1
|
Sengupta RN, Brodsky O, Bingham P, Diehl WC, Ferre R, Greasley SE, Johnson E, Kraus M, Lieberman W, Meier JL, Paul TA, Maegley KA. Modulation of the substrate preference of a MYST acetyltransferase by a scaffold protein. J Biol Chem 2025; 301:108262. [PMID: 39909374 PMCID: PMC11946513 DOI: 10.1016/j.jbc.2025.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
The MYST family of lysine acetyltransferases are transcriptional regulators often dysregulated in cancer. In cells, MYST members form distinct multiprotein complexes that guide their histone substrate specificity, but how this selectivity is conferred is not fully understood. Here we interrogate a complex-mediated change in the substrate preference of the MYST member KAT6A, a target for cancer therapeutics. KAT6A forms a 4-protein complex with BRPF1, ING4/5, and MEAF6 to acetylate H3K23. However, additional substrates (H3K9, H3K14, and H3K27) have been proposed, and whether these residues are modified by KAT6A is unclear. We determined the histone substrate specificity of uncomplexed forms of KAT6A, including full-length KAT6A (KAT6AFL) and the isolated acetyltransferase (MYST) domain, and the KAT6AFL 4-protein complex (KAT6AFL 4-plex). We show that the MYST domain and KAT6AFL preferentially acetylate H3K14, with this selectivity linked to a glycine pair preceding K14. A structure of the MYST domain bound to an H3K14-CoA bisubstrate inhibitor is consistent with a model in which the small size and flexibility of this glycine pair facilitate K14 acetylation. Notably, when KAT6AFL assembles into the 4-plex, H3K23 emerges as the favored substrate, with favorable recognition of an alanine-threonine pair before K23. These changes are mediated by BRPF1 and steady-state assays with H3 peptides indicate that this scaffold protein can alter the substrate preference of KAT6AFL by ≈103-fold. Such context-dependent specificity illustrates how the functional properties of MYST members can be modulated by associated proteins and underscores the importance of characterizing these enzymes in their free and complex forms.
Collapse
Affiliation(s)
| | - Oleg Brodsky
- Medicine Design, Pfizer Research and Development, Pfizer, La Jolla, California, USA
| | - Patrick Bingham
- Oncology Research and Development, Pfizer, La Jolla, California, USA
| | - Wade C Diehl
- Medicine Design, Pfizer Research and Development, Pfizer, La Jolla, California, USA
| | - RoseAnn Ferre
- Medicine Design, Pfizer Research and Development, Pfizer, La Jolla, California, USA
| | - Samantha E Greasley
- Medicine Design, Pfizer Research and Development, Pfizer, La Jolla, California, USA
| | - Eric Johnson
- Medicine Design, Pfizer Research and Development, Pfizer, La Jolla, California, USA
| | - Michelle Kraus
- Medicine Design, Pfizer Research and Development, Pfizer, La Jolla, California, USA
| | - Whitney Lieberman
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Thomas A Paul
- Oncology Research and Development, Pfizer, La Jolla, California, USA
| | - Karen A Maegley
- Oncology Research and Development, Pfizer, La Jolla, California, USA.
| |
Collapse
|
2
|
Yokoyama A, Niida H, Kutateladze TG, Côté J. HBO1, a MYSTerious KAT and its links to cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195045. [PMID: 38851533 PMCID: PMC11330361 DOI: 10.1016/j.bbagrm.2024.195045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The histone acetyltransferase HBO1, also known as KAT7, is a major chromatin modifying enzyme responsible for H3 and H4 acetylation. It is found within two distinct tetrameric complexes, the JADE subunit-containing complex and BRPF subunit-containing complex. The HBO1-JADE complex acetylates lysine 5, 8 and 12 of histone H4, and the HBO1-BRPF complex acetylates lysine 14 of histone H3. HBO1 regulates gene transcription, DNA replication, DNA damage repair, and centromere function. It is involved in diverse signaling pathways and plays crucial roles in development and stem cell biology. Recent work has established a strong relationship of HBO1 with the histone methyltransferase MLL/KMT2A in acute myeloid leukemia. Here, we discuss functional and pathological links of HBO1 to cancer, highlighting the underlying mechanisms that may pave the way to the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, United States of America.
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division-CHU de Québec-UL Research Center, Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada.
| |
Collapse
|
3
|
Rots D, Choufani S, Faundes V, Dingemans AJM, Joss S, Foulds N, Jones EA, Stewart S, Vasudevan P, Dabir T, Park SM, Jewell R, Brown N, Pais L, Jacquemont S, Jizi K, Ravenswaaij-Arts CMAV, Kroes HY, Stumpel CTRM, Ockeloen CW, Diets IJ, Nizon M, Vincent M, Cogné B, Besnard T, Kambouris M, Anderson E, Zackai EH, McDougall C, Donoghue S, O'Donnell-Luria A, Valivullah Z, O'Leary M, Srivastava S, Byers H, Leslie N, Mazzola S, Tiller GE, Vera M, Shen JJ, Boles R, Jain V, Brischoux-Boucher E, Kinning E, Simpson BN, Giltay JC, Harris J, Keren B, Guimier A, Marijon P, Vries BBAD, Motter CS, Mendelsohn BA, Coffino S, Gerkes EH, Afenjar A, Visconti P, Bacchelli E, Maestrini E, Delahaye-Duriez A, Gooch C, Hendriks Y, Adams H, Thauvin-Robinet C, Josephi-Taylor S, Bertoli M, Parker MJ, Rutten JW, Caluseriu O, Vernon HJ, Kaziyev J, Zhu J, Kremen J, Frazier Z, Osika H, Breault D, Nair S, Lewis SME, Ceroni F, Viggiano M, Posar A, Brittain H, Giovanna T, Giulia G, Quteineh L, Ha-Vinh Leuchter R, Zonneveld-Huijssoon E, Mellado C, Marey I, Coudert A, Aracena Alvarez MI, Kennis MGP, Bouman A, Roifman M, Amorós Rodríguez MI, Ortigoza-Escobar JD, Vernimmen V, Sinnema M, Pfundt R, Brunner HG, et alRots D, Choufani S, Faundes V, Dingemans AJM, Joss S, Foulds N, Jones EA, Stewart S, Vasudevan P, Dabir T, Park SM, Jewell R, Brown N, Pais L, Jacquemont S, Jizi K, Ravenswaaij-Arts CMAV, Kroes HY, Stumpel CTRM, Ockeloen CW, Diets IJ, Nizon M, Vincent M, Cogné B, Besnard T, Kambouris M, Anderson E, Zackai EH, McDougall C, Donoghue S, O'Donnell-Luria A, Valivullah Z, O'Leary M, Srivastava S, Byers H, Leslie N, Mazzola S, Tiller GE, Vera M, Shen JJ, Boles R, Jain V, Brischoux-Boucher E, Kinning E, Simpson BN, Giltay JC, Harris J, Keren B, Guimier A, Marijon P, Vries BBAD, Motter CS, Mendelsohn BA, Coffino S, Gerkes EH, Afenjar A, Visconti P, Bacchelli E, Maestrini E, Delahaye-Duriez A, Gooch C, Hendriks Y, Adams H, Thauvin-Robinet C, Josephi-Taylor S, Bertoli M, Parker MJ, Rutten JW, Caluseriu O, Vernon HJ, Kaziyev J, Zhu J, Kremen J, Frazier Z, Osika H, Breault D, Nair S, Lewis SME, Ceroni F, Viggiano M, Posar A, Brittain H, Giovanna T, Giulia G, Quteineh L, Ha-Vinh Leuchter R, Zonneveld-Huijssoon E, Mellado C, Marey I, Coudert A, Aracena Alvarez MI, Kennis MGP, Bouman A, Roifman M, Amorós Rodríguez MI, Ortigoza-Escobar JD, Vernimmen V, Sinnema M, Pfundt R, Brunner HG, Vissers LELM, Kleefstra T, Weksberg R, Banka S. Pathogenic variants in KMT2C result in a neurodevelopmental disorder distinct from Kleefstra and Kabuki syndromes. Am J Hum Genet 2024; 111:1626-1642. [PMID: 39013459 PMCID: PMC11339626 DOI: 10.1016/j.ajhg.2024.06.009] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.
Collapse
Affiliation(s)
- Dmitrijs Rots
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Genetics Laboratory, Children's Clinical University Hospital, Riga, Latvia
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Victor Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Nicola Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton NHS Foundation Trust, Southampton SO16 5YA, UK
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah Stewart
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, UK
| | - Tabib Dabir
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Natasha Brown
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Khadijé Jizi
- Service de Génétique Médicale, CHU Ste-Justine, Montréal, QC, Canada
| | | | - Hester Y Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands; GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mathilde Nizon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Marie Vincent
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Thomas Besnard
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Marios Kambouris
- Division of Genetics, Department of Pathology and Laboratory Medicine Department, Sidra Medicine, Doha, Qatar
| | - Emily Anderson
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carey McDougall
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Donoghue
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zaheer Valivullah
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Melanie O'Leary
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Heather Byers
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Nancy Leslie
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah Mazzola
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - George E Tiller
- Department of Genetics, Kaiser Permanente, Los Angeles, CA, USA
| | - Moin Vera
- Department of Genetics, Kaiser Permanente, Los Angeles, CA, USA
| | - Joseph J Shen
- Division of Genetics, Department of Pediatrics, UCSF Fresno, Fresno, CA, USA; Division of Genomic Medicine, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | | | - Vani Jain
- All Wales Medical Genomics Service, Wales Genomic Health Centre, Cardiff Edge Business Park, Longwood Drive, Whitchurch, Cardiff CF14 7YU, UK
| | | | - Esther Kinning
- Clinical Genetics, Birmingham Women's and Children's, Birmingham, UK
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Jacques C Giltay
- Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Boris Keren
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Anne Guimier
- Service de Médecine Genomique des Maladies Rares, CRMR Anomalies Du Développement, Hôpital Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Pierre Marijon
- Laboratoire de Biologie Médicale Multisites Seqoia FMG2025, 75014 Paris, France
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Samantha Coffino
- Department of Pediatric Neurology, Kaiser Permanente, Oakland, CA, USA
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Afenjar
- APHP Sorbonne Université, Centre de Référence Malformations et Maladies Congénitales Du Cervelet et Déficiences Intellectuelles de Causes Rares, Département de Génétique et Embryologie Médicale, Hôpital Trousseau, Paris, France
| | - Paola Visconti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOSI Disturbi Dello Spettro Autistico, Bologna, Italy
| | - Elena Bacchelli
- Pharmacy and Biotechnology Department, University of Bologna, Bologna, Italy
| | - Elena Maestrini
- Pharmacy and Biotechnology Department, University of Bologna, Bologna, Italy
| | | | - Catherine Gooch
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Yvonne Hendriks
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hieab Adams
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Dijon, France; Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, Dijon Cedex, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Sarah Josephi-Taylor
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genomic Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Marta Bertoli
- Northern Genetics Service, Newcastle Upon Tyne NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Michael J Parker
- Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield, UK
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | - Hilary J Vernon
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonah Kaziyev
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia Zhu
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Kremen
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zoe Frazier
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hailey Osika
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Breault
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sreelata Nair
- Department of Fetal Medicine, Lifeline Super Specialty Hospital, Kerala, India
| | - Suzanne M E Lewis
- Department of Medical Genetics, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Fabiola Ceroni
- Pharmacy and Biotechnology Department, University of Bologna, Bologna, Italy; Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Marta Viggiano
- Pharmacy and Biotechnology Department, University of Bologna, Bologna, Italy
| | - Annio Posar
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOSI Disturbi Dello Spettro Autistico, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Helen Brittain
- Department of Clinical Genetics, Birmingham Women's & Children's NHS Trust, Birmingham, UK
| | - Traficante Giovanna
- Medical Genetics Unit, Meyer Children's Hospital IRCCS Florence, Florence, Italy
| | - Gori Giulia
- Medical Genetics Unit,Meyer Children's Hospital IRCCS, Florence, Italy
| | - Lina Quteineh
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cecilia Mellado
- Sección de Genética y Errores Congénitos Del Metabolismo, División de Pediatría, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Mariana Inés Aracena Alvarez
- Unit of Genetics and Metabolic Diseases, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milou G P Kennis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arianne Bouman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maian Roifman
- The Prenatal Diagnosis and Medical Genetics Program, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada
| | | | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Vivian Vernimmen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands; GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands.
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Division of Clinical and Metabolic Genetics, Department of Pediatrics, the Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Gaurav N, Kanai A, Lachance C, Cox KL, Liu J, Grzybowski AT, Saksouk N, Klein BJ, Komata Y, Asada S, Ruthenburg AJ, Poirier MG, Côté J, Yokoyama A, Kutateladze TG. Guiding the HBO1 complex function through the JADE subunit. Nat Struct Mol Biol 2024; 31:1039-1049. [PMID: 38448574 PMCID: PMC11320721 DOI: 10.1038/s41594-024-01245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
JADE is a core subunit of the HBO1 acetyltransferase complex that regulates developmental and epigenetic programs and promotes gene transcription. Here we describe the mechanism by which JADE facilitates recruitment of the HBO1 complex to chromatin and mediates its enzymatic activity. Structural, genomic and complex assembly in vivo studies show that the PZP (PHD1-zinc-knuckle-PHD2) domain of JADE engages the nucleosome through binding to histone H3 and DNA and is necessary for the association with chromatin targets. Recognition of unmethylated H3K4 by PZP directs enzymatic activity of the complex toward histone H4 acetylation, whereas H3K4 hypermethylation alters histone substrate selectivity. We demonstrate that PZP contributes to leukemogenesis, augmenting transforming activity of the NUP98-JADE2 fusion. Our findings highlight biological consequences and the impact of the intact JADE subunit on genomic recruitment, enzymatic function and pathological activity of the HBO1 complex.
Collapse
Affiliation(s)
- Nitika Gaurav
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Catherine Lachance
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, Québec, Canada
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH, USA
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Nehmé Saksouk
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, Québec, Canada
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yosuke Komata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
| | - Shuhei Asada
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | | | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, Québec, Canada.
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
5
|
Barman S, Bardhan I, Padhan J, Sudhamalla B. Integrated virtual screening and MD simulation approaches toward discovering potential inhibitors for targeting BRPF1 bromodomain in hepatocellular carcinoma. J Mol Graph Model 2024; 126:108642. [PMID: 37797430 DOI: 10.1016/j.jmgm.2023.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and life-threatening cancers. Although multiple treatment options are available, the prognosis of HCC patients is poor due to metastasis and drug resistance. Hence, discovering novel targets is essential for better therapeutic development for HCC. In this study, we used the cancer genome atlas (TCGA) dataset to analyze the expression of bromodomain-containing proteins in HCC, as bromodomains are emerging attractive therapeutic targets. Our analysis identified BRPF1 as the most highly upregulated gene in HCC among the 43 bromodomain-containing genes. Upregulation of BRPF1 was significantly associated with poorer patient survival. Therefore, targeting BRPF1 may be an approach for HCC treatment. Previously, several potential inhibitors of BRPF1 bromodomain have been discovered. However, due to the limited clinical success of the current inhibitors, we aim to search for new inhibitors with high affinity and specificity for the BRPF1 bromodomain. In this study, we utilized high-throughput virtual screening methods to screen synthetic and natural compound databases against the BRPF1 bromodomain. In addition, we used machine learning-based QSAR modeling to predict the IC50 values of the selected BRPF1 bromodomain inhibitors. Extensive MD simulations were used to calculate the binding free energies of BRPF1 bromodomain and inhibitor complexes. Using this approach, we identified four lead scaffolds with a similar or better binding affinity towards the BRPF1 bromodomain than the previously reported inhibitors. Overall, this study discovered some promising compounds that have the potential to act as potent BRPF1 bromodomain inhibitors.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Ishita Bardhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India.
| |
Collapse
|
6
|
Barman S, Padhan J, Sudhamalla B. Uncovering the non-histone interactome of the BRPF1 bromodomain using site-specific azide-acetyllysine photochemistry. J Biol Chem 2024; 300:105551. [PMID: 38072045 PMCID: PMC10789646 DOI: 10.1016/j.jbc.2023.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 01/08/2024] Open
Abstract
Bromodomain-PHD finger protein 1 (BRPF1) belongs to the BRPF family of bromodomain-containing proteins. Bromodomains are exclusive reader modules that recognize and bind acetylated histones and non-histone transcription factors to regulate gene expression. The biological functions of acetylated histone recognition by BRPF1 bromodomain are well characterized; however, the function of BRPF1 regulation via non-histone acetylation is still unexplored. Therefore, identifying the non-histone interactome of BRPF1 is pivotal in deciphering its role in diverse cellular processes, including its misregulation in diseases like cancer. Herein, we identified the non-histone interacting partners of BRPF1 utilizing a protein engineering-based approach. We site-specifically introduced the unnatural photo-cross-linkable amino acid 4-azido-L-phenylalanine into the bromodomain of BRPF1 without altering its ability to recognize acetylated histone proteins. Upon photoirradiation, the engineered BRPF1 generates a reactive nitrene species, cross-linking interacting partners with spatio-temporal precision. We demonstrated the robust cross-linking efficiency of the engineered variant with reported histone ligands of BRPF1 and further used the variant reader to cross-link its interactome. We also characterized novel interacting partners by proteomics, suggesting roles for BRPF1 in diverse cellular processes. BRPF1 interaction with interleukin enhancer-binding factor 3, one of these novel interacting partners, was further validated by isothermal titration calorimetry and co-IP. Lastly, we used publicly available ChIP-seq and RNA-seq datasets to understand the colocalization of BRPF1 and interleukin enhancer-binding factor 3 in regulating gene expression in the context of hepatocellular carcinoma. Together, these results will be crucial for full understanding of the roles of BRPF1 in transcriptional regulation and in the design of small-molecule inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
7
|
Bayanbold K, Younger G, Darbro B, Sidhu A. Mosaicism in BRPF1-Related Neurodevelopmental Disorder: Report of Two Sisters and Literature Review. Case Rep Genet 2023; 2023:1692422. [PMID: 37946714 PMCID: PMC10632058 DOI: 10.1155/2023/1692422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/28/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Bromodomain and PHD finger containing 1 (BRPF1)-related neurodevelopmental disorder is characterized by intellectual disability, developmental delay, hypotonia, dysmorphic facial features, ptosis, and blepharophimosis. Both de novo and inherited pathogenic variants have been previously reported in association with this disorder. We report two affected female siblings with a novel variant in BRPF1 c.2420_2433del (p.Q807Lfs∗27) identified through whole-exome sequencing. Their history of mild intellectual disability, speech delay, attention deficient hyperactivity disorder (ADHD), and ptosis align with the features previously reported in the literature. The absence of the BRPF1 variant in parental buccal samples provides evidence of a de novo frameshift pathogenic variant, most likely as a result of parental gonadal mosaicism, which has not been previously reported. The frameshift pathogenic variant reported here lends further support to haploinsufficiency as the underlying mechanism of disease. We review the literature, compare the clinical features seen in our patients with others reported, and explore the possibility of genotype-phenotype correlation based on the location of pathogenic variants in BRPF1. Our study helps to summarize available knowledge and report the first case of a de novo frameshift pathogenic variant in BRPF1 in two siblings with this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Khaliunaa Bayanbold
- Free Radical Radiation Biology, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Georgianne Younger
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Benjamin Darbro
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alpa Sidhu
- Division of Medical Genetics and Genomics, The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
8
|
Gaurav N, Kutateladze TG. Non-histone binding functions of PHD fingers. Trends Biochem Sci 2023; 48:610-617. [PMID: 37061424 PMCID: PMC10330121 DOI: 10.1016/j.tibs.2023.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/17/2023]
Abstract
Plant homeodomain (PHD) fingers comprise a large and well-established family of epigenetic readers that recognize histone H3. A typical PHD finger binds to the unmodified or methylated amino-terminal tail of H3. This interaction is highly specific and can be regulated by post-translational modifications (PTMs) in H3 and other domains present in the protein. However, a set of PHD fingers has recently been shown to bind non-histone proteins, H3 mimetics, and DNA. In this review, we highlight the molecular mechanisms by which PHD fingers interact with ligands other than the amino terminus of H3 and discuss similarities and differences in engagement with histone and non-histone binding partners.
Collapse
Affiliation(s)
- Nitika Gaurav
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Atypical histone targets of PHD fingers. J Biol Chem 2023; 299:104601. [PMID: 36907441 PMCID: PMC10124903 DOI: 10.1016/j.jbc.2023.104601] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Plant homeodomain (PHD) fingers are structurally conserved zinc fingers that selectively bind unmodified or methylated at lysine 4 histone H3 tails. This binding stabilizes transcription factors and chromatin-modifying proteins at specific genomic sites, which is required for vital cellular processes, including gene expression and DNA repair. Several PHD fingers have recently been shown to recognize other regions of H3 or histone H4. In this review, we detail molecular mechanisms and structural features of the non-canonical histone recognition, discuss biological implications of the atypical interactions, highlight therapeutic potential of PHD fingers, and compare inhibition strategies.
Collapse
|
10
|
Weber LM, Jia Y, Stielow B, Gisselbrecht S, Cao Y, Ren Y, Rohner I, King J, Rothman E, Fischer S, Simon C, Forné I, Nist A, Stiewe T, Bulyk M, Wang Z, Liefke R. The histone acetyltransferase KAT6A is recruited to unmethylated CpG islands via a DNA binding winged helix domain. Nucleic Acids Res 2023; 51:574-594. [PMID: 36537216 PMCID: PMC9881136 DOI: 10.1093/nar/gkac1188] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The lysine acetyltransferase KAT6A (MOZ, MYST3) belongs to the MYST family of chromatin regulators, facilitating histone acetylation. Dysregulation of KAT6A has been implicated in developmental syndromes and the onset of acute myeloid leukemia (AML). Previous work suggests that KAT6A is recruited to its genomic targets by a combinatorial function of histone binding PHD fingers, transcription factors and chromatin binding interaction partners. Here, we demonstrate that a winged helix (WH) domain at the very N-terminus of KAT6A specifically interacts with unmethylated CpG motifs. This DNA binding function leads to the association of KAT6A with unmethylated CpG islands (CGIs) genome-wide. Mutation of the essential amino acids for DNA binding completely abrogates the enrichment of KAT6A at CGIs. In contrast, deletion of a second WH domain or the histone tail binding PHD fingers only subtly influences the binding of KAT6A to CGIs. Overexpression of a KAT6A WH1 mutant has a dominant negative effect on H3K9 histone acetylation, which is comparable to the effects upon overexpression of a KAT6A HAT domain mutant. Taken together, our work revealed a previously unrecognized chromatin recruitment mechanism of KAT6A, offering a new perspective on the role of KAT6A in gene regulation and human diseases.
Collapse
Affiliation(s)
- Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Yulin Jia
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Iris Rohner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Jessica King
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Martinsried 82152, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| |
Collapse
|
11
|
Viita T, Côté J. The MOZ-BRPF1 acetyltransferase complex in epigenetic crosstalk linked to gene regulation, development, and human diseases. Front Cell Dev Biol 2023; 10:1115903. [PMID: 36712963 PMCID: PMC9873972 DOI: 10.3389/fcell.2022.1115903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Acetylation of lysine residues on histone tails is an important post-translational modification (PTM) that regulates chromatin dynamics to allow gene transcription as well as DNA replication and repair. Histone acetyltransferases (HATs) are often found in large multi-subunit complexes and can also modify specific lysine residues in non-histone substrates. Interestingly, the presence of various histone PTM recognizing domains (reader domains) in these complexes ensures their specific localization, enabling the epigenetic crosstalk and context-specific activity. In this review, we will cover the biochemical and functional properties of the MOZ-BRPF1 acetyltransferase complex, underlining its role in normal biological processes as well as in disease progression. We will discuss how epigenetic reader domains within the MOZ-BRPF1 complex affect its chromatin localization and the histone acetyltransferase specificity of the complex. We will also summarize how MOZ-BRPF1 is linked to development via controlling cell stemness and how mutations or changes in expression levels of MOZ/BRPF1 can lead to developmental disorders or cancer. As a last touch, we will review the latest drug candidates for these two proteins and discuss the therapeutic possibilities.
Collapse
Affiliation(s)
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| |
Collapse
|
12
|
Zhang C, Lin H, Zhang Y, Xing Q, Zhang J, Zhang D, Liu Y, Chen Q, Zhou T, Wang J, Shan Y, Pan G. BRPF1 bridges H3K4me3 and H3K23ac in human embryonic stem cells and is essential to pluripotency. iScience 2023; 26:105939. [PMID: 36711238 PMCID: PMC9874078 DOI: 10.1016/j.isci.2023.105939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Post-translational modifications (PTMs) on histones play essential roles in cell fate decisions during development. However, how these PTMs are recognized and coordinated remains to be fully illuminated. Here, we show that BRPF1, a multi-histone binding module protein, is essential for pluripotency in human embryonic stem cells (ESCs). BRPF1, H3K4me3, and H3K23ac substantially co-occupy the open chromatin and stemness genes in hESCs. BRPF1 deletion impairs H3K23ac in hESCs and leads to closed chromatin accessibility on stemness genes and hESC differentiation as well. Deletion of the N terminal or PHD-zinc knuckle-PHD (PZP) module in BRPF1 completely impairs its functions in hESCs while PWWP module deletion partially impacts the function. In sum, we reveal BRPF1, the multi-histone binding module protein that bridges the crosstalk between different histone modifications in hESCs to maintain pluripotency.
Collapse
Affiliation(s)
- Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huaisong Lin
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yancai Liu
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qianyu Chen
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Corresponding author
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,Key Lab for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong 250117, China,Corresponding author
| |
Collapse
|
13
|
Jiang Y, Liu L, Yang ZQ. KDM4 Demethylases: Structure, Function, and Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:87-111. [PMID: 37751137 DOI: 10.1007/978-3-031-38176-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
KDM4 histone demethylases mainly catalyze the removal of methyl marks from H3K9 and H3K36 to epigenetically regulate chromatin structure and gene expression. KDM4 expression is strictly regulated to ensure proper function in a myriad of biological processes, including transcription, cellular proliferation and differentiation, DNA damage repair, immune response, and stem cell self-renewal. Aberrant expression of KDM4 demethylase has been documented in many types of blood and solid tumors, and thus, KDM4s represent promising therapeutic targets. In this chapter, we summarize the current knowledge of the structures and regulatory mechanisms of KDM4 proteins and our understanding of their alterations in human pathological processes with a focus on development and cancer. We also review the reported KDM4 inhibitors and discuss their potential as therapeutic agents.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Lanxin Liu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA.
| |
Collapse
|
14
|
Zu G, Liu Y, Cao J, Zhao B, Zhang H, You L. BRPF1-KAT6A/KAT6B Complex: Molecular Structure, Biological Function and Human Disease. Cancers (Basel) 2022; 14:4068. [PMID: 36077605 PMCID: PMC9454415 DOI: 10.3390/cancers14174068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The bromodomain and PHD finger-containing protein1 (BRPF1) is a member of family IV of the bromodomain-containing proteins that participate in the post-translational modification of histones. It functions in the form of a tetrameric complex with a monocytic leukemia zinc finger protein (MOZ or KAT6A), MOZ-related factor (MORF or KAT6B) or HAT bound to ORC1 (HBO1 or KAT7) and two small non-catalytic proteins, the inhibitor of growth 5 (ING5) or the paralog ING4 and MYST/Esa1-associated factor 6 (MEAF6). Mounting studies have demonstrated that all the four core subunits play crucial roles in different biological processes across diverse species, such as embryonic development, forebrain development, skeletal patterning and hematopoiesis. BRPF1, KAT6A and KAT6B mutations were identified as the cause of neurodevelopmental disorders, leukemia, medulloblastoma and other types of cancer, with germline mutations associated with neurodevelopmental disorders displaying intellectual disability, and somatic variants associated with leukemia, medulloblastoma and other cancers. In this paper, we depict the molecular structures and biological functions of the BRPF1-KAT6A/KAT6B complex, summarize the variants of the complex related to neurodevelopmental disorders and cancers and discuss future research directions and therapeutic potentials.
Collapse
Affiliation(s)
- Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Liu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingli Cao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baicheng Zhao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hang Zhang
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Fudan University, Shanghai 200040, China
| |
Collapse
|
15
|
Barman S, Roy A, Padhan J, Sudhamalla B. Molecular Insights into the Recognition of Acetylated Histone Modifications by the BRPF2 Bromodomain. Biochemistry 2022; 61:1774-1789. [PMID: 35976792 DOI: 10.1021/acs.biochem.2c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HBO1 [HAT bound to the origin recognition complex (ORC)], a member of the MYST family of histone acetyltransferases (HATs), was initially identified as a binding partner of ORC that acetylates free histone H3, H4, and nucleosomal H3. It functions as a quaternary complex with the BRPF (BRPF1/2/3) scaffolding protein and two accessory proteins, ING4/5 and Eaf6. Interaction of BRPF2 with HBO1 has been shown to be important for regulating H3K14 acetylation during embryonic development. However, how BRPF2 directs the HBO1 HAT complex to chromatin to regulate its HAT activity toward nucleosomal substrates remains unclear. Our findings reveal novel interacting partners of the BRPF2 bromodomain that recognizes different acetyllysine residues on the N-terminus of histone H4, H3, and H2A and preferentially binds to H4K5ac, H4K8ac, and H4K5acK12ac modifications. In addition, mutational analysis of the BRPF2 bromodomain coupled with isothermal titration calorimetry binding and pull-down assays on the histone substrates identified critical residues responsible for acetyllysine binding. Moreover, the BRPF2 bromodomain could enrich H4K5ac mark-bearing mononucleosomes compared to other acetylated H4 marks. Consistent with this, ChIP-seq analysis revealed that BRPF2 strongly co-localizes with HBO1 at histone H4K5ac and H4K8ac marks near the transcription start sites in the genome. Our study provides novel insights into how the histone binding function of the BRPF2 bromodomain directs the recruitment of the HBO1 HAT complex to chromatin to regulate gene expression.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
16
|
Zheng S, Bi Y, Chen H, Gong B, Jia S, Li H. Molecular basis for bipartite recognition of histone H3 by the PZP domain of PHF14. Nucleic Acids Res 2021; 49:8961-8973. [PMID: 34365506 PMCID: PMC8421203 DOI: 10.1093/nar/gkab670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/14/2022] Open
Abstract
Histone recognition constitutes a key epigenetic mechanism in gene regulation and cell fate decision. PHF14 is a conserved multi-PHD finger protein that has been implicated in organ development, tissue homeostasis, and tumorigenesis. Here we show that PHF14 reads unmodified histone H3(1–34) through an integrated PHD1-ZnK-PHD2 cassette (PHF14PZP). Our binding, structural and HDX-MS analyses revealed a feature of bipartite recognition, in which PHF14PZP utilizes two distinct surfaces for concurrent yet separable engagement of segments H3-Nter (e.g. 1–15) and H3-middle (e.g. 14–34) of H3(1–34). Structural studies revealed a novel histone H3 binding mode by PHD1 of PHF14PZP, in which a PHF14-unique insertion loop but not the core β-strands of a PHD finger dominates H3K4 readout. Binding studies showed that H3-PHF14PZP engagement is sensitive to modifications occurring to H3 R2, T3, K4, R8 and K23 but not K9 and K27, suggesting multiple layers of modification switch. Collectively, our work calls attention to PHF14 as a ‘ground’ state (unmodified) H3(1–34) reader that can be negatively regulated by active marks, thus providing molecular insights into a repressive function of PHF14 and its derepression.
Collapse
Affiliation(s)
- Shuangping Zheng
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yucong Bi
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haining Chen
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- Key Laboratory of Biomembrane and Membrane Engineering, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- Key Laboratory of Biomembrane and Membrane Engineering, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
17
|
Klein BJ, Deshpande A, Cox KL, Xuan F, Zandian M, Barbosa K, Khanal S, Tong Q, Zhang Y, Zhang P, Sinha A, Bohlander SK, Shi X, Wen H, Poirier MG, Deshpande AJ, Kutateladze TG. The role of the PZP domain of AF10 in acute leukemia driven by AF10 translocations. Nat Commun 2021; 12:4130. [PMID: 34226546 PMCID: PMC8257627 DOI: 10.1038/s41467-021-24418-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
Chromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.
Collapse
Affiliation(s)
- Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anagha Deshpande
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH, USA
| | - Fan Xuan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karina Barbosa
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sujita Khanal
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Qiong Tong
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pan Zhang
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
18
|
Klein BJ, Cox KL, Jang SM, Singh RK, Côté J, Poirier MG, Kutateladze TG. Structural and biophysical characterization of the nucleosome-binding PZP domain. STAR Protoc 2021; 2:100479. [PMID: 33982013 PMCID: PMC8082262 DOI: 10.1016/j.xpro.2021.100479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The core subunit of the MORF acetyltransferase complex BRPF1 contains a unique combination of zinc fingers, including a plant homeodomain (PHD) finger followed by a zinc knuckle and another PHD finger, which together form a PZP domain (BRPF1PZP). BRPF1PZP has been shown to bind to the nucleosome and make contacts with both histone H3 tail and DNA. Here, we describe biophysical and structural methods for characterization of the interactions between BRPF1PZP, H3 tail, DNA, and the intact nucleosome. For complete details on the use and execution of this protocol, please refer to Klein et al. (2020).
Collapse
Affiliation(s)
- Brianna J. Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Khan L. Cox
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | - Suk Min Jang
- Laval University Cancer Research Center, CHU de Québec-UL Research Center - Oncology Division, Quebec City, QC G1R 3S3, Canada
| | - Rohit K. Singh
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center - Oncology Division, Quebec City, QC G1R 3S3, Canada
| | | | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Duan YC, Zhang SJ, Shi XJ, Jin LF, Yu T, Song Y, Guan YY. Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy. Eur J Med Chem 2021; 222:113588. [PMID: 34107385 DOI: 10.1016/j.ejmech.2021.113588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Abnormal epigenetics is a critical hallmark of human cancers. Anticancer drug discovery directed at histone epigenetic modulators has gained impressive advances with six drugs available for cancer therapy and numerous other candidates undergoing clinical trials. However, limited therapeutic profile, drug resistance, narrow safety margin, and dose-limiting toxicities pose intractable challenges for their clinical utility. Because histone epigenetic modulators undergo intricate crosstalk and act cooperatively to shape an aberrant epigenetic profile, co-targeting histone epigenetic modulators with a different mechanism of action has rapidly emerged as an attractive strategy to overcome the limitations faced by the single-target epigenetic inhibitors. In this review, we summarize in detail the crosstalk of histone epigenetic modulators in regulating gene transcription and the progress of dual epigenetic inhibitors targeting this crosstalk.
Collapse
Affiliation(s)
- Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Shao-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Lin-Feng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yu Song
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yuan-Yuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
20
|
Mechanistic similarities in recognition of histone tails and DNA by epigenetic readers. Curr Opin Struct Biol 2021; 71:1-6. [PMID: 33993059 DOI: 10.1016/j.sbi.2021.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 11/21/2022]
Abstract
The past two decades have witnessed rapid advances in the identification and characterization of epigenetic readers, capable of recognizing or reading post-translational modifications in histones. More recently, a new set of readers with the ability to interact with the nucleosome through concomitant binding to histones and DNA has emerged. In this review, we discuss mechanistic insights underlying bivalent histone and DNA recognition by newly characterized readers and highlight the importance of binding to DNA for their association with chromatin.
Collapse
|
21
|
Pathogenic 12-kb copy-neutral inversion in syndromic intellectual disability identified by high-fidelity long-read sequencing. Genomics 2020; 113:1044-1053. [PMID: 33157260 DOI: 10.1016/j.ygeno.2020.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 10/31/2020] [Indexed: 01/07/2023]
Abstract
We report monozygotic twin girls with syndromic intellectual disability who underwent exome sequencing but with negative pathogenic variants. To search for variants that are unrecognized by exome sequencing, high-fidelity long-read genome sequencing (HiFi LR-GS) was applied. A 12-kb copy-neutral inversion was precisely identified by HiFi LR-GS after trio-based variant filtering. This inversion directly disrupted two genes, CPNE9 and BRPF1, the latter of which attracted our attention because pathogenic BRPF1 variants have been identified in autosomal dominant intellectual developmental disorder with dysmorphic facies and ptosis (IDDDFP), which later turned out to be clinically found in the twins. Trio-based HiFi LR-GS together with haplotype phasing revealed that the 12-kb inversion occurred de novo on the maternally transmitted chromosome. This study clearly indicates that submicroscopic copy-neutral inversions are important but often uncharacterized culprits in monogenic disorders and that long-read sequencing is highly advantageous for detecting such inversions involved in genetic diseases.
Collapse
|