1
|
Gaifas L, Kleman JP, Lacroix F, Schexnaydre E, Trouve J, Morlot C, Sandblad L, Gutsche I, Timmins J. Combining live fluorescence imaging with in situ cryoelectron tomography sheds light on the septation process in Deinococcus radiodurans. Proc Natl Acad Sci U S A 2025; 122:e2425047122. [PMID: 40327694 DOI: 10.1073/pnas.2425047122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Cell division is a fundamental biological process that allows a single mother cell to produce two daughter cells. In walled bacteria, different modes of cell division have been reported that are notably associated with distinctive cell shapes. In all cases, division involves a step of septation, corresponding to the growth of a new dividing cell wall, followed by splitting of the two daughter cells. The radiation-resistant Deinococcus radiodurans is a spherical bacterium protected by a thick and unusual cell envelope. It has been reported to divide using a distinctive mode of septation in which two septa originating from opposite sides of the cell progress with a flat leading edge until meeting and fusing at mid-cell. In the present study, we have combined conventional and superresolution fluorescence microscopy of live bacteria with in situ cryogenic electron tomography of bacterial lamellae to investigate the septation process in D. radiodurans. This work provides important insight into i) the complex architecture and multilayered composition of the cell envelope of this bacterium, ii) the unusual "sliding doors" septation process and iii) the sequence of events and molecular mechanisms underlying septal closure, including the synthesis of a FtsZ-dependent peptidoglycan layer that rigidifies and straightens the growing septa.
Collapse
Affiliation(s)
- Lorenzo Gaifas
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Jean-Philippe Kleman
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Françoise Lacroix
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Erin Schexnaydre
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
- SciLifeLab research infrastructure at Umeå University, Umeå Centre for Electron Microscopy, Umeå SE-901 87, Sweden
| | - Jennyfer Trouve
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Cecile Morlot
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| | - Linda Sandblad
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
- SciLifeLab research infrastructure at Umeå University, Umeå Centre for Electron Microscopy, Umeå SE-901 87, Sweden
| | - Irina Gutsche
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Joanna Timmins
- University of Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Institut de Biologie Structurale, Grenoble F-38000, France
| |
Collapse
|
2
|
Grill-Walcher S, Schäffer C. A new age in structural S-layer biology - Experimental and in silico milestones. J Biol Chem 2025:110205. [PMID: 40345586 DOI: 10.1016/j.jbc.2025.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
Surface (S-) layer proteins, considered as the most abundant proteins in nature, perform diverse and essential biological roles in many bacteria and most archaea. Their functions range from providing structural support, maintaining cell shape, and protecting against extreme environments to acting as a cell surface display matrix for biologically active molecules, such as S-layer protein-bound glycans, which facilitate interspecies interactions and cellular communication in both health and disease. The intricate, symmetric, nanometer-scale patterns of S-layer lattices have long fascinated structural biologists, yet only recent methodological advances have revealed detailed molecular insights. These advances include a deeper understanding of domain organization, cell wall anchoring mechanisms, and how nascent proteins are incorporated into existing lattices. Significant progress in sample preparation and high-resolution imaging has led to the precise structural characterization of S-layers across various bacterial and archaeal species. Furthermore, the advent of deep learning-based structure prediction has enabled modeling of S-layer proteins in several largely uncultured microbial lineages. This review summarizes major achievements in S-layer protein structural research over the past five years, presenting them with a typical workflow for the experimental structure determination. For the first time, it also explores recent breakthroughs in computational S-layer modelling and offers an outlook on how in silico methods may further advance our understanding of S-layer protein architecture.
Collapse
Affiliation(s)
- Stephanie Grill-Walcher
- Department of Natural Sciences and Sustainable Resources, Institute of Biochemistry, NanoGlycobiology Research Group, BOKU University, Vienna, Austria
| | - Christina Schäffer
- Department of Natural Sciences and Sustainable Resources, Institute of Biochemistry, NanoGlycobiology Research Group, BOKU University, Vienna, Austria.
| |
Collapse
|
3
|
Boi S, Puxeddu S, Delogu I, Farci D, Piano D, Manzin A, Ceccarelli M, Angius F, Scorciapino MA, Milenkovic S. Seeking Correlation Among Porin Permeabilities and Minimum Inhibitory Concentrations Through Machine Learning: A Promising Route to the Essential Molecular Descriptors. Molecules 2025; 30:1224. [PMID: 40142001 PMCID: PMC11944608 DOI: 10.3390/molecules30061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Developing effective antibiotics against Gram-negative bacteria remains challenging due to their protective outer membrane. With this study, we investigated the relationship between antibiotic permeation through the OmpF porin of Escherichia coli and antimicrobial efficacy. We measured the relative permeability coefficients (RPCs) through the bacterial porin by liposome swelling assays, including non-antibacterial molecules, and the minimum inhibitory concentrations (MICs) against E. coli. We developed a machine learning (ML) approach by combining classification and regression models to correlate these data sets. Our strategy allowed us to quantify the negative correlation between RPC and MIC values, clearly indicating that increased permeability through OmpF generally leads to improved antimicrobial activity. Moreover, the correlation was remarkable only for compounds with significant permeability coefficients. Conversely, when permeation ability is low, other factors play the most significant role in antimicrobial potency. Importantly, the proposed ML-based approach was set by exploiting the available seminal information from previous investigations in order to keep the number of molecular descriptors to the minimum for greater interpretability. This provided valuable insights into the complex interplay between different molecular properties in defining the overall outer membrane permeation and, consequently, the antimicrobial efficacy. From a practical perspective, the presented approach does not aim at identifying the "golden rule" for boosting antibiotic potency. The automated protocol presented here could be used to inspect, in silico, many alternatives of a given molecular structure, with the output being the list of the best candidates to be then synthesized and tested. This could be a valuable in silico tool for researchers in both academia and industry to rapidly evaluate novel potential compounds and reduce costs and time during the early drug discovery stage.
Collapse
Affiliation(s)
- Sara Boi
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy;
| | - Silvia Puxeddu
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (S.P.); (I.D.); (A.M.)
| | - Ilenia Delogu
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (S.P.); (I.D.); (A.M.)
| | - Domenica Farci
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (D.F.); (D.P.)
| | - Dario Piano
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (D.F.); (D.P.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (S.P.); (I.D.); (A.M.)
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (M.C.); (S.M.)
| | - Fabrizio Angius
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (S.P.); (I.D.); (A.M.)
| | - Mariano Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy;
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, S.P. 8 km 0,700, I-09042 Monserrato, CA, Italy; (M.C.); (S.M.)
| |
Collapse
|
4
|
Farci D, Piano D. Spatial arrangement and density variations in the cell envelope of Deinococcus radiodurans. Can J Microbiol 2024; 70:190-198. [PMID: 38525892 DOI: 10.1139/cjm-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The cell envelope of the poly-extremophile bacterium Deinococcus radiodurans is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Farci D, Milenkovic S, Iesu L, Tanas M, Ceccarelli M, Piano D. Structural characterization and functional insights into the type II secretion system of the poly-extremophile Deinococcus radiodurans. J Biol Chem 2024; 300:105537. [PMID: 38072042 PMCID: PMC10828601 DOI: 10.1016/j.jbc.2023.105537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024] Open
Abstract
The extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component. We used cryo-electron microscopy to reveal unique features, such as an unconventional protein belt (DR_1364) around the main secretin (GspD), and a cap (DR_0940) found to be a separated subunit rather than integrated with GspD. Furthermore, a novel region at the N-terminus of the GspD constitutes an additional second gate, supplementing the one typically found in the outer membrane region. This T2SS was found to contribute to envelope integrity, while also playing a role in nucleic acid and nutrient trafficking. Studies on intact cell envelopes show a consistent T2SS structure repetition, highlighting its significance within the cellular framework.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland; Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy; R&D Department, ReGenFix Laboratories, Sardara, Italy.
| | - Stefan Milenkovic
- Department of Physics and IOM/CNR, Università degli Studi di Cagliari, Monserrato, Italy
| | - Luca Iesu
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Marta Tanas
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy
| | - Matteo Ceccarelli
- Department of Physics and IOM/CNR, Università degli Studi di Cagliari, Monserrato, Italy
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland; Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari, Italy; R&D Department, ReGenFix Laboratories, Sardara, Italy.
| |
Collapse
|
6
|
Farci D, Piano D. Reply to Bharat et al.: Continuity or discontinuity, that is the question. Proc Natl Acad Sci U S A 2023; 120:e2311568120. [PMID: 38085786 PMCID: PMC10743361 DOI: 10.1073/pnas.2311568120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences–SGGW, Warsaw02-776, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari09123, Italy
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences–SGGW, Warsaw02-776, Poland
- Department of Life and Environmental Sciences, Università degli Studi di Cagliari, Cagliari09123, Italy
| |
Collapse
|
7
|
Seeholzer T, Tarau D, Hollendonner L, Auer A, Rachel R, Grohmann D, Giessibl FJ, Weymouth AJ. A Next-Generation qPlus-Sensor-Based AFM Setup: Resolving Archaeal S-Layer Protein Structures in Air and Liquid. J Phys Chem B 2023; 127:6949-6957. [PMID: 37527455 DOI: 10.1021/acs.jpcb.3c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Surface-layer (S-layer) proteins form the outermost envelope in many bacteria and most archaea and arrange in two-dimensional quasicrystalline structures via self-assembly. We investigated S-layer proteins extracted from the archaeon Pyrobaculum aerophilium with a qPlus sensor-based atomic force microscope (AFM) in both liquid and ambient conditions and compared it to transmission electron microscopy (TEM) images under vacuum conditions. For AFM scanning, a next-generation liquid cell and a new protocol for creating long and sharp sapphire tips was introduced. Initial AFM images showed only layers of residual detergent molecules (sodium dodecyl sulfate, SDS), which are used to isolate the S-layer proteins from the cells. SDS was not visible in the TEM images, requiring more thorough sample preparation for AFM measurements. These improvements allowed us to resolve the crystallike structure of the S-layer samples with frequency-modulation AFM in both air and liquid.
Collapse
Affiliation(s)
- Theresa Seeholzer
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Daniela Tarau
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg 93053, Germany
| | - Lea Hollendonner
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Andrea Auer
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Reinhard Rachel
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg 93053, Germany
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg 93053, Germany
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg 93053, Germany
| | - Franz J Giessibl
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| | - Alfred J Weymouth
- Faculty of Physics, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
8
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
9
|
Golmohammadzadeh M, Sexton DL, Parmar S, Tocheva EI. Advanced imaging techniques: Microscopy. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:1-25. [PMID: 37085191 DOI: 10.1016/bs.aambs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
For decades, bacteria were thought of as "bags" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.
Collapse
Affiliation(s)
- Mona Golmohammadzadeh
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle L Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shweta Parmar
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
10
|
Farci D, Graça AT, Iesu L, de Sanctis D, Piano D. The SDBC is active in quenching oxidative conditions and bridges the cell envelope layers in Deinococcus radiodurans. J Biol Chem 2022; 299:102784. [PMID: 36502921 PMCID: PMC9823218 DOI: 10.1016/j.jbc.2022.102784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Deinococcus radiodurans is known for its remarkable ability to withstand harsh stressful conditions. The outermost layer of its cell envelope is a proteinaceous coat, the S-layer, essential for resistance to and interactions with the environment. The S-layer Deinoxanthin-binding complex (SDBC), one of the main units of the characteristic multilayered cell envelope of this bacterium, protects against environmental stressors and allows exchanges with the environment. So far, specific regions of this complex, the collar and the stalk, remained unassigned. Here, these regions are resolved by cryo-EM and locally refined. The resulting 3D map shows that the collar region of this multiprotein complex is a trimer of the protein DR_0644, a Cu-only superoxide dismutase (SOD) identified here to be efficient in quenching reactive oxygen species. The same data also showed that the stalk region consists of a coiled coil that extends into the cell envelope for ∼280 Å, reaching the inner membrane. Finally, the orientation and localization of the complex are defined by in situ cryo-electron crystallography. The structural organization of the SDBC couples fundamental UV antenna properties with the presence of a Cu-only SOD, showing here coexisting photoprotective and chemoprotective functions. These features suggests how the SDBC and similar protein complexes, might have played a primary role as evolutive templates for the origin of photoautotrophic processes by combining primary protective needs with more independent energetic strategies.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland,Department of Chemistry, Umeå University, Umeå, Sweden,Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy,For correspondence: Dario Piano; Domenica Farci
| | | | - Luca Iesu
- Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy
| | - Daniele de Sanctis
- Structural Biology group, ESRF, The European Synchrotron Radiation Facility, Grenoble, France
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland,Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy,For correspondence: Dario Piano; Domenica Farci
| |
Collapse
|
11
|
von Kügelgen A, van Dorst S, Alva V, Bharat TAM. A multidomain connector links the outer membrane and cell wall in phylogenetically deep-branching bacteria. Proc Natl Acad Sci U S A 2022; 119:e2203156119. [PMID: 35943982 PMCID: PMC9388160 DOI: 10.1073/pnas.2203156119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/24/2022] [Indexed: 01/30/2023] Open
Abstract
Deinococcus radiodurans is a phylogenetically deep-branching extremophilic bacterium that is remarkably tolerant to numerous environmental stresses, including large doses of ultraviolet (UV) radiation and extreme temperatures. It can even survive in outer space for several years. This endurance of D. radiodurans has been partly ascribed to its atypical cell envelope comprising an inner membrane, a large periplasmic space with a thick peptidoglycan (PG) layer, and an outer membrane (OM) covered by a surface layer (S-layer). Despite intense research, molecular principles governing envelope organization and OM stabilization are unclear in D. radiodurans and related bacteria. Here, we report a electron cryomicroscopy (cryo-EM) structure of the abundant D. radiodurans OM protein SlpA, showing how its C-terminal segment forms homotrimers of 30-stranded β-barrels in the OM, whereas its N-terminal segment forms long, homotrimeric coiled coils linking the OM to the PG layer via S-layer homology (SLH) domains. Furthermore, using protein structure prediction and sequence-based bioinformatic analysis, we show that SlpA-like putative OM-PG connector proteins are widespread in phylogenetically deep-branching Gram-negative bacteria. Finally, combining our atomic structures with fluorescence and electron microscopy of cell envelopes of wild-type and mutant bacterial strains, we report a model for the cell surface of D. radiodurans. Our results will have important implications for understanding the cell surface organization and hyperstability of D. radiodurans and related bacteria and the evolutionary transition between Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Andriko von Kügelgen
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sofie van Dorst
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
12
|
Pfeifer K, Ehmoser EK, Rittmann SKMR, Schleper C, Pum D, Sleytr UB, Schuster B. Isolation and Characterization of Cell Envelope Fragments Comprising Archaeal S-Layer Proteins. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2502. [PMID: 35889727 PMCID: PMC9320373 DOI: 10.3390/nano12142502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022]
Abstract
The outermost component of cell envelopes of most bacteria and almost all archaea comprise a protein lattice, which is termed Surface (S-)layer. The S-layer lattice constitutes a highly porous structure with regularly arranged pores in the nm-range. Some archaea thrive in extreme milieus, thus producing highly stable S-layer protein lattices that aid in protecting the organisms. In the present study, fragments of the cell envelope from the hyperthermophilic acidophilic archaeon Saccharolobus solfataricus P2 (SSO) have been isolated by two different methods and characterized. The organization of the fragments and the molecular sieving properties have been elucidated by transmission electron microscopy and by determining the retention efficiency of proteins varying in size, respectively. The porosity of the archaeal S-layer fragments was determined to be 45%. S-layer fragments of SSO showed a retention efficiency of up to 100% for proteins having a molecular mass of ≥ 66 kDa. Moreover, the extraction costs for SSO fragments have been reduced by more than 80% compared to conventional methods, which makes the use of these archaeal S-layer material economically attractive.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (K.P.); (E.-K.E.); (U.B.S.)
| | - Eva-Kathrin Ehmoser
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (K.P.); (E.-K.E.); (U.B.S.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Arkeon GmbH, 3430 Tulln an der Donau, Austria
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| | - Dietmar Pum
- Institute of Biophysics, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Uwe B. Sleytr
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (K.P.); (E.-K.E.); (U.B.S.)
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (K.P.); (E.-K.E.); (U.B.S.)
| |
Collapse
|
13
|
Farci D, Haniewicz P, de Sanctis D, Iesu L, Kereïche S, Winterhalter M, Piano D. The cryo-EM structure of the S-layer deinoxanthin-binding complex of Deinococcus radiodurans informs properties of its environmental interactions. J Biol Chem 2022; 298:102031. [PMID: 35577074 PMCID: PMC9189128 DOI: 10.1016/j.jbc.2022.102031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
The radiation-resistant bacterium Deinococcus radiodurans is known as the world’s toughest bacterium. The S-layer of D. radiodurans, consisting of several proteins on the surface of the cellular envelope and intimately associated with the outer membrane, has therefore been useful as a model for structural and functional studies. Its main proteinaceous unit, the S-layer deinoxanthin-binding complex (SDBC), is a hetero-oligomeric assembly known to contribute to the resistance against environmental stress and have porin functional features; however, its precise structure is unknown. Here, we resolved the structure of the SDBC at ∼2.5 Å resolution by cryo-EM and assigned the sequence of its main subunit, the protein DR_2577. This structure is characterized by a pore region, a massive β-barrel organization, a stalk region consisting of a trimeric coiled coil, and a collar region at the base of the stalk. We show that each monomer binds three Cu ions and one Fe ion and retains one deinoxanthin molecule and two phosphoglycolipids, all exclusive to D. radiodurans. Finally, electrophysiological characterization of the SDBC shows that it exhibits transport properties with several amino acids. Taken together, these results highlight the SDBC as a robust structure displaying both protection and sieving functions that facilitates exchanges with the environment.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, 02-776, Poland; Department of Chemistry, Umeå University, Linnaeus väg 6, Umeå, 90736, Sweden.
| | - Patrycja Haniewicz
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, 02-776, Poland
| | - Daniele de Sanctis
- ESRF, The European Synchrotron Radiation Facility, Grenoble, 38043, France
| | - Luca Iesu
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, 09123, Italy
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic
| | - Mathias Winterhalter
- Department of Life Sciences & Chemistry, Jacobs University Bremen, Bremen, 28759, Germany
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, 02-776, Poland; Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, 09123, Italy.
| |
Collapse
|
14
|
Sexton DL, Burgold S, Schertel A, Tocheva EI. Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans. Curr Res Struct Biol 2022; 4:1-9. [PMID: 34977598 PMCID: PMC8688812 DOI: 10.1016/j.crstbi.2021.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Studying bacterial cell envelope architecture with electron microscopy is challenging due to the poor preservation of microbial ultrastructure with traditional methods. Here, we established and validated a super-resolution cryo-correlative light and electron microscopy (cryo-CLEM) method, and combined it with cryo-focused ion beam (cryo-FIB) milling and scanning electron microscopy (SEM) volume imaging to structurally characterize the bacterium Deinococcus radiodurans. Subsequent cryo-electron tomography (cryo-ET) revealed an unusual diderm cell envelope architecture with a thick layer of peptidoglycan (PG) between the inner and outer membranes, an additional periplasmic layer, and a proteinaceous surface S-layer. Cells grew in tetrads, and division septa were formed by invagination of the inner membrane (IM), followed by a thick layer of PG. Cytoskeletal filaments, FtsA and FtsZ, were observed at the leading edges of constricting septa. Numerous macromolecular complexes were found associated with the cytoplasmic side of the IM. Altogether, our study revealed several unique ultrastructural features of D. radiodurans cells, opening new lines of investigation into the physiology and evolution of the bacterium. User-friendly, commercially available method for correlative cryo-super resolution light microscopy (LM) and cryo-FIB-milling. Cryo-super resolution LM, cryo-FIB milling, cryo-SEM volume imaging, and cryo-electron tomography (cryo-ET) to study Deinococcus radiodurans. Unique D. radiodurans cell envelope is composed of two membranes, thick peptidoglycan, an additional layer, and an S-layer. Cytoskeletal filaments FtsA and FtsZ were observed at the leading edges of division septa.
Collapse
Affiliation(s)
- Danielle L Sexton
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | - Elitza I Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|