1
|
Ayan E, Türk M, Tatlı Ö, Bostan S, Telek E, Dingiloğlu B, Doğan BZ, Alp MI, Katı A, Dinler-Doğanay G, Demirci H. X-ray crystallographic and hydrogen deuterium exchange studies confirm alternate kinetic models for homolog insulin monomers. PLoS One 2025; 20:e0319282. [PMID: 40257998 PMCID: PMC12011231 DOI: 10.1371/journal.pone.0319282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/29/2025] [Indexed: 04/23/2025] Open
Abstract
Despite the crucial role of various insulin analogs in achieving satisfactory glycemic control, a comprehensive understanding of their in-solution dynamic mechanisms still holds the potential to further optimize rapid insulin analogs, thus significantly improving the well-being of individuals with Type 1 Diabetes. Here, we employed hydrogen-deuterium exchange mass spectrometry to decipher the molecular dynamics of newly modified and functional insulin analog. A comparative analysis of H/D dynamics demonstrated that the modified insulin exchanges deuterium atoms faster and more extensively than the intact insulin aspart. Additionally, we present new insights derived from our 2.5 Å resolution X-ray crystal structure of modified hexamer insulin analog at ambient temperature. Furthermore, we obtained a distinctive side-chain conformation of the Asn3 residue on the B chain (AsnB3) by operating a comparative analysis with a previously available cryogenic rapid-acting insulin structure (PDB_ID: 4GBN). The experimental conclusions have demonstrated compatibility with modified insulin's distinct cellular activity, comparably to aspart. Additionally, the hybrid structural approach combined with computational analysis employed in this study provides novel insight into the structural dynamics of newly modified and functional insulin vs insulin aspart monomeric entities. It allows further molecular understanding of intermolecular interrelations driving dissociation kinetics and, therefore, a fast action mechanism.
Collapse
Affiliation(s)
- Esra Ayan
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
- Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Türkiye
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Istanbul Medipol University, Istanbul, Türkiye
| | - Miray Türk
- Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, Istanbul, Türkiye
| | - Özge Tatlı
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Sevginur Bostan
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Elek Telek
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Baran Dingiloğlu
- Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, Istanbul, Türkiye
| | - B. Züleyha Doğan
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Istanbul Medipol University, Istanbul, Türkiye
| | - Muhammed Ikbal Alp
- Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Istanbul Medipol University, Istanbul, Türkiye
| | - Ahmet Katı
- Experimental Medicine Research and Application Center, University of Health Sciences, Istanbul, Türkiye
| | - Gizem Dinler-Doğanay
- Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, Istanbul, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye
| | - Hasan Demirci
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul, Türkiye
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California, United States of America
| |
Collapse
|
2
|
Ullah S, Ullah A, Waqas M, Halim SA, Khan I, Ur Rehman S, Abdellattif MH, Soomro S, Ibrar A, Kashtoh H, Khan A, Al-Harrasi A. Exploring the Therapeutic Potential of Coumarin-thiazolotriazole Pharmacophores for SARS-CoV-2 Spike Protein through In-vitro and In-silico Evaluation. Curr Med Chem 2025; 32:1817-1829. [PMID: 39318001 DOI: 10.2174/0109298673323284240911052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The pandemic caused by SARS-CoV-2 significantly impacted human life around the globe. Numerous unexpected modifications of the SARS-CoV-2 genome have resulted in the emergence of new types and have caused great concern globally. METHODS Inhibitory effects of bioactive phytochemicals derived from natural and synthetic sources are promising for pathogenic viruses. In vitro and in silico techniques were used in the current study to identify novel inhibitors of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles against the SARS-CoV-2 spike protein. RESULTS Interestingly, all the tested molecules demonstrated substantial inhibition of spike protein with 91.81-57.90% inhibition. The spike protein was remarkably inhibited by compounds 6k (91.83%), 6j (89.75%), 6m (87.69%),6i (86.60%), 6l (85.40%), 6h (84.70%), 6l (84.70%), 6g (83.40%), 6b (82.60%), 6f (81.90%), while compounds 6d 6a, 6c, and 6e exhibited significant activity against spike protein with 79.60%, 77.10%, 75.30%, and 57.90% inhibition, respectively. The binding mechanism of these novel inhibitors with spike protein was deduced in silico, which reflects that the active molecules firmly bind with the receptor binding domain (RBD) of spike protein, thereby inhibiting its function. CONCLUSION The combined in vitro and in silico investigations unfold the therapeutic potential of coumarin-thiazolotriazole scaffolds in the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Atta Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sadeeq Ur Rehman
- Department of Zoology, Abdul Wali Khan University, Timergara Campus, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Samreen Soomro
- Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK, 22620, Pakistan
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| |
Collapse
|
3
|
Dogan B, Durdağı S. Investigating the Effect of GLU283 Protonation State on the Conformational Heterogeneity of CCR5 by Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:8283-8298. [PMID: 39435878 DOI: 10.1021/acs.jcim.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
CCR5 is a class A GPCR and serves as one of the coreceptors facilitating HIV-1 entry into host cells. This receptor has vital roles in the immune system and is involved in the pathogenesis of different diseases. Various studies were conducted to understand its activation mechanism, including structural studies in which inactive and active states of the receptor were determined in complex with various binding partners. These determined structures provided opportunities to perform molecular dynamics (MD) simulations and to analyze conformational changes observed in the protein structures. The atomic-level dynamic studies allow us to explore the effects of ionizable residues on the receptor. Here, our aim was to investigate the conformational changes in CCR5 when it forms a complex with either the inhibitor maraviroc (MRV), an approved anti-HIV drug, or HIV-1 envelope protein GP120, and compare these changes to the receptor's apo form. In our simulations, we considered both ionized and protonated states of ionizable binding site residue GLU2837.39 in CCR5 as the protonation state of this residue was considered ambiguously in previous studies. Our molecular simulations results suggested that in fact, the change in the protonation state of GLU2837.39 caused interaction profiles to be different between CCR5 and its binding partners, GP120 or MRV. We observed that when the protonated state of GLU2837.39 was considered in complex with the envelope protein GP120, there were substantial structural changes in CCR5, indicating that it adopts a more active-like conformation. On the other hand, CCR5 in complex with MRV always adopted an inactive conformation regardless of the protonation state. Hence, the CCR5 coreceptor displays conformational heterogeneity not only depending on its binding partner but also influenced by the protonation state of the binding site binding site residue GLU2837.39. This outcome is also in accordance with some studies showing that GP120 binding could activate signaling pathways. This outcome could also have significant implications for discovering novel CCR5 inhibitors as anti-HIV drugs using in silico methods such as molecular docking, as it may be necessary to consider the protonated state of GLU2837.39.
Collapse
Affiliation(s)
- Berna Dogan
- Department of Biochemistry, School of Medicine, Bahcesehir University, Istanbul 34353, Türkiye
- Deparment of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| | - Serdar Durdağı
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Türkiye
- Molecular Therapy Lab, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahcesehir University, Istanbul 34353, Türkiye
- Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, Istanbul 34353, Türkiye
| |
Collapse
|
4
|
Wralstad EC, Raines RT. Sensitive detection of SARS-CoV-2 main protease 3CL pro with an engineered ribonuclease zymogen. Protein Sci 2024; 33:e4916. [PMID: 38501598 PMCID: PMC10949392 DOI: 10.1002/pro.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 03/20/2024]
Abstract
Alongside vaccines and antiviral therapeutics, diagnostic tools are a crucial aid in combating the COVID-19 pandemic caused by the etiological agent SARS-CoV-2. All common assays for infection rely on the detection of viral sub-components, including structural proteins of the virion or fragments of the viral genome. Selective pressure imposed by human intervention of COVID-19 can, however, induce viral mutations that decrease the sensitivity of diagnostic assays based on biomolecular structure, leading to an increase in false-negative results. In comparison, mutations are unlikely to alter the function of viral proteins, and viral machinery is under less selective pressure from vaccines and therapeutics. Accordingly, diagnostic assays that rely on biomolecular function can be more robust than ones that rely on biopolymer structure. Toward this end, we used a split intein to create a circular ribonuclease zymogen that is activated by the SARS-CoV-2 main protease, 3CLpro . Zymogen activation by 3CLpro leads to a >300-fold increase in ribonucleolytic activity, which can be detected with a highly sensitive fluorogenic substrate. This coupled assay can detect low nanomolar concentrations of 3CLpro within a timeframe comparable to that of common antigen-detection protocols. More generally, the concept of detecting a protease by activating a ribonuclease could be the basis of diagnostic tools for other indications.
Collapse
Affiliation(s)
- Evans C. Wralstad
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ronald T. Raines
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
5
|
Nguyen TH, Thai QM, Pham MQ, Minh PTH, Phung HTT. Machine learning combines atomistic simulations to predict SARS-CoV-2 Mpro inhibitors from natural compounds. Mol Divers 2024; 28:553-561. [PMID: 36823394 PMCID: PMC9950021 DOI: 10.1007/s11030-023-10601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 02/25/2023]
Abstract
To date, the COVID-19 pandemic has still been infectious around the world, continuously causing social and economic damage on a global scale. One of the most important therapeutic targets for the treatment of COVID-19 is the main protease (Mpro) of SARS-CoV-2. In this study, we combined machine-learning (ML) model with atomistic simulations to computationally search for highly promising SARS-CoV-2 Mpro inhibitors from the representative natural compounds of the National Cancer Institute (NCI) Database. First, the trained ML model was used to scan the library quickly and reliably for possible Mpro inhibitors. The ML output was then confirmed using atomistic simulations integrating molecular docking and molecular dynamic simulations with the linear interaction energy scheme. The results turned out to show that there was evidently good agreement between ML and atomistic simulations. Ten substances were proposed to be able to inhibit SARS-CoV-2 Mpro. Seven of them have high-nanomolar affinity and are very potential inhibitors. The strategy has been proven to be reliable and appropriate for fast prediction of SARS-CoV-2 Mpro inhibitors, benefiting for new emerging SARS-CoV-2 variants in the future accordingly.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Quynh Mai Thai
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham Thi Hong Minh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Nam KH. Guide to serial synchrotron crystallography. Curr Res Struct Biol 2024; 7:100131. [PMID: 38371325 PMCID: PMC10869752 DOI: 10.1016/j.crstbi.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Serial crystallography (SX) is an emerging technique that can be used to determine the noncryogenic crystal structure of macromolecules while minimizing radiation damage. Applying SX using pump-probe or mix-and-inject techniques enables the observation of time-resolved molecular reactions and dynamics in macromolecules. After the successful demonstration of the SX experimental technique with structure determination in serial femtosecond crystallography using an X-ray free electron laser, this method was adapted to the synchrotron, leading to the development of serial synchrotron crystallography (SSX). SSX offers new opportunities for researchers to leverage SX techniques, contributing to the advancement of structural biology and offering a deeper understanding of the structure and function of macromolecules. This review covers the background and advantages of SSX and its experimental approach. It also discusses important considerations when conducting SSX experiments.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul, 02707, Republic of Korea
| |
Collapse
|
7
|
Botha S, Fromme P. Review of serial femtosecond crystallography including the COVID-19 pandemic impact and future outlook. Structure 2023; 31:1306-1319. [PMID: 37898125 PMCID: PMC10842180 DOI: 10.1016/j.str.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
Serial femtosecond crystallography (SFX) revolutionized macromolecular crystallography over the past decade by enabling the collection of X-ray diffraction data from nano- or micrometer sized crystals while outrunning structure-altering radiation damage effects at room temperature. The serial manner of data collection from millions of individual crystals coupled with the femtosecond duration of the ultrabright X-ray pulses enables time-resolved studies of macromolecules under near-physiological conditions to unprecedented temporal resolution. In 2020 the rapid spread of the coronavirus SARS-CoV-2 resulted in a global pandemic of coronavirus disease-2019. This led to a shift in how serial femtosecond experiments were performed, along with rapid funding and free electron laser beamtime availability dedicated to SARS-CoV-2-related studies. This review outlines the current state of SFX research, the milestones that were achieved, the impact of the global pandemic on this field as well as an outlook into exciting future directions.
Collapse
Affiliation(s)
- Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
8
|
Wralstad EC, Sayers J, Raines RT. Bayesian Inference Elucidates the Catalytic Competency of the SARS-CoV-2 Main Protease 3CL pro. Anal Chem 2023; 95:14981-14989. [PMID: 37750823 PMCID: PMC10662973 DOI: 10.1021/acs.analchem.3c02459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The main protease of SARS-CoV-2, 3CLpro, is a dimeric enzyme that is indispensable to viral replication and presents an attractive opportunity for therapeutic intervention. Previous reports regarding the key properties of 3CLpro and its highly similar SARS-CoV homologue conflict dramatically. Values of the dimeric Kd and enzymic kcat/KM differ by 106- and 103-fold, respectively. Establishing a confident benchmark of the intrinsic capabilities of this enzyme is essential for combating the current pandemic as well as potential future outbreaks. Here, we use enzymatic methods to characterize the dimerization and catalytic efficiency of the authentic protease from SARS-CoV-2. Specifically, we use the rigor of Bayesian inference in a Markov Chain Monte Carlo analysis of progress curves to circumvent the limitations of traditional Michaelis-Menten initial rate analysis. We report that SARS-CoV-2 3CLpro forms a dimer at pH 7.5 that has Kd = 16 ± 4 nM and is capable of catalysis with kcat = 9.9 ± 1.5 s-1, KM = 0.23 ± 0.01 mM, and kcat/KM = (4.3 ± 0.7) × 104 M-1 s-1. We also find that enzymatic activity decreases substantially in solutions of high ionic strength, largely as a consequence of impaired dimerization. We conclude that 3CLpro is a more capable catalyst than appreciated previously, which has important implications for the design of antiviral therapeutic agents that target 3CLpro.
Collapse
Affiliation(s)
- Evans C Wralstad
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jessica Sayers
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Chenthamarakshan V, Hoffman SC, Owen CD, Lukacik P, Strain-Damerell C, Fearon D, Malla TR, Tumber A, Schofield CJ, Duyvesteyn HM, Dejnirattisai W, Carrique L, Walter TS, Screaton GR, Matviiuk T, Mojsilovic A, Crain J, Walsh MA, Stuart DI, Das P. Accelerating drug target inhibitor discovery with a deep generative foundation model. SCIENCE ADVANCES 2023; 9:eadg7865. [PMID: 37343087 PMCID: PMC10284550 DOI: 10.1126/sciadv.adg7865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions-unbiased toward any specific target. We performed a protein sequence-conditioned sampling on the generative foundation model to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD) and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each target. The most potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization assays. These results establish that a single, broadly deployable generative foundation model for accelerated inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.
Collapse
Affiliation(s)
| | - Samuel C. Hoffman
- IBM Research, Thomas J. Watson Research Center, Yorktown Heights, New York, NY, USA
| | - C. David Owen
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - Tika R. Malla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, UK
| | - Helen M.E. Duyvesteyn
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Loic Carrique
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Thomas S. Walter
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | | | - Jason Crain
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A. Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, UK
| | - David I. Stuart
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, UK
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - Payel Das
- IBM Research, Thomas J. Watson Research Center, Yorktown Heights, New York, NY, USA
| |
Collapse
|
10
|
Ansell TB, Corey RA, Viti LV, Kinnebrew M, Rohatgi R, Siebold C, Sansom MSP. The Energetics and Ion Coupling of Cholesterol Transport Through Patched1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528445. [PMID: 36824746 PMCID: PMC9949057 DOI: 10.1101/2023.02.14.528445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Patched1 (PTCH1) is the principal tumour suppressor protein of the mammalian Hedgehog (HH) signalling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the Class F G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating accessible cholesterol levels within ciliary membranes. Using extensive molecular dynamics (MD) simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15-20 kJ mol -1 for cholesterol export. In simulations we identify cation binding sites within the PTCH1 transmembrane domain (TMD) which may provide the energetic impetus for cholesterol transport. In silico data are coupled to in vivo biochemical assays of PTCH1 mutants to probe coupling between transmembrane motions and PTCH1 activity. Using complementary simulations of Dispatched1 (DISP1) we find that transition between 'inward-open' and solvent 'occluded' states is accompanied by Na + induced pinching of intracellular helical segments. Thus, our findings illuminate the energetics and ion-coupling stoichiometries of PTCH1 transport mechanisms, whereby 1-3 Na + or 2-3 K + couple to cholesterol export, and provide the first molecular description of transitions between distinct transport states.
Collapse
Affiliation(s)
- T. Bertie Ansell
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Robin A. Corey
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Lucrezia Vittoria Viti
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | |
Collapse
|
11
|
Smith N, Wilson MA. Understanding Cysteine Chemistry Using Conventional and Serial X-Ray Protein Crystallography. CRYSTALS 2022; 12:1671. [PMID: 36685087 PMCID: PMC9850494 DOI: 10.3390/cryst12111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Proteins that use cysteine residues for catalysis or regulation are widely distributed and intensively studied, with many biomedically important examples. Enzymes where cysteine is a catalytic nucleophile typically generate covalent catalytic intermediates whose structures are important for understanding mechanism and for designing targeted inhibitors. The formation of catalytic intermediates can change enzyme conformational dynamics, sometimes activating protein motions that are important for catalytic turnover. However, these transiently populated intermediate species have been challenging to structurally characterize using traditional crystallographic approaches. This review describes the use and promise of new time-resolved serial crystallographic methods to study cysteine-dependent enzymes, with a focus on the main (Mpro) and papain-like (PLpro) cysteine proteases of SARS-CoV-2 as well as other examples. We review features of cysteine chemistry that are relevant for the design and execution of time-resolved serial crystallography experiments. In addition, we discuss emerging X-ray techniques such as time-resolved sulfur X-ray spectroscopy that may be able to detect changes in sulfur charge state and covalency during catalysis or regulatory modification. In summary, cysteine-dependent enzymes have features that make them especially attractive targets for new time-resolved serial crystallography approaches, which can reveal both changes to enzyme structure and dynamics during catalysis in crystalline samples.
Collapse
|
12
|
Andrzejczyk J, Jovic K, Brown LM, Pascetta VG, Varga K, Vashisth H. Molecular interactions and inhibition of the SARS‐CoV‐2 main protease by a thiadiazolidinone derivative. Proteins 2022; 90:1896-1907. [PMID: 35567429 PMCID: PMC9347825 DOI: 10.1002/prot.26385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022]
Abstract
We report molecular interactions and inhibition of the main protease (MPro) of SARS‐CoV‐2, a key enzyme involved in the viral life cycle. By using a thiadiazolidinone (TDZD) derivative as a chemical probe, we explore the conformational dynamics of MPro via docking protocols and molecular dynamics simulations in all‐atom detail. We reveal the local and global dynamics of MPro in the presence of this inhibitor and confirm the inhibition of the enzyme with an IC50 value of 1.39 ± 0.22 μM, which is comparable to other known inhibitors of this enzyme.
Collapse
Affiliation(s)
- Jacob Andrzejczyk
- Department of Chemical Engineering University of New Hampshire Durham New Hampshire USA
| | - Katarina Jovic
- Department of Molecular, Cellular, and Biomedical Services University of New Hampshire Durham New Hampshire USA
| | - Logan M. Brown
- Department of Molecular, Cellular, and Biomedical Services University of New Hampshire Durham New Hampshire USA
| | - Valerie G. Pascetta
- Department of Molecular, Cellular, and Biomedical Services University of New Hampshire Durham New Hampshire USA
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Services University of New Hampshire Durham New Hampshire USA
| | - Harish Vashisth
- Department of Chemical Engineering University of New Hampshire Durham New Hampshire USA
| |
Collapse
|
13
|
Gildea RJ, Beilsten-Edmands J, Axford D, Horrell S, Aller P, Sandy J, Sanchez-Weatherby J, Owen CD, Lukacik P, Strain-Damerell C, Owen RL, Walsh MA, Winter G. xia2.multiplex: a multi-crystal data-analysis pipeline. Acta Crystallogr D Struct Biol 2022; 78:752-769. [PMID: 35647922 PMCID: PMC9159281 DOI: 10.1107/s2059798322004399] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022] Open
Abstract
In macromolecular crystallography, radiation damage limits the amount of data that can be collected from a single crystal. It is often necessary to merge data sets from multiple crystals; for example, small-wedge data collections from micro-crystals, in situ room-temperature data collections and data collection from membrane proteins in lipidic mesophases. Whilst the indexing and integration of individual data sets may be relatively straightforward with existing software, merging multiple data sets from small wedges presents new challenges. The identification of a consensus symmetry can be problematic, particularly in the presence of a potential indexing ambiguity. Furthermore, the presence of non-isomorphous or poor-quality data sets may reduce the overall quality of the final merged data set. To facilitate and help to optimize the scaling and merging of multiple data sets, a new program, xia2.multiplex, has been developed which takes data sets individually integrated with DIALS and performs symmetry analysis, scaling and merging of multi-crystal data sets. xia2.multiplex also performs analysis of various pathologies that typically affect multi-crystal data sets, including non-isomorphism, radiation damage and preferential orientation. After the description of a number of use cases, the benefit of xia2.multiplex is demonstrated within a wider autoprocessing framework in facilitating a multi-crystal experiment collected as part of in situ room-temperature fragment-screening experiments on the SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Richard J. Gildea
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James Beilsten-Edmands
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Danny Axford
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Sam Horrell
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Pierre Aller
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James Sandy
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Juan Sanchez-Weatherby
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - C. David Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Petra Lukacik
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Claire Strain-Damerell
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Robin L. Owen
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Martin A. Walsh
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Graeme Winter
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
14
|
Multiple protonation states in ligand-free SARS-CoV-2 main protease revealed by large-scale quantum molecular dynamics simulations. Chem Phys Lett 2022; 794:139489. [PMID: 35221345 PMCID: PMC8863314 DOI: 10.1016/j.cplett.2022.139489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 12/16/2022]
Abstract
The main protease (Mpro) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) catalyzes the cleavage of polyproteins for viral replication. Here, large-scale quantum molecular dynamics and metadynamics simulations for ligand-free Mpro were performed, where all the atoms were treated quantum-mechanically, focusing on elucidation of the controversial active-site protonation state. The simulations clarified that the interconverting multiple protonation states exist in unliganded Mpro, and the catalytically relevant ion-pair state is more stable than the neutral state, which is consistent with neutron crystallography. The results highlight the importance of the ion-pair state for repurposing or discovering antiviral drugs that target Mpro.
Collapse
|
15
|
Nam KH. Hit and Indexing Rate in Serial Crystallography: Incomparable Statistics. Front Mol Biosci 2022; 9:858815. [PMID: 35402509 PMCID: PMC8990040 DOI: 10.3389/fmolb.2022.858815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, South Korea
- *Correspondence: Ki Hyun Nam,
| |
Collapse
|
16
|
Ertem FB, Guven O, Buyukdag C, Gocenler O, Ayan E, Yuksel B, Gul M, Usta G, Cakılkaya B, Johnson JA, Dao EH, Su Z, Poitevin F, Yoon CH, Kupitz C, Hayes B, Liang M, Hunter MS, Batyuk A, Sierra RG, Ketawala G, Botha S, Dağ Ç, DeMirci H. Protocol for structure determination of SARS-CoV-2 main protease at near-physiological-temperature by serial femtosecond crystallography. STAR Protoc 2022; 3:101158. [PMID: 35194584 PMCID: PMC8784426 DOI: 10.1016/j.xpro.2022.101158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The SARS-CoV-2 main protease of (Mpro) is an important target for SARS-CoV-2 related drug repurposing and development studies. Here, we describe the steps for structural characterization of SARS-CoV-2 Mpro, starting from plasmid preparation and protein purification. We detail the steps for crystallization using the sitting drop, microbatch (under oil) approach. Finally, we cover data collection and structure determination using serial femtosecond crystallography. For complete details on the use and execution of this protocol, please refer to Durdagi et al. (2021).
Collapse
Affiliation(s)
- Fatma Betul Ertem
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Omur Guven
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Cengizhan Buyukdag
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Oktay Gocenler
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Esra Ayan
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Busra Yuksel
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Mehmet Gul
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Gozde Usta
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Barıs Cakılkaya
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - J. Austin Johnson
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - E. Han Dao
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
| | - Zhen Su
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Frederic Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
| | - Brandon Hayes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
| | - Raymond G. Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025 CA, USA
| | - Gihan Ketawala
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Çağdaş Dağ
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Koc University, Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research (nSTAR), Istanbul, Turkey
- Koc University Isbank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Koc University Isbank Center for Infectious Diseases (KUISCID), Istanbul, Turkey
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA, USA
| |
Collapse
|
17
|
Abstract
Serial crystallography (SX) is an emerging technique to determine macromolecules at room temperature. SX with a pump–probe experiment provides the time-resolved dynamics of target molecules. SX has developed rapidly over the past decade as a technique that not only provides room-temperature structures with biomolecules, but also has the ability to time-resolve their molecular dynamics. The serial femtosecond crystallography (SFX) technique using an X-ray free electron laser (XFEL) has now been extended to serial synchrotron crystallography (SSX) using synchrotron X-rays. The development of a variety of sample delivery techniques and data processing programs is currently accelerating SX research, thereby increasing the research scope. In this editorial, I briefly review some of the experimental techniques that have contributed to advances in the field of SX research and recent major research achievements. This Special Issue will contribute to the field of SX research.
Collapse
|
18
|
Durdagi S, Avsar T, Orhan MD, Serhatli M, Balcioglu BK, Ozturk HU, Kayabolen A, Cetin Y, Aydinlik S, Bagci-Onder T, Tekin S, Demirci H, Guzel M, Akdemir A, Calis S, Oktay L, Tolu I, Butun YE, Erdemoglu E, Olkan A, Tokay N, Işık Ş, Ozcan A, Acar E, Buyukkilic S, Yumak Y. The neutralization effect of montelukaston SARS-CoV-2 is shown by multiscale in silicosimulations and combined in vitro studies. Mol Ther 2021; 30:963-974. [PMID: 34678509 PMCID: PMC8524809 DOI: 10.1016/j.ymthe.2021.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Serdar Durdagi
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey.
| | - Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Didem Orhan
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Muge Serhatli
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Bertan Koray Balcioglu
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Hasan Umit Ozturk
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Alisan Kayabolen
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Yuksel Cetin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Seyma Aydinlik
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450 Istanbul, Turkey; Koç University Research Center for Translational Medicine, 34450 Istanbul, Turkey
| | - Saban Tekin
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli; Department of Basic Sciences, Division of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Hasan Demirci
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Mustafa Guzel
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Computer-aided Drug Discovery Laboratory, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Seyma Calis
- Department of Medical Biology, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Department of Molecular Biology-Genetics and Biotechnology, Istanbul Technical University, 34485 Istanbul, Turkey
| | - Lalehan Oktay
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Ilayda Tolu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Yasar Enes Butun
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ece Erdemoglu
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Alpsu Olkan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Nurettin Tokay
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Şeyma Işık
- The Scientific and Technological Research Council of Turkey (TÜBİTAK) Marmara Research Center (MAM), Genetic Engineering and Biotechnology Institute, 41470 Gebze, Kocaeli
| | - Aysenur Ozcan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Elif Acar
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sehriban Buyukkilic
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Yesim Yumak
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Faculty of Science and Letters, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|