesicle formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597630. [PMID: 38895279 PMCID: PMC11185636 DOI: 10.1101/2024.06.05.597630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Adaptor protein complex 3 (AP-3) mediates cargo sorting from endosomes to lysosomes and lysosome-related organelles. Recently, it was shown that AP-3 is in a constitutively open, active conformation compared to the related AP-1 and AP-2 coat complexes, which are inactive until undergoing large conformational changes upon membrane recruitment. How AP-3 is regulated is therefore an open question. To understand the mechanism of AP-3 membrane recruitment and activation, we reconstituted the core of human AP-3 and determined multiple structures in the soluble and membrane-bound states using electron cryo-microscopy (cryo-EM). Similar to yeast AP-3, human AP-3 is in a constitutively open conformation, with the cargo-binding domain of the μ3 subunit conformationally free. To reconstitute AP-3 activation by the small GTPase Arf1, we used lipid nanodiscs to build Arf1-AP-3 complexes on membranes and determined three structures that show the stepwise conformational changes required for formation of AP-3 coated vesicles. First, membrane-recruitment is driven by one of two predicted Arf1 binding sites on AP-3. In this conformation, AP-3 is flexibly tethered to the membrane and its cargo binding domain remains conformationally dynamic. Second, cargo binding causes AP-3 to adopt a fixed position and rigidifies the complex, which stabilizes binding for a second Arf1 molecule. Finally, binding of the second Arf1 molecule provides the template for AP-3 dimerization, providing a glimpse into the first step of coat polymerization. We propose coat polymerization only occurs after cargo engagement, thereby linking cargo sorting with assembly of higher order coat structures. Additionally, we provide evidence for two amphipathic helices in AP-3, suggesting that AP-3 contributes to membrane deformation during coat assembly. In total, these data provide evidence for the first stages of AP-3 mediated vesicle coat assembly.
Collapse
Affiliation(s)
- Matthew Begley
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
| | - Mahira Aragon
- New York Structural Biology Center; New York, NY 10027, USA
| | - Richard W. Baker
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
- UNC Lineberger Comprehensive Cancer Center. UNC Chapel Hill School of Medicine; Chapel Hill, NC 27516, USA
| |
Collapse
|
5
|
Beton JG, Mulvaney T, Cragnolini T, Topf M. Cryo-EM structure and B-factor refinement with ensemble representation. Nat Commun 2024; 15:444. [PMID: 38200043 PMCID: PMC10781738 DOI: 10.1038/s41467-023-44593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cryo-EM experiments produce images of macromolecular assemblies that are combined to produce three-dimensional density maps. Typically, atomic models of the constituent molecules are fitted into these maps, followed by a density-guided refinement. We introduce TEMPy-ReFF, a method for atomic structure refinement in cryo-EM density maps. Our method represents atomic positions as components of a Gaussian mixture model, utilising their variances as B-factors, which are used to derive an ensemble description. Extensively tested on a substantial dataset of 229 cryo-EM maps from EMDB ranging in resolution from 2.1-4.9 Å with corresponding PDB and CERES atomic models, our results demonstrate that TEMPy-ReFF ensembles provide a superior representation of cryo-EM maps. On a single-model basis, it performs similarly to the CERES re-refinement protocol, although there are cases where it provides a better fit to the map. Furthermore, our method enables the creation of composite maps free of boundary artefacts. TEMPy-ReFF is useful for better interpretation of flexible structures, such as those involving RNA, DNA or ligands.
Collapse
Affiliation(s)
- Joseph G Beton
- Leibniz Institute of Virology (LIV) and Universitätsklinikum Hamburg Eppendorf (UKE), Centre for Structural Systems Biology (CSSB), 22607, Hamburg, Germany
| | - Thomas Mulvaney
- Leibniz Institute of Virology (LIV) and Universitätsklinikum Hamburg Eppendorf (UKE), Centre for Structural Systems Biology (CSSB), 22607, Hamburg, Germany
| | - Tristan Cragnolini
- Leibniz Institute of Virology (LIV) and Universitätsklinikum Hamburg Eppendorf (UKE), Centre for Structural Systems Biology (CSSB), 22607, Hamburg, Germany
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Maya Topf
- Leibniz Institute of Virology (LIV) and Universitätsklinikum Hamburg Eppendorf (UKE), Centre for Structural Systems Biology (CSSB), 22607, Hamburg, Germany.
| |
Collapse
|
6
|
Kelly DF, Jonaid GM, Kaylor L, Solares MJ, Berry S, DiCecco LA, Dearnaley W, Casasanta M. Delineating Conformational Variability in Small Protein Structures Using Combinatorial Refinement Strategies. MICROMACHINES 2023; 14:1869. [PMID: 37893306 PMCID: PMC10609307 DOI: 10.3390/mi14101869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
As small protein assemblies and even small proteins are becoming more amenable to cryo-Electron Microscopy (EM) structural studies, it is important to consider the complementary dynamic information present in the data. Current computational strategies are limited in their ability to resolve minute differences among low molecular weight entities. Here, we demonstrate a new combinatorial approach to delineate flexible conformations among small proteins using real-space refinement applications. We performed a meta-analysis of structural data for the SARS CoV-2 Nucleocapsid (N) protein using a combination of rigid-body refinement and simulated annealing methods. For the N protein monomer, we determined three new flexible conformers with good stereochemistry and quantitative comparisons provided new evidence of their dynamic properties. A similar analysis performed for the N protein dimer showed only minor structural differences among the flexible models. These results suggested a more stable view of the N protein dimer than the monomer structure. Taken together, the new computational strategies can delineate conformational changes in low molecular weight proteins that may go unnoticed by conventional assessments. The results also suggest that small proteins may be further stabilized for structural studies through the use of solution components that limit the movement of external flexible regions.
Collapse
Affiliation(s)
- Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - G M Jonaid
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Liam Kaylor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Maria J. Solares
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Samantha Berry
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Liza-Anastasia DiCecco
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - William Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Sarkar D, Lee H, Vant JW, Turilli M, Vermaas JV, Jha S, Singharoy A. Adaptive Ensemble Refinement of Protein Structures in High Resolution Electron Microscopy Density Maps with Radical Augmented Molecular Dynamics Flexible Fitting. J Chem Inf Model 2023; 63:5834-5846. [PMID: 37661856 DOI: 10.1021/acs.jcim.3c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling macromolecular complexes that are essential components of the cellular machinery. The density maps derived from cryo-EM experiments are often integrated with manual, knowledge-driven or artificial intelligence-driven and physics-guided computational methods to build, fit, and refine molecular structures. Going beyond a single stationary-structure determination scheme, it is becoming more common to interpret the experimental data with an ensemble of models that contributes to an average observation. Hence, there is a need to decide on the quality of an ensemble of protein structures on-the-fly while refining them against the density maps. We introduce such an adaptive decision-making scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Using RADICAL-Cybertools, the new RADICAL augmented MDFF implementation (R-MDFF) is examined in high-performance computing environments for refinement of two prototypical protein systems, adenylate kinase and carbon monoxide dehydrogenase. For these test cases, use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF improves the overall correlation to the density by 40% relative to the refinements of the brute-force MDFF. The improvements are particularly significant at high, 2-3 Å map resolutions. More importantly, the ensemble model captures key features of biologically relevant molecular dynamics that are inaccessible to a single-model interpretation. Finally, the pipeline is applicable to systems of growing sizes, which is demonstrated using ensemble refinement of capsid proteins from the chimpanzee adenovirus. The overhead for decision making remains low and robust to computing environments. The software is publicly available on GitHub and includes a short user guide to install R-MDFF on different computing environments, from local Linux-based workstations to high-performance computing environments.
Collapse
Affiliation(s)
- Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Hyungro Lee
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - John W Vant
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Matteo Turilli
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
| | - Shantenu Jha
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
8
|
Chang L, Mondal A, MacCallum JL, Perez A. CryoFold 2.0: Cryo-EM Structure Determination with MELD. J Phys Chem A 2023; 127:3906-3913. [PMID: 37084537 DOI: 10.1021/acs.jpca.3c01731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Cryo-electron microscopy data are becoming more prevalent and accessible at higher resolution levels, leading to the development of new computational tools to determine the atomic structure of macromolecules. However, while existing tools adapted from X-ray crystallography are suitable for the highest-resolution maps, new tools are needed for lower-resolution levels and to account for map heterogeneity. In this article, we introduce CryoFold 2.0, an integrative physics-based approach that combines Bayesian inference and the ability to handle multiple data sources with the molecular dynamics flexible fitting (MDFF) approach to determine the structures of macromolecules by using cryo-EM data. CryoFold 2.0 is incorporated into the MELD (modeling employing limited data) plugin, resulting in a pipeline that is more computationally efficient and accurate than running MELD or MDFF alone. The approach requires fewer computational resources and shorter simulation times than the original CryoFold, and it minimizes manual intervention. We demonstrate the effectiveness of the approach on eight different systems, highlighting its various benefits.
Collapse
Affiliation(s)
- Liwei Chang
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Justin L MacCallum
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Remesh SG, Merz GE, Brilot AF, Chio US, Rizo AN, Pospiech TH, Lui I, Laurie MT, Glasgow J, Le CQ, Zhang Y, Diwanji D, Hernandez E, Lopez J, Mehmood H, Pawar KI, Pourmal S, Smith AM, Zhou F, DeRisi J, Kortemme T, Rosenberg OS, Glasgow A, Leung KK, Wells JA, Verba KA. Computational pipeline provides mechanistic understanding of Omicron variant of concern neutralizing engineered ACE2 receptor traps. Structure 2023; 31:253-264.e6. [PMID: 36805129 PMCID: PMC9936628 DOI: 10.1016/j.str.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor-binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with stabilized Spike ectodomain. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high-affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high-affinity (0.53-4.2 nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron and Delta pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.
Collapse
Affiliation(s)
- Soumya G Remesh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gregory E Merz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Axel F Brilot
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexandrea N Rizo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas H Pospiech
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mathew T Laurie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeff Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chau Q Le
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yun Zhang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Devan Diwanji
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evelyn Hernandez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jocelyne Lopez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hevatib Mehmood
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Komal Ishwar Pawar
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sergei Pourmal
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amber M Smith
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fengbo Zhou
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; QBI, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; The University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Oren S Rosenberg
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anum Glasgow
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Kliment A Verba
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, San Francisco, CA 94158, USA; QBI, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Sorzano COS, Vilas JL, Ramírez-Aportela E, Krieger J, Del Hoyo D, Herreros D, Fernandez-Giménez E, Marchán D, Macías JR, Sánchez I, Del Caño L, Fonseca-Reyna Y, Conesa P, García-Mena A, Burguet J, García Condado J, Méndez García J, Martínez M, Muñoz-Barrutia A, Marabini R, Vargas J, Carazo JM. Image processing tools for the validation of CryoEM maps. Faraday Discuss 2022; 240:210-227. [PMID: 35861059 DOI: 10.1039/d2fd00059h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The number of maps deposited in public databases (Electron Microscopy Data Bank, EMDB) determined by cryo-electron microscopy has quickly grown in recent years. With this rapid growth, it is critical to guarantee their quality. So far, map validation has primarily focused on the agreement between maps and models. From the image processing perspective, the validation has been mostly restricted to using two half-maps and the measurement of their internal consistency. In this article, we suggest that map validation can be taken much further from the point of view of image processing if 2D classes, particles, angles, coordinates, defoci, and micrographs are also provided. We present a progressive validation scheme that qualifies a result validation status from 0 to 5 and offers three optional qualifiers (A, W, and O) that can be added. The simplest validation state is 0, while the most complete would be 5AWO. This scheme has been implemented in a website https://biocomp.cnb.csic.es/EMValidationService/ to which reconstructed maps and their ESI can be uploaded.
Collapse
Affiliation(s)
- C O S Sorzano
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - J L Vilas
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | | | - J Krieger
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - D Del Hoyo
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - D Herreros
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | | | - D Marchán
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - J R Macías
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - I Sánchez
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - L Del Caño
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - Y Fonseca-Reyna
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - P Conesa
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - A García-Mena
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - J Burguet
- Depto. de Óptica, Univ. Complutense de Madrid, Pl. Ciencias, 1, 28040, Madrid, Spain
| | - J García Condado
- Biocruces Bizkaia Instituto Investigación Sanitaria, Cruces Plaza, 48903, Barakaldo, Bizkaia, Spain
| | | | - M Martínez
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| | - A Muñoz-Barrutia
- Univ. Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain
| | - R Marabini
- Escuela Politécnica Superior, Univ. Autónoma de Madrid, CSIC, C. Francisco Tomás y Valiente, 11, 28049, Madrid, Spain
| | - J Vargas
- Depto. de Óptica, Univ. Complutense de Madrid, Pl. Ciencias, 1, 28040, Madrid, Spain
| | - J M Carazo
- Natl. Center of Biotechnology, CSIC, c/Darwin, 3, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Joseph AP, Malhotra S, Burnley T, Winn MD. Overview and applications of map and model validation tools in the CCP-EM software suite. Faraday Discuss 2022; 240:196-209. [PMID: 35916020 PMCID: PMC9642004 DOI: 10.1039/d2fd00103a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) has recently been established as a powerful technique for solving macromolecular structures. Although the best resolutions achievable are improving, a significant majority of data are still resolved at resolutions worse than 3 Å, where it is non-trivial to build or fit atomic models. The map reconstructions and atomic models derived from the maps are also prone to errors accumulated through the different stages of data processing. Here, we highlight the need to evaluate both model geometry and fit to data at different resolutions. Assessment of cryo-EM structures from SARS-CoV-2 highlights a bias towards optimising the model geometry to agree with the most common conformations, compared to the agreement with data. We present the CoVal web service which provides multiple validation metrics to reflect the quality of atomic models derived from cryo-EM data of structures from SARS-CoV-2. We demonstrate that further refinement can lead to improvement of the agreement with data without the loss of geometric quality. We also discuss the recent CCP-EM developments aimed at addressing some of the current shortcomings.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Scientific Computing Department, Science and Technology Facilities CouncilDidcot OX11 0FAUK
| | - Sony Malhotra
- Scientific Computing Department, Science and Technology Facilities CouncilDidcot OX11 0FAUK
| | - Tom Burnley
- Scientific Computing Department, Science and Technology Facilities CouncilDidcot OX11 0FAUK
| | - Martyn D. Winn
- Scientific Computing Department, Science and Technology Facilities CouncilDidcot OX11 0FAUK
| |
Collapse
|
12
|
Zhao F, Berndsen ZT, Pedreño-Lopez N, Burns A, Allen JD, Barman S, Lee WH, Chakraborty S, Gnanakaran S, Sewall LM, Ozorowski G, Limbo O, Song G, Yong P, Callaghan S, Coppola J, Weisgrau KL, Lifson JD, Nedellec R, Voigt TB, Laurino F, Louw J, Rosen BC, Ricciardi M, Crispin M, Desrosiers RC, Rakasz EG, Watkins DI, Andrabi R, Ward AB, Burton DR, Sok D. Molecular insights into antibody-mediated protection against the prototypic simian immunodeficiency virus. Nat Commun 2022; 13:5236. [PMID: 36068229 PMCID: PMC9446601 DOI: 10.1038/s41467-022-32783-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
SIVmac239 infection of macaques is a favored model of human HIV infection. However, the SIVmac239 envelope (Env) trimer structure, glycan occupancy, and the targets and ability of neutralizing antibodies (nAbs) to protect against SIVmac239 remain unknown. Here, we report the isolation of SIVmac239 nAbs that recognize a glycan hole and the V1/V4 loop. A high-resolution structure of a SIVmac239 Env trimer-nAb complex shows many similarities to HIV and SIVcpz Envs, but with distinct V4 features and an extended V1 loop. Moreover, SIVmac239 Env has a higher glycan shield density than HIV Env that may contribute to poor or delayed nAb responses in SIVmac239-infected macaques. Passive transfer of a nAb protects macaques from repeated intravenous SIVmac239 challenge at serum titers comparable to those described for protection of humans against HIV infection. Our results provide structural insights for vaccine design and shed light on antibody-mediated protection in the SIV model.
Collapse
Affiliation(s)
- Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Zachary T Berndsen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nuria Pedreño-Lopez
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen-Hsin Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Leigh M Sewall
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI, New York, NY, 10004, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica Coppola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thomas B Voigt
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Fernanda Laurino
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Johan Louw
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Brandon C Rosen
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael Ricciardi
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - David I Watkins
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, 02139, USA.
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI, New York, NY, 10004, USA.
| |
Collapse
|
13
|
Remesh SG, Merz GE, Brilot AF, Chio US, Rizo AN, Pospiech TH, Lui I, Laurie MT, Glasgow J, Le CQ, Zhang Y, Diwanji D, Hernandez E, Lopez J, Pawar KI, Pourmal S, Smith AM, Zhou F, QCRG Structural Biology Consortium, DeRisi J, Kortemme T, Rosenberg OS, Glasgow A, Leung KK, Wells JA, Verba KA. Computational pipeline provides mechanistic understanding of Omicron variant of concern neutralizing engineered ACE2 receptor traps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.09.503400. [PMID: 35982665 PMCID: PMC9387132 DOI: 10.1101/2022.08.09.503400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-Spike-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with full length Spike. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high affinity (0.53 - 4.2nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron- and Delta-pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.
Collapse
Affiliation(s)
- Soumya G. Remesh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Gregory E. Merz
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Axel F. Brilot
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Un Seng Chio
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Alexandrea N. Rizo
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Thomas H. Pospiech
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA
| | - Mathew T. Laurie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA - 94158, USA
| | - Jeff Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA
| | - Chau Q. Le
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA
| | - Yun Zhang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA
| | - Devan Diwanji
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Evelyn Hernandez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Jocelyne Lopez
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Komal Ishwar Pawar
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Sergei Pourmal
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Amber M. Smith
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Fengbo Zhou
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | | | - Joseph DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA - 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA - 94158, USA
| | - Tanja Kortemme
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA - 94158, USA
- The University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, CA - 94158, USA
| | - Oren S. Rosenberg
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
| | - Anum Glasgow
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Kevin K. Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA - 94158, USA
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA - 94158, USA
| | - Kliment A. Verba
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA - 94158, USA
- QBI Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA - 94158, USA
- QBI, University of California, San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
14
|
Exploring cryo-electron microscopy with molecular dynamics. Biochem Soc Trans 2022; 50:569-581. [PMID: 35212361 DOI: 10.1042/bst20210485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
Single particle analysis cryo-electron microscopy (EM) and molecular dynamics (MD) have been complimentary methods since cryo-EM was first applied to the field of structural biology. The relationship started by biasing structural models to fit low-resolution cryo-EM maps of large macromolecular complexes not amenable to crystallization. The connection between cryo-EM and MD evolved as cryo-EM maps improved in resolution, allowing advanced sampling algorithms to simultaneously refine backbone and sidechains. Moving beyond a single static snapshot, modern inferencing approaches integrate cryo-EM and MD to generate structural ensembles from cryo-EM map data or directly from the particle images themselves. We summarize the recent history of MD innovations in the area of cryo-EM modeling. The merits for the myriad of MD based cryo-EM modeling methods are discussed, as well as, the discoveries that were made possible by the integration of molecular modeling with cryo-EM. Lastly, current challenges and potential opportunities are reviewed.
Collapse
|
15
|
Shekhar M, Terashi G, Gupta C, Sarkar D, Debussche G, Sisco NJ, Nguyen J, Mondal A, Vant J, Fromme P, Van Horn WD, Tajkhorshid E, Kihara D, Dill K, Perez A, Singharoy A. CryoFold: determining protein structures and data-guided ensembles from cryo-EM density maps. MATTER 2021; 4:3195-3216. [PMID: 35874311 PMCID: PMC9302471 DOI: 10.1016/j.matt.2021.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cryo-electron microscopy (EM) requires molecular modeling to refine structural details from data. Ensemble models arrive at low free-energy molecular structures, but are computationally expensive and limited to resolving only small proteins that cannot be resolved by cryo-EM. Here, we introduce CryoFold - a pipeline of molecular dynamics simulations that determines ensembles of protein structures directly from sequence by integrating density data of varying sparsity at 3-5 Å resolution with coarse-grained topological knowledge of the protein folds. We present six examples showing its broad applicability for folding proteins between 72 to 2000 residues, including large membrane and multi-domain systems, and results from two EMDB competitions. Driven by data from a single state, CryoFold discovers ensembles of common low-energy models together with rare low-probability structures that capture the equilibrium distribution of proteins constrained by the density maps. Many of these conformations, unseen by traditional methods, are experimentally validated and functionally relevant. We arrive at a set of best practices for data-guided protein folding that are controlled using a Python GUI.
Collapse
Affiliation(s)
- Mrinal Shekhar
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chitrak Gupta
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Institute Center for Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
| | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Gaspard Debussche
- Department of Mathematics and Computer Sciences, Grenoble INP, 38000 Grenoble, France
| | - Nicholas J Sisco
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathan Nguyen
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Institute Center for Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
| | - Arup Mondal
- Chemistry Department, Quantum Theory Project, University of Florida, Gainesville, Florida, 32611, USA
| | - John Vant
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Institute Center for Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
| | - Petra Fromme
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Institute Center for Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
| | - Wade D Van Horn
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85281, USA
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Ken Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Alberto Perez
- Chemistry Department, Quantum Theory Project, University of Florida, Gainesville, Florida, 32611, USA
| | - Abhishek Singharoy
- The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Institute Center for Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
16
|
Pintilie G, Chiu W. Validation, analysis and annotation of cryo-EM structures. Acta Crystallogr D Struct Biol 2021; 77:1142-1152. [PMID: 34473085 PMCID: PMC8411978 DOI: 10.1107/s2059798321006069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2021] [Indexed: 11/08/2023] Open
Abstract
The process of turning 2D micrographs into 3D atomic models of the imaged macromolecules has been under rapid development and scrutiny in the field of cryo-EM. Here, some important methods for validation at several stages in this process are described. Firstly, how Fourier shell correlation of two independent maps and phase randomization beyond a certain frequency address the assessment of map resolution is reviewed. Techniques for local resolution estimation and map sharpening are also touched upon. The topic of validating models which are either built de novo or based on a known atomic structure fitted into a cryo-EM map is then approached. Map-model comparison using Q-scores and Fourier shell correlation plots is used to assure the agreement of the model with the observed map density. The importance of annotating the model with B factors to account for the resolvability of individual atoms in the map is illustrated. Finally, the timely topic of detecting and validating water molecules and metal ions in maps that have surpassed ∼2 Å resolution is described.
Collapse
Affiliation(s)
- Grigore Pintilie
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
17
|
Benoit MP, Asenjo AB, Paydar M, Dhakal S, Kwok BH, Sosa H. Structural basis of mechano-chemical coupling by the mitotic kinesin KIF14. Nat Commun 2021; 12:3637. [PMID: 34131133 PMCID: PMC8206134 DOI: 10.1038/s41467-021-23581-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
KIF14 is a mitotic kinesin whose malfunction is associated with cerebral and renal developmental defects and several cancers. Like other kinesins, KIF14 couples ATP hydrolysis and microtubule binding to the generation of mechanical work, but the coupling mechanism between these processes is still not fully clear. Here we report 20 high-resolution (2.7-3.9 Å) cryo-electron microscopy KIF14-microtubule structures with complementary functional assays. Analysis procedures were implemented to separate coexisting conformations of microtubule-bound monomeric and dimeric KIF14 constructs. The data provide a comprehensive view of the microtubule and nucleotide induced KIF14 conformational changes. It shows that: 1) microtubule binding, the nucleotide species, and the neck-linker domain govern the transition between three major conformations of the motor domain; 2) an undocked neck-linker prevents the nucleotide-binding pocket to fully close and dampens ATP hydrolysis; 3) 13 neck-linker residues are required to assume a stable docked conformation; 4) the neck-linker position controls the hydrolysis rather than the nucleotide binding step; 5) the two motor domains of KIF14 dimers adopt distinct conformations when bound to the microtubule; and 6) the formation of the two-heads-bound-state introduces structural changes in both motor domains of KIF14 dimers. These observations provide the structural basis for a coordinated chemo-mechanical kinesin translocation model.
Collapse
Affiliation(s)
- Matthieu P.M.H. Benoit
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| | - Ana B. Asenjo
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| | - Mohammadjavad Paydar
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Sabin Dhakal
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Benjamin H. Kwok
- grid.14848.310000 0001 2292 3357Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC Canada
| | - Hernando Sosa
- grid.251993.50000000121791997Department Physiology and Biophysics, Albert Einstein College of Medicine, New York, NY USA
| |
Collapse
|
18
|
Zequn Z, Jiangfang L. Molecular Insights Into the Gating Kinetics of the Cardiac hERG Channel, Illuminated by Structure and Molecular Dynamics. Front Pharmacol 2021; 12:687007. [PMID: 34168566 PMCID: PMC8217747 DOI: 10.3389/fphar.2021.687007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
The rapidly activating delayed rectifier K+ current generated by the cardiac hERG potassium channel encoded by KCNH2 is the most important reserve current for cardiac repolarization. The unique inward rectification characteristics of the hERG channel depend on the gating regulation, which involves crucial structural domains and key single amino acid residues in the full-length hERG channel. Identifying critical molecules involved in the regulation of gating kinetics for the hERG channel requires high-resolution structures and molecular dynamics simulation models. Based on the latest progress in hERG structure and molecular dynamics simulation research, summarizing the molecules involved in the changes in the channel state helps to elucidate the unique gating characteristics of the channel and the reason for its high affinity to cardiotoxic drugs. In this review, we aim to summarize the significant advances in understanding the voltage gating regulation of the hERG channel based on its structure obtained from cryo-electron microscopy and computer simulations, which reveal the critical roles of several specific structural domains and amino acid residues.
Collapse
Affiliation(s)
- Zheng Zequn
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Lian Jiangfang
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Conformational Plasticity of Hepatitis B Core Protein Spikes Promotes Peptide Binding Independent of the Secretion Phenotype. Microorganisms 2021; 9:microorganisms9050956. [PMID: 33946808 PMCID: PMC8145704 DOI: 10.3390/microorganisms9050956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an “LLGRMKG” motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide “GSLLGRMKGA” binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies “SLLGRM” as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes.
Collapse
|
20
|
Below 3 Å structure of apoferritin using a multipurpose TEM with a side entry cryoholder. Sci Rep 2021; 11:8395. [PMID: 33863933 PMCID: PMC8052451 DOI: 10.1038/s41598-021-87183-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, the structural analysis of protein complexes by cryo-electron microscopy (cryo-EM) single particle analysis (SPA) has had great impact as a biophysical method. Many results of cryo-EM SPA are based on data acquired on state-of-the-art cryo-electron microscopes customized for SPA. These are currently only available in limited locations around the world, where securing machine time is highly competitive. One potential solution for this time-competitive situation is to reuse existing multi-purpose equipment, although this comes with performance limitations. Here, a multi-purpose TEM with a side entry cryo-holder was used to evaluate the potential of high-resolution SPA, resulting in a 3 Å resolution map of apoferritin with local resolution extending to 2.6 Å. This map clearly showed two positions of an aromatic side chain. Further, examination of optimal imaging conditions depending on two different multi-purpose electron microscope and camera combinations was carried out, demonstrating that higher magnifications are not always necessary or desirable. Since automation is effectively a requirement for large-scale data collection, and augmenting the multi-purpose equipment is possible, we expanded testing by acquiring data with SerialEM using a β-galactosidase test sample. This study demonstrates the possibilities of more widely available and established electron microscopes, and their applications for cryo-EM SPA.
Collapse
|
21
|
Zhang Y, Krieger J, Mikulska-Ruminska K, Kaynak B, Sorzano COS, Carazo JM, Xing J, Bahar I. State-dependent sequential allostery exhibited by chaperonin TRiC/CCT revealed by network analysis of Cryo-EM maps. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 160:104-120. [PMID: 32866476 PMCID: PMC7914283 DOI: 10.1016/j.pbiomolbio.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/25/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
The eukaryotic chaperonin TRiC/CCT plays a major role in assisting the folding of many proteins through an ATP-driven allosteric cycle. Recent structures elucidated by cryo-electron microscopy provide a broad view of the conformations visited at various stages of the chaperonin cycle, including a sequential activation of its subunits in response to nucleotide binding. But we lack a thorough mechanistic understanding of the structure-based dynamics and communication properties that underlie the TRiC/CCT machinery. In this study, we present a computational methodology based on elastic network models adapted to cryo-EM density maps to gain a deeper understanding of the structure-encoded allosteric dynamics of this hexadecameric machine. We have analysed several structures of the chaperonin resolved in different states toward mapping its conformational landscape. Our study indicates that the overall architecture intrinsically favours cooperative movements that comply with the structural variabilities observed in experiments. Furthermore, the individual subunits CCT1-CCT8 exhibit state-dependent sequential events at different states of the allosteric cycle. For example, in the ATP-bound state, subunits CCT5 and CCT4 selectively initiate the lid closure motions favoured by the overall architecture; whereas in the apo form of the heteromer, the subunit CCT7 exhibits the highest predisposition to structural change. The changes then propagate through parallel fluxes of allosteric signals to neighbours on both rings. The predicted state-dependent mechanisms of sequential activation provide new insights into TRiC/CCT intra- and inter-ring signal transduction events.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | - James Krieger
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | - Karolina Mikulska-Ruminska
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | - Burak Kaynak
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | | | - José-María Carazo
- Centro Nacional de Biotecnología (CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
22
|
Chojnowski G, Sobolev E, Heuser P, Lamzin VS. The accuracy of protein models automatically built into cryo-EM maps with ARP/wARP. Acta Crystallogr D Struct Biol 2021; 77:142-150. [PMID: 33559604 PMCID: PMC7869898 DOI: 10.1107/s2059798320016332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 11/26/2022] Open
Abstract
A new module of the ARP/wARP suite for automated model building into cryo-EM maps is presented. Recent developments in cryogenic electron microscopy (cryo-EM) have enabled structural studies of large macromolecular complexes at resolutions previously only attainable using macromolecular crystallography. Although a number of methods can already assist in de novo building of models into high-resolution cryo-EM maps, automated and reliable map interpretation remains a challenge. Presented here is a systematic study of the accuracy of models built into cryo-EM maps using ARP/wARP. It is demonstrated that the local resolution is a good indicator of map interpretability, and for the majority of the test cases ARP/wARP correctly builds 90% of main-chain fragments in regions where the local resolution is 4.0 Å or better. It is also demonstrated that the coordinate accuracy for models built into cryo-EM maps is comparable to that of X-ray crystallographic models at similar local cryo-EM and crystallographic resolutions. The model accuracy also correlates with the refined atomic displacement parameters.
Collapse
Affiliation(s)
- Grzegorz Chojnowski
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Egor Sobolev
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Philipp Heuser
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Victor S Lamzin
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
23
|
Wu M, Lander GC. Present and Emerging Methodologies in Cryo-EM Single-Particle Analysis. Biophys J 2020; 119:1281-1289. [PMID: 32919493 PMCID: PMC7567993 DOI: 10.1016/j.bpj.2020.08.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
Over the past decade, technical and methodological improvements in cryogenic electron microscopy (cryo-EM) single-particle analysis have enabled routine high-resolution structural analyses of biological macromolecules, resulting in a flood of new molecular insights into protracted biological questions. However, despite the tremendous progress and success of the field in recent years, opportunities for improvement remain in various aspects of the cryo-EM single-particle analysis workflow (e.g., sample preparation, image acquisition and processing, and structure validation). Here, we review recent advances that have contributed to the principal methods in cryo-EM and identify persisting challenges and bottlenecks that will require further methodological and hardware development.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
24
|
Terwilliger TC, Sobolev OV, Afonine PV, Adams PD, Read RJ. Density modification of cryo-EM maps. Acta Crystallogr D Struct Biol 2020; 76:912-925. [PMID: 33021493 PMCID: PMC7543659 DOI: 10.1107/s205979832001061x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/02/2020] [Indexed: 11/25/2022] Open
Abstract
Density modification uses expectations about features of a map such as a flat solvent and expected distributions of density in the region of the macromolecule to improve individual Fourier terms representing the map. This process transfers information from one part of a map to another and can improve the accuracy of a map. Here, the assumptions behind density modification for maps from electron cryomicroscopy are examined and a procedure is presented that allows the incorporation of model-based information. Density modification works best in cases where unfiltered, unmasked maps with clear boundaries between the macromolecule and solvent are visible, and where there is substantial noise in the map, both in the region of the macromolecule and the solvent. It also is most effective if the characteristics of the map are relatively constant within regions of the macromolecule and the solvent. Model-based information can be used to improve density modification, but model bias can in principle occur. Here, model bias is reduced by using ensemble models that allow an estimation of model uncertainty. A test of model bias is presented that suggests that even if the expected density in a region of a map is specified incorrectly by using an incorrect model, the incorrect expectations do not strongly affect the final map.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- New Mexico Consortium, Los Alamos, NM 87544, USA
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Randy J. Read
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
25
|
Thompson MC, Yeates TO, Rodriguez JA. Advances in methods for atomic resolution macromolecular structure determination. F1000Res 2020; 9:F1000 Faculty Rev-667. [PMID: 32676184 PMCID: PMC7333361 DOI: 10.12688/f1000research.25097.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Recent technical advances have dramatically increased the power and scope of structural biology. New developments in high-resolution cryo-electron microscopy, serial X-ray crystallography, and electron diffraction have been especially transformative. Here we highlight some of the latest advances and current challenges at the frontiers of atomic resolution methods for elucidating the structures and dynamical properties of macromolecules and their complexes.
Collapse
Affiliation(s)
- Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California, Merced, CA, USA
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA
| |
Collapse
|
26
|
Robertson MJ, van Zundert GCP, Borrelli K, Skiniotis G. GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps. Structure 2020; 28:707-716.e3. [PMID: 32413291 DOI: 10.1016/j.str.2020.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/13/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Producing an accurate atomic model of biomolecule-ligand interactions from maps generated by cryoelectron microscopy (cryo-EM) often presents challenges inherent to the methodology and the dynamic nature of ligand binding. Here, we present GemSpot, an automated pipeline of computational chemistry methods that take into account EM map potentials, quantum mechanics energy calculations, and water molecule site prediction to generate candidate poses and provide a measure of the degree of confidence. The pipeline is validated through several published cryo-EM structures of complexes in different resolution ranges and various types of ligands. In all cases, at least one identified pose produced both excellent interactions with the target and agreement with the map. GemSpot will be valuable for the robust identification of ligand poses and drug discovery efforts through cryo-EM.
Collapse
Affiliation(s)
- Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Brewer KR, Kuenze G, Vanoye CG, George AL, Meiler J, Sanders CR. Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome. Front Pharmacol 2020; 11:550. [PMID: 32431610 PMCID: PMC7212895 DOI: 10.3389/fphar.2020.00550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The cardiac action potential is critical to the production of a synchronized heartbeat. This electrical impulse is governed by the intricate activity of cardiac ion channels, among them the cardiac voltage-gated potassium (Kv) channels KCNQ1 and hERG as well as the voltage-gated sodium (Nav) channel encoded by SCN5A. Each channel performs a highly distinct function, despite sharing a common topology and structural components. These three channels are also the primary proteins mutated in congenital long QT syndrome (LQTS), a genetic condition that predisposes to cardiac arrhythmia and sudden cardiac death due to impaired repolarization of the action potential and has a particular proclivity for reentrant ventricular arrhythmias. Recent cryo-electron microscopy structures of human KCNQ1 and hERG, along with the rat homolog of SCN5A and other mammalian sodium channels, provide atomic-level insight into the structure and function of these proteins that advance our understanding of their distinct functions in the cardiac action potential, as well as the molecular basis of LQTS. In this review, the gating, regulation, LQTS mechanisms, and pharmacological properties of KCNQ1, hERG, and SCN5A are discussed in light of these recent structural findings.
Collapse
Affiliation(s)
- Kathryn R. Brewer
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Carlos G. Vanoye
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
28
|
Shin M, Puchades C, Asmita A, Puri N, Adjei E, Wiseman RL, Karzai AW, Lander GC. Structural basis for distinct operational modes and protease activation in AAA+ protease Lon. SCIENCE ADVANCES 2020; 6:eaba8404. [PMID: 32490208 PMCID: PMC7239648 DOI: 10.1126/sciadv.aba8404] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
Substrate-bound structures of AAA+ protein translocases reveal a conserved asymmetric spiral staircase architecture wherein a sequential ATP hydrolysis cycle drives hand-over-hand substrate translocation. However, this configuration is unlikely to represent the full conformational landscape of these enzymes, as biochemical studies suggest distinct conformational states depending on the presence or absence of substrate. Here, we used cryo-electron microscopy to determine structures of the Yersinia pestis Lon AAA+ protease in the absence and presence of substrate, uncovering the mechanistic basis for two distinct operational modes. In the absence of substrate, Lon adopts a left-handed, "open" spiral organization with autoinhibited proteolytic active sites. Upon the addition of substrate, Lon undergoes a reorganization to assemble an enzymatically active, right-handed "closed" conformer with active protease sites. These findings define the mechanistic principles underlying the operational plasticity required for processing diverse protein substrates.
Collapse
Affiliation(s)
- Mia Shin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Puchades
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ananya Asmita
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Neha Puri
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Eric Adjei
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - A. Wali Karzai
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
Akbar S, Mozumder S, Sengupta J. Retrospect and Prospect of Single Particle Cryo-Electron Microscopy: The Class of Integral Membrane Proteins as an Example. J Chem Inf Model 2020; 60:2448-2457. [DOI: 10.1021/acs.jcim.9b01015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shirin Akbar
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Cianfrocco MA, Kellogg EH. What Could Go Wrong? A Practical Guide to Single-Particle Cryo-EM: From Biochemistry to Atomic Models. J Chem Inf Model 2020; 60:2458-2469. [PMID: 32078321 DOI: 10.1021/acs.jcim.9b01178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cryo-electron microscopy (cryo-EM) has enjoyed explosive recent growth due to revolutionary advances in hardware and software, resulting in a steady stream of long-awaited, high-resolution structures with unprecedented atomic detail. With this comes an increased number of microscopes, cryo-EM facilities, and scientists eager to leverage the ability to determine protein structures without crystallization. However, numerous pitfalls and considerations beset the path toward high-resolution structures and are not necessarily obvious from literature surveys. Here, we detail the most common misconceptions when initiating a cryo-EM project and common technical hurdles, as well as their solutions, and we conclude with a vision for the future of this exciting field.
Collapse
Affiliation(s)
- Michael A Cianfrocco
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elizabeth H Kellogg
- Department of Molecular Biology and Genetics,Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
31
|
Fraser JS, Lindorff-Larsen K, Bonomi M. What Will Computational Modeling Approaches Have to Say in the Era of Atomistic Cryo-EM Data? J Chem Inf Model 2020; 60:2410-2412. [PMID: 32090567 DOI: 10.1021/acs.jcim.0c00123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94107, United States
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Massimiliano Bonomi
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry; CNRS UMR 3528; C3BI, CNRS USR 3756; Institut Pasteur, 75015 Paris, France
| |
Collapse
|
32
|
Fejer SN. Minimalistic coarse-grained modeling of viral capsid assembly. COMPUTATIONAL APPROACHES FOR UNDERSTANDING DYNAMICAL SYSTEMS: PROTEIN FOLDING AND ASSEMBLY 2020; 170:405-434. [DOI: 10.1016/bs.pmbts.2019.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Terwilliger TC, Adams PD, Afonine PV, Sobolev OV. Cryo-EM map interpretation and protein model-building using iterative map segmentation. Protein Sci 2020; 29:87-99. [PMID: 31599033 PMCID: PMC6933853 DOI: 10.1002/pro.3740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022]
Abstract
A procedure for building protein chains into maps produced by single-particle electron cryo-microscopy (cryo-EM) is described. The procedure is similar to the way an experienced structural biologist might analyze a map, focusing first on secondary structure elements such as helices and sheets, then varying the contour level to identify connections between these elements. Since the high density in a map typically follows the main-chain of the protein, the main-chain connection between secondary structure elements can often be identified as the unbranched path between them with the highest minimum value along the path. This chain-tracing procedure is then combined with finding side-chain positions based on the presence of density extending away from the main path of the chain, allowing generation of a Cα model. The Cα model is converted to an all-atom model and is refined against the map. We show that this procedure is as effective as other existing methods for interpretation of cryo-EM maps and that it is considerably faster and produces models with fewer chain breaks than our previous methods that were based on approaches developed for crystallographic maps.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- Los Alamos National LaboratoryLos AlamosNew Mexico
- New Mexico ConsortiumLos AlamosNew Mexico
| | - Paul D. Adams
- Molecular Biophysics & Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
- Department of BioengineeringUniversity of California BerkeleyBerkeleyCalifornia
| | - Pavel V. Afonine
- Molecular Biophysics & Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| | - Oleg V. Sobolev
- Molecular Biophysics & Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia
| |
Collapse
|
34
|
Lawson CL, Berman HM, Chiu W. Evolving data standards for cryo-EM structures. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:014701. [PMID: 32002441 PMCID: PMC6980868 DOI: 10.1063/1.5138589] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/07/2020] [Indexed: 05/04/2023]
Abstract
Electron cryo-microscopy (cryo-EM) is increasingly being used to determine 3D structures of a broad spectrum of biological specimens from molecules to cells. Anticipating this progress in the early 2000s, an international collaboration of scientists with expertise in both cryo-EM and structure data archiving was established (EMDataResource, previously known as EMDataBank). The major goals of the collaboration have been twofold: to develop the necessary infrastructure for archiving cryo-EM-derived density maps and models, and to promote development of cryo-EM structure validation standards. We describe how cryo-EM data archiving and validation have been developed and jointly coordinated for the Electron Microscopy Data Bank and Protein Data Bank archives over the past two decades, as well as the impact of evolving technology on data standards. Just as for X-ray crystallography and nuclear magnetic resonance, engaging the scientific community via workshops and challenging activities has played a central role in developing recommendations and requirements for the cryo-EM structure data archives.
Collapse
Affiliation(s)
- Catherine L. Lawson
- Institute for Quantitative Biomedicine and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
35
|
Malhotra S, Träger S, Dal Peraro M, Topf M. Modelling structures in cryo-EM maps. Curr Opin Struct Biol 2019; 58:105-114. [PMID: 31394387 DOI: 10.1016/j.sbi.2019.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022]
Abstract
Recent advances in structure determination of sub-cellular structures using cryo-electron microscopy and tomography have enabled us to understand their architecture in a more detailed manner and gain insight into their function. The choice of approach to use for atomic model building, fitting, refinement and validation in the 3D map resulting from these experiments depends primarily on the resolution of the map and the prior information on the corresponding model. Here, we survey some of such methods and approaches and highlight their uses in specific recent examples.
Collapse
Affiliation(s)
- Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Sylvain Träger
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
36
|
Puchades C, Ding B, Song A, Wiseman RL, Lander GC, Glynn SE. Unique Structural Features of the Mitochondrial AAA+ Protease AFG3L2 Reveal the Molecular Basis for Activity in Health and Disease. Mol Cell 2019; 75:1073-1085.e6. [PMID: 31327635 PMCID: PMC6731152 DOI: 10.1016/j.molcel.2019.06.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/24/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022]
Abstract
Mitochondrial AAA+ quality-control proteases regulate diverse aspects of mitochondrial biology through specialized protein degradation, but the underlying mechanisms of these enzymes remain poorly defined. The mitochondrial AAA+ protease AFG3L2 is of particular interest, as genetic mutations localized throughout AFG3L2 are linked to diverse neurodegenerative disorders. However, a lack of structural data has limited our understanding of how mutations impact enzymatic function. Here, we used cryoelectron microscopy (cryo-EM) to determine a substrate-bound structure of the catalytic core of human AFG3L2. This structure identifies multiple specialized structural features that integrate with conserved motifs required for ATP-dependent translocation to unfold and degrade targeted proteins. Many disease-relevant mutations localize to these unique structural features of AFG3L2 and distinctly influence its activity and stability. Our results provide a molecular basis for neurological phenotypes associated with different AFG3L2 mutations and establish a structural framework to understand how different members of the AAA+ superfamily achieve specialized biological functions.
Collapse
Affiliation(s)
- Cristina Puchades
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bojian Ding
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Albert Song
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
37
|
Sandate CR, Szyk A, Zehr EA, Lander GC, Roll-Mecak A. An allosteric network in spastin couples multiple activities required for microtubule severing. Nat Struct Mol Biol 2019; 26:671-678. [PMID: 31285604 PMCID: PMC6761829 DOI: 10.1038/s41594-019-0257-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022]
Abstract
The AAA+ ATPase spastin remodels microtubule arrays through severing and its mutation is the most common cause of hereditary spastic paraplegias (HSP). Polyglutamylation of the tubulin C-terminal tail recruits spastin to microtubules and modulates severing activity. Here, we present a ~3.2 Å resolution cryo-EM structure of the Drosophila melanogaster spastin hexamer with a polyglutamate peptide bound in its central pore. Two electropositive loops arranged in a double-helical staircase coordinate the substrate sidechains. The structure reveals how concurrent nucleotide and substrate binding organizes the conserved spastin pore loops into an ordered network that is allosterically coupled to oligomerization, and suggests how tubulin tail engagement activates spastin for microtubule disassembly. This allosteric coupling may apply generally in organizing AAA+ protein translocases into their active conformations. We show that this allosteric network is essential for severing and is a hotspot for HSP mutations.
Collapse
Affiliation(s)
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | | | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
38
|
Casañal A, Shakeel S, Passmore LA. Interpretation of medium resolution cryoEM maps of multi-protein complexes. Curr Opin Struct Biol 2019; 58:166-174. [PMID: 31362190 PMCID: PMC6863432 DOI: 10.1016/j.sbi.2019.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022]
Abstract
CryoEM maps at medium (3.5–6 Å) resolution can be challenging to interpret. Integration of multiple methods can inform cryoEM studies. Mass spectrometry and biochemistry facilitate map interpretation and model building.
Electron cryo-microscopy (cryoEM) is used to determine structures of biological molecules, including multi-protein complexes. Maps at better than 3.0 Å resolution are relatively straightforward to interpret since atomic models of proteins and nucleic acids can be built directly. Still, these resolutions are often difficult to achieve, and map quality frequently varies within a structure. This results in data that are challenging to interpret, especially when crystal structures or suitable homology models are not available. Recent advances in mass spectrometry techniques, computational methods and model building tools facilitate subunit/domain fitting into maps, elucidation of protein contacts, and de novo generation of atomic models. Here, we review techniques for map interpretation and provide examples from recent studies of multi-protein complexes.
Collapse
Affiliation(s)
- Ana Casañal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| | - Shabih Shakeel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
39
|
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering , University of California Riverside , Riverside , California 92521 , United States
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Computational Biophysics Research Team , RIKEN Center for Computational Science , 7-1-26 Minatojima-Minamimachi , Chuo-ku, Kobe , Hyogo 650-0047 , Japan.,Laboratory for Biomolecular Function Simulation , RIKEN Center for Biosystems Dynamics Research , 1-6-5 Minatojima-Minamimachi , Chuo-ku, Kobe , Hyogo 650-0047 , Japan
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering , Old Dominion University , Norfolk , Virginia 23529 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California San Diego , San Diego , California 92093-0340 , United States
| |
Collapse
|
40
|
Danev R, Yanagisawa H, Kikkawa M. Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. Trends Biochem Sci 2019; 44:837-848. [PMID: 31078399 DOI: 10.1016/j.tibs.2019.04.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 01/01/2023]
Abstract
Cryo-electron microscopy (cryo-EM) has emerged as a powerful structure determination technique. Its most prolific branch is single particle analysis (SPA), a method being used in a growing number of laboratories worldwide to determine high-resolution protein structures. Cryo-electron tomography (cryo-ET) is another powerful approach that enables visualization of protein complexes in their native cellular environment. Despite the wide-ranging success of cryo-EM, there are many methodological aspects that could be improved. Those include sample preparation, sample screening, data acquisition, image processing, and structure validation. Future developments will increase the reliability and throughput of the technique and reduce the cost and skill level barrier for its adoption.
Collapse
Affiliation(s)
- Radostin Danev
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Haruaki Yanagisawa
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
41
|
Rollins MF, Chowdhury S, Carter J, Golden SM, Miettinen HM, Santiago-Frangos A, Faith D, Lawrence CM, Lander GC, Wiedenheft B. Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Mol Cell 2019; 74:132-142.e5. [PMID: 30872121 PMCID: PMC6521718 DOI: 10.1016/j.molcel.2019.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Bacteria and archaea have evolved sophisticated adaptive immune systems that rely on CRISPR RNA (crRNA)-guided detection and nuclease-mediated elimination of invading nucleic acids. Here, we present the cryo-electron microscopy (cryo-EM) structure of the type I-F crRNA-guided surveillance complex (Csy complex) from Pseudomonas aeruginosa bound to a double-stranded DNA target. Comparison of this structure to previously determined structures of this complex reveals a ∼180-degree rotation of the C-terminal helical bundle on the "large" Cas8f subunit. We show that the double-stranded DNA (dsDNA)-induced conformational change in Cas8f exposes a Cas2/3 "nuclease recruitment helix" that is structurally homologous to a virally encoded anti-CRISPR protein (AcrIF3). Structural homology between Cas8f and AcrIF3 suggests that AcrIF3 is a mimic of the Cas8f nuclease recruitment helix.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- CRISPR-Associated Proteins/chemistry
- CRISPR-Associated Proteins/genetics
- CRISPR-Associated Proteins/immunology
- CRISPR-Associated Proteins/metabolism
- CRISPR-Cas Systems
- Clustered Regularly Interspaced Short Palindromic Repeats
- Cryoelectron Microscopy
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Models, Molecular
- Molecular Mimicry
- Nucleic Acid Conformation
- Protein Conformation
- Pseudomonas aeruginosa/enzymology
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/immunology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Structure-Activity Relationship
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- MaryClare F Rollins
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Saikat Chowdhury
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Joshua Carter
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah M Golden
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Heini M Miettinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Dominick Faith
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA.
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
42
|
Herzik MA, Wu M, Lander GC. High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Nat Commun 2019; 10:1032. [PMID: 30833564 PMCID: PMC6399227 DOI: 10.1038/s41467-019-08991-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Determining high-resolution structures of biological macromolecules amassing less than 100 kilodaltons (kDa) has been a longstanding goal of the cryo-electron microscopy (cryo-EM) community. While the Volta phase plate has enabled visualization of specimens in this size range, this instrumentation is not yet fully automated and can present technical challenges. Here, we show that conventional defocus-based cryo-EM methodologies can be used to determine high-resolution structures of specimens amassing less than 100 kDa using a transmission electron microscope operating at 200 keV coupled with a direct electron detector. Our ~2.7 Å structure of alcohol dehydrogenase (82 kDa) proves that bound ligands can be resolved with high fidelity to enable investigation of drug-target interactions. Our ~2.8 Å and ~3.2 Å structures of methemoglobin demonstrate that distinct conformational states can be identified within a dataset for proteins as small as 64 kDa. Furthermore, we provide the sub-nanometer cryo-EM structure of a sub-50 kDa protein.
Collapse
Affiliation(s)
- Mark A Herzik
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
43
|
Igaev M, Kutzner C, Bock LV, Vaiana AC, Grubmüller H. Automated cryo-EM structure refinement using correlation-driven molecular dynamics. eLife 2019; 8:e43542. [PMID: 30829573 PMCID: PMC6424565 DOI: 10.7554/elife.43542] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/03/2019] [Indexed: 12/22/2022] Open
Abstract
We present a correlation-driven molecular dynamics (CDMD) method for automated refinement of atomistic models into cryo-electron microscopy (cryo-EM) maps at resolutions ranging from near-atomic to subnanometer. It utilizes a chemically accurate force field and thermodynamic sampling to improve the real-space correlation between the modeled structure and the cryo-EM map. Our framework employs a gradual increase in resolution and map-model agreement as well as simulated annealing, and allows fully automated refinement without manual intervention or any additional rotamer- and backbone-specific restraints. Using multiple challenging systems covering a wide range of map resolutions, system sizes, starting model geometries and distances from the target state, we assess the quality of generated models in terms of both model accuracy and potential of overfitting. To provide an objective comparison, we apply several well-established methods across all examples and demonstrate that CDMD performs best in most cases.
Collapse
Affiliation(s)
- Maxim Igaev
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Carsten Kutzner
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Lars V Bock
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Andrea C Vaiana
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Helmut Grubmüller
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
44
|
Bruggemann J, Lander GC, Su AI. Exploring applications of crowdsourcing to cryo-EM. J Struct Biol 2018; 203:37-45. [PMID: 29486249 PMCID: PMC6086358 DOI: 10.1016/j.jsb.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 11/28/2022]
Abstract
Extraction of particles from cryo-electron microscopy (cryo-EM) micrographs is a crucial step in processing single-particle datasets. Although algorithms have been developed for automatic particle picking, these algorithms generally rely on two-dimensional templates for particle identification, which may exhibit biases that can propagate artifacts through the reconstruction pipeline. Manual picking is viewed as a gold-standard solution for particle selection, but it is too time-consuming to perform on data sets of thousands of images. In recent years, crowdsourcing has proven effective at leveraging the open web to manually curate datasets. In particular, citizen science projects such as Galaxy Zoo have shown the power of appealing to users’ scientific interests to process enormous amounts of data. To this end, we explored the possible applications of crowdsourcing in cryo-EM particle picking, presenting a variety of novel experiments including the production of a fully annotated particle set from untrained citizen scientists. We show the possibilities and limitations of crowdsourcing particle selection tasks, and explore further options for crowdsourcing cryo-EM data processing.
Collapse
Affiliation(s)
- Jacob Bruggemann
- Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Gabriel C Lander
- Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Andrew I Su
- Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| |
Collapse
|
45
|
Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Nat Methods 2017; 14:1075-1078. [PMID: 28991891 PMCID: PMC5679434 DOI: 10.1038/nmeth.4461] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Nearly 98% of single particle cryo-EM structures resolved to better than 4 Å resolution have been determined using 300 keV transmission electron microscopes. We demonstrate that it is possible to obtain reconstructions of macromolecular complexes at a range of sizes to better than 3 Å resolution using a 200 keV transmission electron microscope. These structures are of sufficient quality to unambiguously assign amino acid rotameric conformations and identify ordered water molecules.
Collapse
|