1
|
Subhadarshini S, Tandon H, Srinivasan N, Sowdhamini R. Normal Mode Analysis Elicits Conformational Shifts in Proteins at Both Proximal and Distal Regions to the Phosphosite Stemming from Single-Site Phosphorylation. ACS OMEGA 2024; 9:24520-24537. [PMID: 38882086 PMCID: PMC11170700 DOI: 10.1021/acsomega.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024]
Abstract
Phosphorylation, a fundamental biochemical switch, intricately regulates protein function and signaling pathways. Our study employs extensive computational structural analyses on a curated data set of phosphorylated and unphosphorylated protein pairs to explore the multifaceted impact of phosphorylation on protein conformation. Using normal mode analysis (NMA), we investigated changes in protein flexibility post-phosphorylation, highlighting an enhanced level of structural dynamism. Our findings reveal that phosphorylation induces not only local changes at the phosphorylation site but also extensive alterations in distant regions, showcasing its far-reaching influence on protein structure-dynamics. Through in-depth case studies on polyubiquitin B and glycogen synthase kinase-3 beta, we elucidate how phosphorylation at distinct sites leads to variable structural and dynamic modifications, potentially dictating functional outcomes. While phosphorylation largely preserves the residue motion correlation, it significantly disrupts low-frequency global modes, presenting a dualistic impact on protein dynamics. We also explored alterations in the total accessible surface area (ASA), emphasizing region-specific changes around phosphorylation sites. This study sheds light on phosphorylation-induced conformational changes, dynamic modulation, and surface accessibility alterations, leveraging an integrated computational approach with RMSD, NMA, and ASA, thereby contributing to a comprehensive understanding of cellular regulation and suggesting promising avenues for therapeutic interventions.
Collapse
Affiliation(s)
| | - Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Ramanathan Sowdhamini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
- Computational Approaches to Protein Science, National Centre for Biological Sciences, Bangalore 560065, India
- Computational Biology, Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| |
Collapse
|
2
|
Robin AY, Miller MS, Iyer S, Shi MX, Wardak AZ, Lio D, Smith NA, Smith BJ, Birkinshaw RW, Czabotar PE, Kluck RM, Colman PM. Structure of the BAK-activating antibody 7D10 bound to BAK reveals an unexpected role for the α1-α2 loop in BAK activation. Cell Death Differ 2022; 29:1757-1768. [PMID: 35279694 PMCID: PMC9433411 DOI: 10.1038/s41418-022-00961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
Pro-apoptotic BAK and BAX are activated by BH3-only proteins to permeabilise the outer mitochondrial membrane. The antibody 7D10 also activates BAK on mitochondria and its epitope has previously been mapped to BAK residues in the loop connecting helices α1 and α2 of BAK. A crystal structure of the complex between the Fv fragment of 7D10 and the BAK mutant L100A suggests a possible mechanism of activation involving the α1-α2 loop residue M60. M60 mutants of BAK have reduced stability and elevated sensitivity to activation by BID, illustrating that M60, through its contacts with residues in helices α1, α5 and α6, is a linchpin stabilising the inert, monomeric structure of BAK. Our data demonstrate that BAK's α1-α2 loop is not a passive covalent connector between secondary structure elements, but a direct restraint on BAK's activation.
Collapse
Affiliation(s)
- Adeline Y Robin
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Michelle S Miller
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Sweta Iyer
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Melissa X Shi
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Ahmad Z Wardak
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Daisy Lio
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Nicholas A Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Brian J Smith
- Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Richard W Birkinshaw
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Peter E Czabotar
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Ruth M Kluck
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| | - Peter M Colman
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
3
|
Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Int J Mol Sci 2021; 22:ijms221910803. [PMID: 34639143 PMCID: PMC8509272 DOI: 10.3390/ijms221910803] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombin is the key enzyme of the entire hemostatic process since it is able to exert both procoagulant and anticoagulant functions; therefore, it represents an attractive target for the developments of biomolecules with therapeutic potential. Thrombin can perform its many functional activities because of its ability to recognize a wide variety of substrates, inhibitors, and cofactors. These molecules frequently are bound to positively charged regions on the surface of protein called exosites. In this review, we carried out extensive analyses of the structural determinants of thrombin partnerships by surveying literature data as well as the structural content of the Protein Data Bank (PDB). In particular, we used the information collected on functional, natural, and synthetic molecular ligands to define the anatomy of the exosites and to quantify the interface area between thrombin and exosite ligands. In this framework, we reviewed in detail the specificity of thrombin binding to aptamers, a class of compounds with intriguing pharmaceutical properties. Although these compounds anchor to protein using conservative patterns on its surface, the present analysis highlights some interesting peculiarities. Moreover, the impact of thrombin binding aptamers in the elucidation of the cross-talk between the two distant exosites is illustrated. Collectively, the data and the work here reviewed may provide insights into the design of novel thrombin inhibitors.
Collapse
|
4
|
Yazhini A, Sandhya S, Srinivasan N. Rewards of divergence in sequences, 3-D structures and dynamics of yeast and human spliceosome SF3b complexes. Curr Res Struct Biol 2021; 3:133-145. [PMID: 35028595 PMCID: PMC8714771 DOI: 10.1016/j.crstbi.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of homologous and functionally equivalent multiprotein assemblies is intriguing considering sequence divergence of constituent proteins. Here, we studied the implications of protein sequence divergence on the structure, dynamics and function of homologous yeast and human SF3b spliceosomal subcomplexes. Human and yeast SF3b comprise of 7 and 6 proteins respectively, with all yeast proteins homologous to their human counterparts at moderate sequence identity. SF3b6, an additional component in the human SF3b, interacts with the N-terminal extension of SF3b1 while the yeast homologue Hsh155 lacks the equivalent region. Through detailed homology studies, we show that SF3b6 is absent not only in yeast but in multiple lineages of eukaryotes implying that it is critical in specific organisms. We probed for the potential role of SF3b6 in the spliceosome assembled form through structural and flexibility analyses. By analysing normal modes derived from anisotropic network models of SF3b1, we demonstrate that when SF3b1 is bound to SF3b6, similarities in the magnitude of residue motions (0.86) and inter-residue correlated motions (0.94) with Hsh155 are significantly higher than when SF3b1 is considered in isolation (0.21 and 0.89 respectively). We observed that SF3b6 promotes functionally relevant 'open-to-close' transition in SF3b1 by enhancing concerted residue motions. Such motions are found to occur in the Hsh155 without SF3b6. The presence of SF3b6 influences motions of 16 residues that interact with U2 snRNA/branchpoint duplex and supports the participation of its interface residues in long-range communication in the SF3b1. These results advocate that SF3b6 potentially acts as an allosteric regulator of SF3b1 for BPS selection and might play a role in alternative splicing. Furthermore, we observe variability in the relative orientation of SF3b4 and in the local structure of three β-propeller domains of SF3b3 with reference to their yeast counterparts. Such differences influence the inter-protein interactions of SF3b between these two organisms. Together, our findings highlight features of SF3b evolution and suggests that the human SF3b may have evolved sophisticated mechanisms to fine tune its molecular function.
Collapse
Key Words
- Allostery
- BPS, branch-point sequence
- Bact, activated B spliceosome assembly
- Cryo-EM structure
- Cryo-EM, cryo-electron microscopy
- DOPE, discrete optimized protein energy
- NMA, normal mode analysis
- PDB, protein data bank
- Protein dynamics
- RMSD, root mean square deviation
- RRM, RNA recognition motif
- SF3b complex
- SF3b1
- SF3b1SF3b6−bound, SF3b1 bound to SF3b6
- SF3b1iso, SF3b1 in isolation
- SIP, square inner product
- Spliceosome
Collapse
Affiliation(s)
- Arangasamy Yazhini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | | |
Collapse
|
5
|
Eren M, Tuncbag N, Jang H, Nussinov R, Gursoy A, Keskin O. Normal Mode Analysis of KRas4B Reveals Partner Specific Dynamics. J Phys Chem B 2021; 125:5210-5221. [PMID: 33978412 PMCID: PMC9969846 DOI: 10.1021/acs.jpcb.1c00891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ras GTPase interacts with its regulators and downstream effectors for its critical function in cellular signaling. Targeting the disrupted mechanisms in Ras-related human cancers requires understanding the distinct dynamics of these protein-protein interactions. We performed normal mode analysis (NMA) of KRas4B in wild-type or mutant monomeric and neurofibromin-1 (NF1), Son of Sevenless 1 (SOS1) or Raf-1 bound dimeric conformational states to reveal partner-specific dynamics of the protein. Gaussian network model (GNM) analysis showed that the known KRas4B lobes further partition into subdomains upon binding to its partners. Furthermore, KRas4B interactions with different partners suppress the flexibility in not only their binding sites but also distant residues in the allosteric lobe in a partner-specific way. The conformational changes can be driven by intrinsic residue fluctuations of the open state KRas4B-GDP, as we illustrated with anisotropic network model (ANM) analysis. The allosteric paths connecting the nucleotide binding residues to the allosteric site at α3-L7 portray differences in the inactive and active states. These findings help in understanding the partner-specific KRas4B dynamics, which could be utilized for therapeutic targeting.
Collapse
Affiliation(s)
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, and School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|