1
|
Ai H, He Z, Deng Z, Chu GC, Shi Q, Tong Z, Li JB, Pan M, Liu L. Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16. Nat Struct Mol Biol 2024; 31:1745-1755. [PMID: 38918638 DOI: 10.1038/s41594-024-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Epigenetic regulators have a crucial effect on gene expression based on their manipulation of histone modifications. Histone H2AK119 monoubiquitination (H2AK119Ub), a well-established hallmark in transcription repression, is dynamically regulated by the opposing activities of Polycomb repressive complex 1 (PRC1) and nucleosome deubiquitinases including the primary human USP16 and Polycomb repressive deubiquitinase (PR-DUB) complex. Recently, the catalytic mechanism for the multi-subunit PR-DUB complex has been described, but how the single-subunit USP16 recognizes the H2AK119Ub nucleosome and cleaves the ubiquitin (Ub) remains unknown. Here we report the cryo-EM structure of USP16-H2AK119Ub nucleosome complex, which unveils a fundamentally distinct mode of H2AK119Ub deubiquitination compared to PR-DUB, encompassing the nucleosome recognition pattern independent of the H2A-H2B acidic patch and the conformational heterogeneity in the Ub motif and the histone H2A C-terminal tail. Our work highlights the mechanism diversity of H2AK119Ub deubiquitination and provides a structural framework for understanding the disease-causing mutations of USP16.
Collapse
Affiliation(s)
- Huasong Ai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Zaozhen He
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Kim N, Byun S, Um SJ. Additional Sex Combs-like Family Associated with Epigenetic Regulation. Int J Mol Sci 2024; 25:5119. [PMID: 38791157 PMCID: PMC11121404 DOI: 10.3390/ijms25105119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The additional sex combs-like (ASXL) family, a mammalian homolog of the additional sex combs (Asx) of Drosophila, has been implicated in transcriptional regulation via chromatin modifications. Abnormal expression of ASXL family genes leads to myelodysplastic syndromes and various types of leukemia. De novo mutation of these genes also causes developmental disorders. Genes in this family and their neighbor genes are evolutionary conserved in humans and mice. This review provides a comprehensive summary of epigenetic regulations associated with ASXL family genes. Their expression is commonly regulated by DNA methylation at CpG islands preceding transcription starting sites. Their proteins primarily engage in histone tail modifications through interactions with chromatin regulators (PRC2, TrxG, PR-DUB, SRC1, HP1α, and BET proteins) and with transcription factors, including nuclear hormone receptors (RAR, PPAR, ER, and LXR). Histone modifications associated with these factors include histone H3K9 acetylation and methylation, H3K4 methylation, H3K27 methylation, and H2AK119 deubiquitination. Recently, non-coding RNAs have been identified following mutations in the ASXL1 or ASXL3 gene, along with circular ASXLs and microRNAs that regulate ASXL1 expression. The diverse epigenetic regulations linked to ASXL family genes collectively contribute to tumor suppression and developmental processes. Our understanding of ASXL-regulated epigenetics may provide insights into the development of therapeutic epigenetic drugs.
Collapse
Affiliation(s)
| | | | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, Republic of Korea; (N.K.)
| |
Collapse
|
3
|
Woods E, Holmes N, Albaba S, Evans IR, Balasubramanian M. ASXL3-related disorder: Molecular phenotyping and comprehensive review providing insights into disease mechanism. Clin Genet 2024; 105:470-487. [PMID: 38420660 DOI: 10.1111/cge.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
ASXL3-related disorder, sometimes referred to as Bainbridge-Ropers syndrome, was first identified as a distinct neurodevelopmental disorder by Bainbridge et al. in 2013. Since then, there have been a number of case series and single case reports published worldwide. A comprehensive review of the literature was carried out. Abstracts were screened, relevant literature was analysed, and descriptions of common phenotypic features were quantified. ASXL3 variants were collated and categorised. Common phenotypic features comprised global developmental delay or intellectual disability (97%), feeding problems (76%), hypotonia (88%) and characteristic facial features (93%). The majority of genetic variants were de novo truncating variants in exon 11 or 12 of the ASXL3 gene. Several gaps in our knowledge of this disorder were identified, namely, underlying pathophysiology and disease mechanism, disease contribution of missense variants, relevance of variant location, prevalence and penetrance data. Clinical information is currently limited by patient numbers and lack of longitudinal data, which this review aims to address.
Collapse
Affiliation(s)
- Emily Woods
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Nicola Holmes
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Shadi Albaba
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Iwan R Evans
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
5
|
Zheng LL, Wang LT, Pang YW, Sun LP, Shi L. Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem 2024; 266:116161. [PMID: 38262120 DOI: 10.1016/j.ejmech.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Ubiquitination is a type of post-translational modification that covalently links ubiquitin to a target protein, which plays a critical role in modulating protein activity, stability, and localization. In contrast, this process is reversed by deubiquitinases (DUBs), which remove ubiquitin from ubiquitinated substrates. Dysregulation of DUBs is associated with several human diseases, such as cancer, inflammation, neurodegenerative disorders, and autoimmune diseases. Thus, DUBs have become promising targets for drug development. Although the physiological and pathological effects of DUBs are increasingly well understood, the clinical drug discovery of selective DUB inhibitors has been challenging. Herein, we summarize the structures and functions of main classes of DUBs and discuss the recent progress in developing selective small-molecule DUB inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ting Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye-Wei Pang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Shi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor HF, Sun ZW, Ezell RJ, Vaidya A, Meiners MJ, Cheek MA, Rice WJ, Svetlov V, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1. SCIENCE ADVANCES 2023; 9:eadg9832. [PMID: 37556531 PMCID: PMC10411902 DOI: 10.1126/sciadv.adg9832] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
Histone H2A lysine 119 (H2AK119Ub) is monoubiquitinated by Polycomb repressive complex 1 and deubiquitinated by Polycomb repressive deubiquitinase complex (PR-DUB). PR-DUB cleaves H2AK119Ub to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. The PR-DUB subunits (BAP1 and ASXL1) are among the most frequently mutated epigenetic factors in human cancers. How PR-DUB establishes specificity for H2AK119Ub over other nucleosomal ubiquitination sites and how disease-associated mutations of the enzyme affect activity are unclear. Here, we determine a cryo-EM structure of human BAP1 and the ASXL1 DEUBAD in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for restructuring the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing insight into understanding cancer etiology.
Collapse
Affiliation(s)
- Jonathan F. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Simone Tamburri
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | | | - Samantha Rustichelli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Victoria Godínez-López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | | | | | | | | | | | | | | | - William J. Rice
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Diego Pasini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Ge W, Yu C, Li J, Yu Z, Li X, Zhang Y, Liu CP, Li Y, Tian C, Zhang X, Li G, Zhu B, Xu RM. Basis of the H2AK119 specificity of the Polycomb repressive deubiquitinase. Nature 2023; 616:176-182. [PMID: 36991118 DOI: 10.1038/s41586-023-05841-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 02/14/2023] [Indexed: 03/31/2023]
Abstract
Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification1-3. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome4, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1)5 to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. 6-9). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.
Collapse
Affiliation(s)
- Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaorong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Changlin Tian
- Division of Life Sciences and Anhui Provisional Engineering Laboratory of Peptide Drugs, University of Science and Technology of China, Hefei, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor H, Meiners MJ, Cheek MA, Rice W, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb Repressive Deubiquitinase BAP1/ASXL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529554. [PMID: 36865140 PMCID: PMC9980132 DOI: 10.1101/2023.02.23.529554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The maintenance of gene expression patterns during metazoan development is achieved by the actions of Polycomb group (PcG) complexes. An essential modification marking silenced genes is monoubiquitination of histone H2A lysine 119 (H2AK119Ub) deposited by the E3 ubiquitin ligase activity of the non-canonical Polycomb Repressive Complex 1. The Polycomb Repressive Deubiquitinase (PR-DUB) complex cleaves monoubiquitin from histone H2A lysine 119 (H2AK119Ub) to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. BAP1 and ASXL1, subunits that form active PR-DUB, are among the most frequently mutated epigenetic factors in human cancers, underscoring their biological importance. How PR-DUB achieves specificity for H2AK119Ub to regulate Polycomb silencing is unknown, and the mechanisms of most of the mutations in BAP1 and ASXL1 found in cancer have not been established. Here we determine a cryo-EM structure of human BAP1 bound to the ASXL1 DEUBAD domain in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for remodeling the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing new insight into understanding cancer etiology. One Sentence Summary We reveal the molecular mechanism of nucleosomal H2AK119Ub deubiquitination by human BAP1/ASXL1.
Collapse
Affiliation(s)
- Jonathan F. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- These authors contributed equally
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- These authors contributed equally
| | - Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
- University of Milan, Via A. di Rudini 8, Department of Health Sciences, 20142 Milan, Italy
| | | | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Victoria Godínez-López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, North Carolina, USA
| | | | | | | | | | - William Rice
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
- University of Milan, Via A. di Rudini 8, Department of Health Sciences, 20142 Milan, Italy
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Lead contact
| |
Collapse
|
9
|
Estavoyer B, Messmer C, Echbicheb M, Rudd CE, Milot E, Affar EB. Mechanisms orchestrating the enzymatic activity and cellular functions of deubiquitinases. J Biol Chem 2022; 298:102198. [PMID: 35764170 PMCID: PMC9356280 DOI: 10.1016/j.jbc.2022.102198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.
Collapse
Affiliation(s)
- Benjamin Estavoyer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Clémence Messmer
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Mohamed Echbicheb
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada
| | - Christopher E Rudd
- Laboratory for Cell Signaling in Immunotherapy, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - Eric Milot
- Laboratory for Malignant Hematopoiesis and Epigenetic Regulation of Gene Expression, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada
| | - El Bachir Affar
- Laboratory for Cell Signaling and Cancer, Maisonneuve-Rosemont Hospital Research Center, H1T 2M4, Montréal, Québec, Canada; Department of Medicine, University of Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
10
|
Therapeutic targeting of BAP1/ASXL3 sub-complex in ASCL1-dependent small cell lung cancer. Oncogene 2022; 41:2152-2162. [PMID: 35194152 PMCID: PMC8993689 DOI: 10.1038/s41388-022-02240-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 01/22/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive disease, with patients diagnosed with either early-stage, limited stage, or extensive stage of SCLC tumor progression. Discovering and targeting the functional biomarkers for SCLC will be crucial in understanding the molecular basis underlying SCLC tumorigenesis to better assist in improving clinical treatment. Emerging studies have demonstrated that dysregulations in BAP1 histone H2A deubiquitinase complex are collectively associated with pathogenesis in human SCLC. Here, we investigated the function of the oncogenic BAP1/ASXL3/BRD4 epigenetic axis in SCLC by developing a next-generation BAP1 inhibitor, iBAP-II, and focusing on the epigenetic balance established between BAP1 and non-canonical PRC1 complexes in regulating SCLC-specific transcriptional programming. We further demonstrated that pharmacologic inhibition of BAP1’s catalytic activity disrupted BAP1/ASXL3/BRD4 epigenetic axis by inducing protein degradation of the ASXL3 scaffold protein, which bridges BRD4 and BAP1 at active enhancers. Furthermore, treatment of iBAP-II represses neuroendocrine lineage-specific ASCL1/MYCL/E2F signaling in SCLC cell lines, and dramatically inhibits SCLC cell viability and tumor growth in vivo. In summary, this study has provided mechanistic insight into the oncogenic function of BAP1 in SCLC and highlighted the potential of targeting BAP1’s activity as a novel SCLC therapy.
Collapse
|
11
|
Kang JS, Nam LB, Yoo OK, Lee K, Suh YA, Kim D, Kim WK, Lim CY, Lee H, Keum YS. BAP1 Downregulates NRF2 Target Genes and Exerts Anti-Tumorigenic Effects by Deubiquitinating KEAP1 in Lung Adenocarcinoma. Antioxidants (Basel) 2022; 11:antiox11010114. [PMID: 35052618 PMCID: PMC8773298 DOI: 10.3390/antiox11010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/30/2022] Open
Abstract
KELCH-ECH-associated protein 1 (KEAP1) is an adaptor protein of Cullin 3 (CUL3) E3 ubiquitin ligase that targets a redox sensitive transcription factor, NF-E2-related factor 2 (NRF2). BRCA1-associated protein 1 (BAP1) is a tumor suppressor and deubiquitinase whose mutations increase the risk of several types of familial cancers. In the present study, we have identified that BAP1 deubiquitinates KEAP1 by binding to the BTB domain. Lentiviral transduction of BAP1 decreased the expression of NRF2 target genes, suppressed the migration and invasion, and sensitized cisplatin-induced apoptosis in human lung adenocarcinoma (LUAD) A549 cells. Examination of the lung tissues in KrasG12D/+ mice demonstrated that the level of Bap1 and Keap1 mRNAs progressively decreases during lung tumor progression, and it is correlated with NRF2 activation and the inhibition of oxidative stress. Supporting this observation, lentiviral transduction of BAP1 decreased the growth of A549 xenografts in athymic nude mice. Transcriptome analysis of human lung tissues showed that the levels of Bap1 mRNA are significantly higher in normal samples than LUAD samples. Moreover, the expression of Bap1 mRNA is associated with a better survival of LUAD patients. Together, our study demonstrates that KEAP1 deubiquitination by BAP1 is novel tumor suppressive mechanism of LUAD.
Collapse
Affiliation(s)
- Jong-Su Kang
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
| | - Le Ba Nam
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
| | - Ok-Kyung Yoo
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
| | - Kyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
| | - Young-Ah Suh
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Gyeonggi-do, Korea;
| | - Dalyong Kim
- Department of Internal Medicine, School of Medicine, Dongguk University, Goyang 10326, Gyeonggi-do, Korea; (D.K.); (W.K.K.)
| | - Woo Kyung Kim
- Department of Internal Medicine, School of Medicine, Dongguk University, Goyang 10326, Gyeonggi-do, Korea; (D.K.); (W.K.K.)
| | - Chi-Yeon Lim
- Department of Biostatistics, School of Medicine, Dongguk University, Goyang 10326, Gyeonggi-do, Korea;
| | - Haeseung Lee
- College of Pharmacy, Pusan National University, Busan 46241, Gyeongsangnam-do, Korea;
| | - Young-Sam Keum
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, 32 Dongguk-ro, Goyang 10326, Gyeonggi-do, Korea; (J.-S.K.); (L.B.N.); (O.-K.Y.); (K.L.)
- Correspondence: ; Tel.: +82-31-961-5215; Fax: +82-31-961-52
| |
Collapse
|
12
|
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021; 82:15-29. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
13
|
Tamburri S, Conway E, Pasini D. Polycomb-dependent histone H2A ubiquitination links developmental disorders with cancer. Trends Genet 2021; 38:333-352. [PMID: 34426021 DOI: 10.1016/j.tig.2021.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Cell identity is tightly controlled by specific transcriptional programs which require post-translational modifications of histones. These histone modifications allow the establishment and maintenance of active and repressed chromatin domains. Histone H2A lysine 119 ubiquitination (H2AK119ub1) has an essential role in building repressive chromatin domains during development. It is regulated by the counteracting activities of the Polycomb repressive complex 1 (PRC1) and the Polycomb repressive-deubiquitinase (PR-DUB) complexes, two multi-subunit ensembles that write and erase this modification, respectively. We have catalogued the recurrent genetic alterations in subunits of the PRC1 and PR-DUB complexes in both neurodevelopmental disorders and cancer. These genetic lesions are often shared across disorders, and we highlight common mechanisms of H2AK119ub1 dysregulation and how they affect development in multiple disease contexts.
Collapse
Affiliation(s)
- Simone Tamburri
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| | - Eric Conway
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
14
|
Peng H, Cassel J, McCracken DS, Prokop JW, Sementino E, Cheung M, Collop PR, Polo A, Joshi S, Mandell JP, Ayyanathan K, Hinds D, Malkowicz SB, Harbour JW, Bowcock AM, Salvino J, Kennedy EJ, Testa JR, Rauscher FJ. Kinetic Characterization of ASXL1/2-Mediated Allosteric Regulation of the BAP1 Deubiquitinase. Mol Cancer Res 2021; 19:1099-1112. [PMID: 33731362 DOI: 10.1158/1541-7786.mcr-20-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/22/2020] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
BAP1 is an ubiquitin hydrolase whose deubiquitinase activity is mediated by polycomb group-like protein ASXL2. Cancer-related BAP1 mutations/deletions lead to loss-of-function by targeting the catalytic ubiquitin C-terminal hydrolase (UCH) or UCH37-like domain (ULD) domains of BAP1, and the latter disrupts binding to ASXL2, an obligate partner for BAP1 enzymatic activity. However, the biochemical and biophysical properties of domains involved in forming the enzymatically active complex are unknown. Here, we report the molecular dynamics, kinetics, and stoichiometry of these interactions. We demonstrate that interactions between BAP1 and ASXL2 are direct, specific, and stable to biochemical and biophysical manipulations as detected by isothermal titration calorimetry (ITC), GST association, and optical biosensor assays. Association of the ASXL2-AB box greatly stimulates BAP1 activity. A stable ternary complex is formed, comprised of the BAP1-UCH, BAP1-ULD, and ASXL2-AB domains. Stoichiometric analysis revealed that one molecule of the ULD domain directly interacts with one molecule of the AB box. Real-time kinetic analysis of the ULD/AB protein complex to the BAP1-UCH domain, based on surface plasmon resonance, indicated that formation of the ULD/AB complex with the UCH domain is a single-step event with fast association and slow dissociation rates. In vitro experiments validated in cells that the ASXL-AB box directly regulates BAP1 activity. IMPLICATIONS: Collectively, these data elucidate molecular interactions between specific protein domains regulating BAP1 deubiquitinase activity, thus establishing a foundation for small-molecule approaches to reactivate latent wild-type BAP1 catalytic activity in BAP1-mutant cancers.
Collapse
Affiliation(s)
| | - Joel Cassel
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Daniel S McCracken
- The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | | | | | - Paul R Collop
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| | | | - Surbhi Joshi
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | | - David Hinds
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - S Bruce Malkowicz
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Anne M Bowcock
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia
| | | | | |
Collapse
|
15
|
Emerging multifaceted roles of BAP1 complexes in biological processes. Cell Death Dis 2021; 7:20. [PMID: 33483476 PMCID: PMC7822832 DOI: 10.1038/s41420-021-00406-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 01/30/2023]
Abstract
Histone H2AK119 mono-ubiquitination (H2AK119Ub) is a relatively abundant histone modification, mainly catalyzed by the Polycomb Repressive Complex 1 (PRC1) to regulate Polycomb-mediated transcriptional repression of downstream target genes. Consequently, H2AK119Ub can also be dynamically reversed by the BAP1 complex, an evolutionarily conserved multiprotein complex that functions as a general transcriptional activator. In previous studies, it has been reported that the BAP1 complex consists of important biological roles in development, metabolism, and cancer. However, identifying the BAP1 complex's regulatory mechanisms remains to be elucidated due to its various complex forms and its ability to target non-histone substrates. In this review, we will summarize recent findings that have contributed to the diverse functional role of the BAP1 complex and further discuss the potential in targeting BAP1 for therapeutic use.
Collapse
|
16
|
Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 2020; 11:5947. [PMID: 33230107 PMCID: PMC7683540 DOI: 10.1038/s41467-020-19722-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Histone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed. Histone H2A monoubiquitination on lysine 119 in vertebrate and lysine 118 in Drosophila (H2Aub) is an epigenomic mark usually associated with gene repression by Polycomb group factors. Here the authors review the current knowledge on the deposition and removal of H2Aub, its function in transcription and other DNA-associated processes as well as its relevance to human disease.
Collapse
|
17
|
Reddington CJ, Fellner M, Burgess AE, Mace PD. Molecular Regulation of the Polycomb Repressive-Deubiquitinase. Int J Mol Sci 2020; 21:ijms21217837. [PMID: 33105797 PMCID: PMC7660087 DOI: 10.3390/ijms21217837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modification of histone proteins plays a major role in histone–DNA packaging and ultimately gene expression. Attachment of ubiquitin to the C-terminal tail of histone H2A (H2AK119Ub in mammals) is particularly relevant to the repression of gene transcription, and is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here, we outline recent advances in the understanding of PR-DUB regulation, which have come through structural studies of the Drosophila melanogaster PR-DUB, biochemical investigation of the human PR-DUB, and functional studies of proteins that associate with the PR-DUB. In humans, mutations in components of the PR-DUB frequently give rise to malignant mesothelioma, melanomas, and renal cell carcinoma, and increase disease risk from carcinogens. Diverse mechanisms may underlie disruption of the PR-DUB across this spectrum of disease. Comparing and contrasting the PR-DUB in mammals and Drosophila reiterates the importance of H2AK119Ub through evolution, provides clues as to how the PR-DUB is dysregulated in disease, and may enable new treatment approaches in cancers where the PR-DUB is disrupted.
Collapse
|
18
|
Okonska A, Felley-Bosco E. BAP1 Missense Mutations in Cancer: Friend or Foe? Trends Cancer 2019; 5:659-662. [PMID: 31735283 DOI: 10.1016/j.trecan.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
BRCA-associated protein-1 (BAP1) is mutated in several cancers and a few therapies targeting BAP1 loss-of-function mutations have been proposed, some of them being already tested in clinical trials. However, most of the missense mutations have not been functionally characterized, although such information is essential for successful patient stratification.
Collapse
Affiliation(s)
- Agata Okonska
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zurich, Switzerland.
| |
Collapse
|