1
|
Zhang Q, Leng X, Peng L, Lin H, Xuan G, Zhang W, Mitomo H, Ijiro K, Wang G. Streamlining Bacterial Gene Regulation via Nucleic Acid Delivery with Gold Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411723. [PMID: 39989200 DOI: 10.1002/smll.202411723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Indexed: 02/25/2025]
Abstract
Delivery of exogenous nucleic acids (NAs) for gene regulation in bacteria, bypassing the barrier of the cell wall, is essential for advancing fundamental microbiology and genetic engineering, and the treatment of bacterial diseases. However, current methods that rely on electrical or chemical interventions are limited by their complexity, specialized expertise, and laboratory-specific instrumentation. This study explores the capability of gold nanoclusters (AuNCs) as carriers for delivering small-interfering RNA and antisense oligonucleotides into bacteria for targeted gene regulation while shielding them from degradation during transport. By enhancing the cytoplasmic membrane permeability, the AuNCs enable efficient internalization of NAs into both Gram-positive and Gram-negative bacteria while exerting negligible influence on bacterial activity. It is demonstrated that the rationally designed NAs can be released from the AuNCs within bacteria, enabling ~70% knockdown of mecA in Methicillin-resistant Staphylococcus aureus (MRSA). This significantly reduces MRSA's antibiotic resistance and enhances oxacillin treatment efficacy. Furthermore, the successful silencing of ligA in Escherichia coli and pilQ in Pseudomonas aeruginosa highlights the broad adaptability of the approach across diverse bacterial species. The AuNCs-based next-generation NA delivery system has the potential to transform bacterial gene regulation-previously restricted to laboratory settings-into a versatile and scalable solution for real-world application.
Collapse
Affiliation(s)
- Qingsong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Xinyi Leng
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Lin Peng
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Hong Lin
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Guanhua Xuan
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Ningbo, 315832, China
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Guoqing Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao, 266237, China
| |
Collapse
|
2
|
Feng X, Tachiyama S, He J, Zhu S, Zhao H, Botting JM, Liu Y, Chen Y, Hua C, Lara-Tejero M, Baker MAB, Gao X, Liu J, Gao B. The architecture, assembly, and evolution of a complex flagellar motor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638559. [PMID: 40027708 PMCID: PMC11870540 DOI: 10.1101/2025.02.19.638559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bacterial flagella drive motility in many species, likely including the last bacterial common ancestor 1,2 . Knowledge of flagellar assembly and function has mainly come from studies of Escherichia coli and Salmonella enterica , which have simple flagellar motors 3-7 . However, most flagellated bacteria possess complex motors with unique, species-specific adaptations whose mechanisms and evolution remain largely unexplored 8-10 . Here, we deploy a multidisciplinary approach to build a near-complete model of the flagellar motor in Campylobacter jejuni , revealing its remarkable complexity in architecture and composition. We identify an E-ring around the MS-ring, a periplasmic cage with two distinctive conformations, and an intricate interaction network between the E-ring and cage. These scaffolds play critical roles in stabilizing and regulating 17 torque-generating stator complexes for optimal motility. In-depth evolutionary analyses uncover the ancient origin and prevalence of the E-ring in flagellated species of the domain Bacteria as well as a unique exaptation of type IV pili components PilMNOPQF in the ancestral motor of the phylum Campylobacterota . Collectively, our studies reveal novel mechanisms of assembly and function in complex flagellar motors and shed light on the evolution of flagella and modern bacterial species.
Collapse
|
3
|
Roberge NA, Burrows LL. Building permits-control of type IV pilus assembly by PilB and its cofactors. J Bacteriol 2024; 206:e0035924. [PMID: 39508682 PMCID: PMC11656802 DOI: 10.1128/jb.00359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Many bacteria produce type IV pili (T4P), surfaced-exposed protein filaments that enable cells to interact with their environment and transition from planktonic to surface-adapted states. T4P are dynamic, undergoing rapid cycles of filament extension and retraction facilitated by a complex protein nanomachine powered by cytoplasmic motor ATPases. Dedicated assembly motors drive the extension of the pilus fiber into the extracellular space, but like any machine, this process is tightly organized. These motors are coordinated by various ligands and binding partners, which control or optimize their functional associations with T4P machinery before cells commit to the crucial first step of building a pilus. This review focuses on the molecular mechanisms that regulate T4P extension motor function. We discuss secondary messenger-dependent transcriptional or post-translational regulation acting both directly on the motor and through protein effectors. We also discuss the recent discoveries of naturally occurring extension inhibitors as well as alternative mechanisms of pilus assembly and motor-dependent signaling pathways. Given that T4P are important virulence factors for many bacterial pathogens, studying these motor regulatory systems will provide new insights into T4P-dependent physiology and efficient strategies to disable them.
Collapse
Affiliation(s)
- Nathan A. Roberge
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Guo S, Chang Y, Brun YV, Howell PL, Burrows LL, Liu J. PilY1 regulates the dynamic architecture of the type IV pilus machine in Pseudomonas aeruginosa. Nat Commun 2024; 15:9382. [PMID: 39477930 PMCID: PMC11525922 DOI: 10.1038/s41467-024-53638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Type IV pili (T4P) produced by the pathogen Pseudomonas aeruginosa play a pivotal role in adhesion, surface motility, biofilm formation, and infection in humans. Despite the significance of T4P as a potential therapeutic target, key details of their dynamic assembly and underlying molecular mechanisms of pilus extension and retraction remain elusive, primarily due to challenges in isolating intact T4P machines from the bacterial cell envelope. Here, we combine cryo-electron tomography with subtomogram averaging and integrative modelling to resolve in-situ architectural details of the dynamic T4P machine in P. aeruginosa cells. The T4P machine forms 7-fold symmetric cage-like structures anchored in the cell envelope, providing a molecular framework for the rapid exchange of major pilin subunits during pilus extension and retraction. Our data suggest that the T4P adhesin PilY1 forms a champagne-cork-shaped structure, effectively blocking the secretin channel in the outer membrane whereas the minor-pilin complex in the periplasm appears to contact PilY1 via the central pore of the secretin gate. These findings point to a hypothetical model where the interplay between the secretin protein PilQ and the PilY1-minor-pilin priming complex is important for optimizing conformations of the T4P machine in P. aeruginosa, suggesting a gate-keeping mechanism that regulates pilus dynamics.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
- Department of Cell Biology and Department of Infectious Disease of Sir Run Run Shaw Hospital, Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lori L Burrows
- David Braley Center for Antibiotic Discovery, Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
5
|
Geiger CJ, Wong GCL, O'Toole GA. A bacterial sense of touch: T4P retraction motor as a means of surface sensing by Pseudomonas aeruginosa PA14. J Bacteriol 2024; 206:e0044223. [PMID: 38832786 PMCID: PMC11270903 DOI: 10.1128/jb.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Thongchol J, Yu Z, Harb L, Lin Y, Koch M, Theodore M, Narsaria U, Shaevitz J, Gitai Z, Wu Y, Zhang J, Zeng L. Removal of Pseudomonas type IV pili by a small RNA virus. Science 2024; 384:eadl0635. [PMID: 38574145 PMCID: PMC11126211 DOI: 10.1126/science.adl0635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.
Collapse
Affiliation(s)
- Jirapat Thongchol
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Zihao Yu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Laith Harb
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yiruo Lin
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Matthias Koch
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Matthew Theodore
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Utkarsh Narsaria
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Joshua Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, NY 10461, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Guilvout I, Samsudin F, Huber RG, Bond PJ, Bardiaux B, Francetic O. Membrane platform protein PulF of the Klebsiella type II secretion system forms a trimeric ion channel essential for endopilus assembly and protein secretion. mBio 2024; 15:e0142323. [PMID: 38063437 PMCID: PMC10790770 DOI: 10.1128/mbio.01423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Type IV pili and type II secretion systems are members of the widespread type IV filament (T4F) superfamily of nanomachines that assemble dynamic and versatile surface fibers in archaea and bacteria. The assembly and retraction of T4 filaments with diverse surface properties and functions require the plasma membrane platform proteins of the GspF/PilC superfamily. Generally considered dimeric, platform proteins are thought to function as passive transmitters of the mechanical energy generated by the ATPase motor, to somehow promote insertion of pilin subunits into the nascent pilus fibers. Here, we generate and experimentally validate structural predictions that support the trimeric state of a platform protein PulF from a type II secretion system. The PulF trimers form selective proton or sodium channels which might energize pilus assembly using the membrane potential. The conservation of the channel sequence and structural features implies a common mechanism for all T4F assembly systems. We propose a model of the oligomeric PulF-PulE ATPase complex that provides an essential framework to investigate and understand the pilus assembly mechanism.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | | | | | - Peter J. Bond
- Bioinformatics Institute (A-STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Bioinformatics Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| |
Collapse
|
8
|
Herfurth M, Pérez-Burgos M, Søgaard-Andersen L. The mechanism for polar localization of the type IVa pilus machine in Myxococcus xanthus. mBio 2023; 14:e0159323. [PMID: 37754549 PMCID: PMC10653833 DOI: 10.1128/mbio.01593-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Type IVa pili (T4aP) are widespread bacterial cell surface structures with important functions in motility, surface adhesion, biofilm formation, and virulence. Different bacteria have adapted different piliation patterns. To address how these patterns are established, we focused on the bipolar localization of the T4aP machine in the model organism Myxococcus xanthus by studying the localization of the PilQ secretin, the first component of this machine that assembles at the poles. Based on experiments using a combination of fluorescence microscopy, biochemistry, and computational structural analysis, we propose that PilQ, and specifically its AMIN domains, binds septal and polar peptidoglycan, thereby enabling polar Tgl localization, which then stimulates PilQ multimerization in the outer membrane. We also propose that the presence and absence of AMIN domains in T4aP secretins contribute to the different piliation patterns across bacteria.
Collapse
Affiliation(s)
- Marco Herfurth
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
9
|
Barbat B, Douzi B, Ball G, Tribout M, El Karkouri K, Kellenberger C, Voulhoux R. Insights into dynamics and gating properties of T2SS secretins. SCIENCE ADVANCES 2023; 9:eadg6996. [PMID: 37792935 PMCID: PMC10550240 DOI: 10.1126/sciadv.adg6996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Secretins are outer membrane (OM) channels found in various bacterial nanomachines that secrete or assemble large extracellular structures. High-resolution 3D structures of type 2 secretion system (T2SS) secretins revealed bimodular channels with a C-module, holding a conserved central gate and an optional top gate, followed by an N-module for which multiple structural organizations have been proposed. Here, we perform a structure-driven in vivo study of the XcpD secretin, which validates one of the organizations of the N-module whose flexibility enables alternative conformations. We also show the existence of the central gate in vivo and its required flexibility, which is key for substrate passage and watertightness control. Last, functional, genomic, and phylogenetic analyses indicate that the optional top gate provides a gain of watertightness. Our data illustrate how the gating properties of T2SS secretins allow these large channels to overcome the duality between the necessity of preserving the OM impermeability while simultaneously promoting the secretion of large, folded effectors.
Collapse
Affiliation(s)
- Brice Barbat
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
| | - Badreddine Douzi
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
- Université de Lorraine, INRAE, DynAMic, Nancy, F-54000 France
| | - Geneviève Ball
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
| | - Mathilde Tribout
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
| | | | | | - Romé Voulhoux
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
| |
Collapse
|
10
|
Tassinari M, Rudzite M, Filloux A, Low HH. Assembly mechanism of a Tad secretion system secretin-pilotin complex. Nat Commun 2023; 14:5643. [PMID: 37704603 PMCID: PMC10499894 DOI: 10.1038/s41467-023-41200-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
The bacterial Tight adherence Secretion System (TadSS) assembles surface pili that drive cell adherence, biofilm formation and bacterial predation. The structure and mechanism of the TadSS is mostly unknown. This includes characterisation of the outer membrane secretin through which the pilus is channelled and recruitment of its pilotin. Here we investigate RcpA and TadD lipoprotein from Pseudomonas aeruginosa. Light microscopy reveals RcpA colocalising with TadD in P. aeruginosa and when heterologously expressed in Escherichia coli. We use cryogenic electron microscopy to determine how RcpA and TadD assemble a secretin channel with C13 and C14 symmetries. Despite low sequence homology, we show that TadD shares a similar fold to the type 4 pilus system pilotin PilF. We establish that the C-terminal four residues of RcpA bind TadD - an interaction essential for secretin formation. The binding mechanism between RcpA and TadD appears distinct from known secretin-pilotin pairings in other secretion systems.
Collapse
Affiliation(s)
- Matteo Tassinari
- Department of Infectious Disease, Imperial College, London, SW7 2AZ, UK
- Human Technopole, Milan, Italy
| | - Marta Rudzite
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Alain Filloux
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Barbat B, Douzi B, Voulhoux R. Structural lessons on bacterial secretins. Biochimie 2023; 205:110-116. [PMID: 36096236 DOI: 10.1016/j.biochi.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
To exchange and communicate with their surroundings, bacteria have evolved multiple active and passive mechanisms for trans-envelope transport. Among the pore-forming complexes found in the outer membrane of Gram-negative bacteria, secretins are distinctive homo-oligomeric channels dedicated to the active translocation of voluminous structures such as folded proteins, assembled fibers, virus particles or DNA. Members of the bacterial secretin family share a common cylinder-shaped structure with a gated pore-forming part inserted in the outer membrane, and a periplasmic channel connected to the inner membrane components of the corresponding nanomachine. In this mini-review, we will present what recently determined 3D structures have told us about the mechanisms of translocation through secretins of large substrates to the bacterial surface or in the extracellular milieu.
Collapse
Affiliation(s)
- Brice Barbat
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, 13009, Marseille, France
| | | | - Romé Voulhoux
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, 13009, Marseille, France.
| |
Collapse
|
12
|
Conners R, McLaren M, Łapińska U, Sanders K, Stone MRL, Blaskovich MAT, Pagliara S, Daum B, Rakonjac J, Gold VAM. CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage. Nat Commun 2021; 12:6316. [PMID: 34728631 PMCID: PMC8563730 DOI: 10.1038/s41467-021-26610-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The Ff family of filamentous bacteriophages infect gram-negative bacteria, but do not cause lysis of their host cell. Instead, new virions are extruded via the phage-encoded pIV protein, which has homology with bacterial secretins. Here, we determine the structure of pIV from the f1 filamentous bacteriophage at 2.7 Å resolution by cryo-electron microscopy, the first near-atomic structure of a phage secretin. Fifteen f1 pIV subunits assemble to form a gated channel in the bacterial outer membrane, with associated soluble domains projecting into the periplasm. We model channel opening and propose a mechanism for phage egress. By single-cell microfluidics experiments, we demonstrate the potential for secretins such as pIV to be used as adjuvants to increase the uptake and efficacy of antibiotics in bacteria. Finally, we compare the f1 pIV structure to its homologues to reveal similarities and differences between phage and bacterial secretins.
Collapse
Affiliation(s)
- Rebecca Conners
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Urszula Łapińska
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Exeter, UK.
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK.
| |
Collapse
|