1
|
Yin MD, Lemaire ON, Rosas Jiménez JG, Belhamri M, Shevchenko A, Hummer G, Wagner T, Murphy BJ. Conformational dynamics of a multienzyme complex in anaerobic carbon fixation. Science 2025; 387:498-504. [PMID: 39883773 DOI: 10.1126/science.adr9672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/25/2024] [Indexed: 02/01/2025]
Abstract
In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO2) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen Clostridium autoethanogenum, characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO2 reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates. Altogether, the structures allow us to draw a detailed reaction mechanism of this enzyme, which is crucial for CO2 fixation in anaerobic organisms.
Collapse
Affiliation(s)
- Max Dongsheng Yin
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Olivier N Lemaire
- Max Planck Research Group Microbial Metabolism, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - José Guadalupe Rosas Jiménez
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Department of Theoretical Biophysics, IMPRS on Cellular Biophysics, Frankfurt am Main, Germany
| | - Mélissa Belhamri
- Max Planck Research Group Microbial Metabolism, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Tristan Wagner
- Max Planck Research Group Microbial Metabolism, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Research Group Microbial Metabolism, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Biester A, Grahame DA, Drennan CL. Capturing a methanogenic carbon monoxide dehydrogenase/acetyl-CoA synthase complex via cryogenic electron microscopy. Proc Natl Acad Sci U S A 2024; 121:e2410995121. [PMID: 39361653 PMCID: PMC11474084 DOI: 10.1073/pnas.2410995121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Approximately two-thirds of the estimated one-billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni-Fe-S-containing A-cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH3+). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO2) by a Ni-Fe-S-containing C-cluster within the enzyme carbon monoxide dehydrogenase (CODH). Although structures have been solved of CODH/ACS from acetogens, which use these enzymes to make acetate from CO2, no structure of a CODH/ACS from a methanogen has been reported. In this work, we use cryo-electron microscopy to reveal the structure of a methanogenic CODH and CODH/ACS from Methanosarcina thermophila (MetCODH/ACS). We find that the N-terminal domain of acetogenic ACS, which is missing in all methanogens, is replaced by a domain of CODH. This CODH domain provides a channel for CO to travel between the two catalytic Ni-Fe-S clusters. It generates the binding surface for ACS and creates a remarkably similar CO alcove above the A-cluster using residues from CODH rather than ACS. Comparison of our MetCODH/ACS structure with our MetCODH structure reveals a molecular mechanism to restrict gas flow from the CO channel when ACS departs, preventing CO escape into the cell. Overall, these long-awaited structures of a methanogenic CODH/ACS reveal striking functional similarities to their acetogenic counterparts despite a substantial difference in domain organization.
Collapse
Affiliation(s)
- Alison Biester
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David A. Grahame
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
3
|
Can M, Abernathy MJ, Wiley S, Griffith C, James CD, Xiong J, Guo Y, Hoffman BM, Ragsdale SW, Sarangi R. Characterization of Methyl- and Acetyl-Ni Intermediates in Acetyl CoA Synthase Formed during Anaerobic CO 2 and CO Fixation. J Am Chem Soc 2023; 145:13696-13708. [PMID: 37306669 PMCID: PMC10311460 DOI: 10.1021/jacs.3c01772] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 06/13/2023]
Abstract
The Wood-Ljungdahl Pathway is a unique biological mechanism of carbon dioxide and carbon monoxide fixation proposed to operate through nickel-based organometallic intermediates. The most unusual steps in this metabolic cycle involve a complex of two distinct nickel-iron-sulfur proteins: CO dehydrogenase and acetyl-CoA synthase (CODH/ACS). Here, we describe the nickel-methyl and nickel-acetyl intermediates in ACS completing the characterization of all its proposed organometallic intermediates. A single nickel site (Nip) within the A cluster of ACS undergoes major geometric and redox changes as it transits the planar Nip, tetrahedral Nip-CO and planar Nip-Me and Nip-Ac intermediates. We propose that the Nip intermediates equilibrate among different redox states, driven by an electrochemical-chemical (EC) coupling process, and that geometric changes in the A-cluster linked to large protein conformational changes control entry of CO and the methyl group.
Collapse
Affiliation(s)
- Mehmet Can
- Department
of Biochemistry, Faculty of Pharmacy, Ankara
Medipol University, Ankara 06050, Turkey
| | - Macon J. Abernathy
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Seth Wiley
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Claire Griffith
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christopher D. James
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jin Xiong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen W. Ragsdale
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ritimukta Sarangi
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
4
|
Biester A, Marcano-Delgado AN, Drennan CL. Structural Insights into Microbial One-Carbon Metabolic Enzymes Ni-Fe-S-Dependent Carbon Monoxide Dehydrogenases and Acetyl-CoA Synthases. Biochemistry 2022; 61:2797-2805. [PMID: 36137563 PMCID: PMC9782325 DOI: 10.1021/acs.biochem.2c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ni-Fe-S-dependent carbon monoxide dehydrogenases (CODHs) are enzymes that interconvert CO and CO2 by using their catalytic Ni-Fe-S C-cluster and their Fe-S B- and D-clusters for electron transfer. CODHs are important in the microbiota of animals such as humans, ruminants, and termites because they can facilitate the use of CO and CO2 as carbon sources and serve to maintain redox homeostasis. The bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is responsible for acetate production via the Wood-Ljungdahl pathway, where acetyl-CoA is assembled from two CO2-derived one-carbon units. A Ni-Fe-S A-cluster is key to this chemistry. Whereas acetogens use the A- and C-clusters of CODH/ACS to produce acetate from CO2, methanogens use A- and C-clusters of an acetyl-CoA decarbonylase/synthase complex (ACDS) to break down acetate en route to CO2 and methane production. Here we review some of the recent advances in understanding the structure and mechanism of CODHs, CODH/ACSs, and ACDSs, their unusual metallocofactors, and their unique metabolic roles in the human gut and elsewhere.
Collapse
Affiliation(s)
- Alison Biester
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Andrea N. Marcano-Delgado
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States,Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,Howard
Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,Bio-inspired
Solar Energy Program, Canadian Institute
for Advanced Research, Toronto, ON M5G 1M1, Canada,
| |
Collapse
|
5
|
Thioester synthesis by a designed nickel enzyme models prebiotic energy conversion. Proc Natl Acad Sci U S A 2022; 119:e2123022119. [PMID: 35858422 PMCID: PMC9335327 DOI: 10.1073/pnas.2123022119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetyl-CoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the NiI species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation.
Collapse
|
6
|
Abstract
Carbon dioxide is a major greenhouse gas, and its fixation and transformation are receiving increasing attention. Biofixation of CO2 is an eco–friendly and efficient way to reduce CO2, and six natural CO2 fixation pathways have been identified in microorganisms and plants. In this review, the six pathways along with the most recent identified variant pathway were firstly comparatively characterized. The key metabolic process and enzymes of the CO2 fixation pathways were also summarized. Next, the enzymes of Rubiscos, biotin-dependent carboxylases, CO dehydrogenase/acetyl-CoA synthase, and 2-oxoacid:ferredoxin oxidoreductases, for transforming inorganic carbon (CO2, CO, and bicarbonate) to organic chemicals, were specially analyzed. Then, the factors including enzyme properties, CO2 concentrating, energy, and reducing power requirements that affect the efficiency of CO2 fixation were discussed. Recent progress in improving CO2 fixation through enzyme and metabolic engineering was then summarized. The artificial CO2 fixation pathways with thermodynamical and/or energetical advantages or benefits and their applications in biosynthesis were included as well. The challenges and prospects of CO2 biofixation and conversion are discussed.
Collapse
|
7
|
Oxygen-Sensitive Metalloprotein Structure Determination by Cryo-Electron Microscopy. Biomolecules 2022; 12:biom12030441. [PMID: 35327633 PMCID: PMC8945911 DOI: 10.3390/biom12030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Metalloproteins are involved in key cell processes such as photosynthesis, respiration, and oxygen transport. However, the presence of transition metals (notably iron as a component of [Fe-S] clusters) often makes these proteins sensitive to oxygen-induced degradation. Consequently, their study usually requires strict anaerobic conditions. Although X-ray crystallography has been the method of choice for solving macromolecular structures for many years, recently electron microscopy has also become an increasingly powerful structure-solving technique. We have used our previous experience with cryo-crystallography to develop a method to prepare cryo-EM grids in an anaerobic chamber and have applied it to solve the structures of apoferritin and the 3 [Fe4S4]-containing pyruvate ferredoxin oxidoreductase (PFOR) at 2.40 Å and 2.90 Å resolution, respectively. The maps are of similar quality to the ones obtained under air, thereby validating our method as an improvement in the structural investigation of oxygen-sensitive metalloproteins by cryo-EM.
Collapse
|
8
|
Theoretical Studies of Acetyl-CoA Synthase Catalytic Mechanism. Catalysts 2022. [DOI: 10.3390/catal12020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
DFT calculations were performed for the A-cluster from the enzyme Acetyl-CoA synthase (ACS). The acid constants (pKa), reduction potentials, and pH-dependent reduction potential for the A-cluster with different oxidation states and ligands were calculated. Good agreement of the reduction potentials, dependent on pH in the experiment, was obtained. On the basis of the calculations, a mechanism for the methylation reaction involving two–electron reduction and protonation on the proximal nickel atom of the reduced A-cluster is proposed.
Collapse
|
9
|
Banerjee R, Lipscomb JD. Small-Molecule Tunnels in Metalloenzymes Viewed as Extensions of the Active Site. Acc Chem Res 2021; 54:2185-2195. [PMID: 33886257 DOI: 10.1021/acs.accounts.1c00058] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rigorous substrate selectivity is a hallmark of enzyme catalysis. This selectivity is generally ascribed to a thermodynamically favorable process of substrate binding to the enzyme active site based upon complementary physiochemical characteristics, which allows both acquisition and orientation. However, this chemical selectivity is more difficult to rationalize for diminutive molecules that possess too narrow a range of physical characteristics to allow either precise positioning or discrimination between a substrate and an inhibitor. Foremost among these small molecules are dissolved gases such as H2, N2, O2, CO, CO2, NO, N2O, NH3, and CH4 so often encountered in metalloenzyme catalysis. Nevertheless, metalloenzymes have evolved to metabolize these small-molecule substrates with high selectivity and efficiency.The soluble methane monooxygenase enzyme (sMMO) acts upon two of these small molecules, O2 and CH4, to generate methanol as part of the C1 metabolic pathway of methanotrophic organisms. sMMO is capable of oxidizing many alternative hydrocarbon substrates. Remarkably, however, it will preferentially oxidize methane, the substrate with the fewest discriminating physical characteristics and the strongest C-H bond. Early studies led us to broadly attribute this specificity to the formation of a "molecular sieve" in which a methane- and oxygen-sized tunnel provides a size-selective route from bulk solvent to the completely buried sMMO active site. Indeed, recent cryogenic and serial femtosecond ambient temperature crystallographic studies have revealed such a route in sMMO. A detailed study of the sMMO tunnel considered here in the context of small-molecule tunnels identified in other metalloenzymes reveals three discrete characteristics that contribute to substrate selectivity and positioning beyond that which can be provided by the active site itself. Moreover, the dynamic nature of many tunnels allows an exquisite coordination of substrate binding and reaction phases of the catalytic cycle. Here we differentiate between the highly selective molecular tunnel, which allows only the one-dimensional transit of small molecules, and the larger, less-selective channels found in typical enzymes. Methods are described to identify and characterize tunnels as well as to differentiate them from channels. In metalloenzymes which metabolize dissolved gases, we posit that the contribution of tunnels is so great that they should be considered to be extensions of the active site itself. A full understanding of catalysis by these enzymes requires an appreciation of the roles played by tunnels. Such an understanding will also facilitate the use of the enzymes or their synthetic mimics in industrial or pharmaceutical applications.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391, United States
| |
Collapse
|