1
|
Chen W, Fraser OA, George C, Showalter SA. From molecular descriptions to cellular functions of intrinsically disordered protein regions. BIOPHYSICS REVIEWS 2024; 5:041306. [PMID: 39600309 PMCID: PMC11596140 DOI: 10.1063/5.0225900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Molecular descriptions of intrinsically disordered protein regions (IDRs) are fundamental to understanding their cellular functions and regulation. NMR spectroscopy has been a leading tool in characterizing IDRs at the atomic level. In this review, we highlight recent conceptual breakthroughs in the study of IDRs facilitated by NMR and discuss emerging NMR techniques that bridge molecular descriptions to cellular functions. First, we review the assemblies formed by IDRs at various scales, from one-to-one complexes to non-stoichiometric clusters and condensates, discussing how NMR characterizes their structural dynamics and molecular interactions. Next, we explore several unique interaction modes of IDRs that enable regulatory mechanisms such as selective transport and switch-like inhibition. Finally, we highlight recent progress in solid-state NMR and in-cell NMR on IDRs, discussing how these methods allow for atomic characterization of full-length IDR complexes in various phases and cellular environments. This review emphasizes recent conceptual and methodological advancements in IDR studies by NMR and offers future perspectives on bridging the gap between in vitro molecular descriptions and the cellular functions of IDRs.
Collapse
Affiliation(s)
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christy George
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
2
|
Petrovicz VL, Pasztuhov I, Martinek TA, Hegedüs Z. Site-directed allostery perturbation to probe the negative regulation of hypoxia inducible factor-1α. RSC Chem Biol 2024; 5:711-720. [PMID: 39092442 PMCID: PMC11289882 DOI: 10.1039/d4cb00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
The interaction between the intrinsically disordered transcription factor HIF-1α and the coactivator proteins p300/CBP is essential in the fast response to low oxygenation. The negative feedback regulator, CITED2, switches off the hypoxic response through a very efficient irreversible mechanism. The negative cooperativity with HIF-1α relies on the formation of a ternary intermediate that leads to allosteric structural changes in p300/CBP, in which the cooperative folding/binding of the CITED2 sequence motifs plays a key role. Understanding the contribution of a binding motif to the structural changes in relation to competition efficiency provides invaluable insights into the molecular mechanism. Our strategy is to site-directedly perturb the p300-CITED2 complex's structure without significantly affecting binding thermodynamics. In this way, the contribution of a sequence motif to the negative cooperativity with HIF-1α would mainly depend on the induced structural changes, and to a lesser extent on binding affinity. Using biophysical assays and NMR measurements, we show here that the interplay between the N-terminal tail and the rest of the binding motifs of CITED2 is crucial for the unidirectional displacement of HIF-1α. We introduce an advantageous approach for evaluating the roles of the different sequence parts with the help of motif-by-motif backbone perturbations.
Collapse
Affiliation(s)
- Vencel L Petrovicz
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
| | - István Pasztuhov
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
| | - Tamás A Martinek
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
- HUN-REN SZTE Biomimetic Systems Research Group 8 Dóm tér Szeged 6720 Hungary
| | - Zsófia Hegedüs
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
| |
Collapse
|
3
|
McCullagh M, Zeczycki TN, Kariyawasam CS, Durie CL, Halkidis K, Fitzkee NC, Holt JM, Fenton AW. What is allosteric regulation? Exploring the exceptions that prove the rule! J Biol Chem 2024; 300:105672. [PMID: 38272229 PMCID: PMC10897898 DOI: 10.1016/j.jbc.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.
Collapse
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Konstantine Halkidis
- Department of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jo M Holt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
4
|
Sipko EL, Chappell GF, Berlow RB. Multivalency emerges as a common feature of intrinsically disordered protein interactions. Curr Opin Struct Biol 2024; 84:102742. [PMID: 38096754 DOI: 10.1016/j.sbi.2023.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Intrinsically disordered proteins (IDPs) use their unique molecular properties and conformational plasticity to interact with cellular partners in a wide variety of biological contexts. Multivalency is an important feature of IDPs that allows for utilization of an expanded toolkit for interactions with other macromolecules and confers additional complexity to molecular recognition processes. Recent studies have offered insights into how multivalent interactions of IDPs enable responsive and sensitive regulation in the context of transcription and cellular signaling. Multivalency is also widely recognized as an important feature of IDP interactions that mediate formation of biomolecular condensates. We highlight recent examples of multivalent interactions of IDPs across diverse contexts to illustrate the breadth of biological processes that utilize multivalency in molecular interactions.
Collapse
Affiliation(s)
- Emily L Sipko
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Garrett F Chappell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca B Berlow
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Dyson HJ, Wright PE. From Immunogenic Peptides to Intrinsically Disordered Proteins. Isr J Chem 2023; 63:e202300051. [PMID: 38454968 PMCID: PMC10919381 DOI: 10.1002/ijch.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 03/09/2024]
Abstract
It is hard to evaluate the role of individual mentors in the genesis of important ideas. In the case of our realization that proteins do not have to be stably folded to be functional, the influence of Richard Lerner and our collaborative work in the 1980s on the conformations of immunogenic peptides provided a base level of thinking about the nature of polypeptides in water solutions that led us to formulate and develop our ideas on the importance of intrinsic disorder in proteins. This review describes how the insights gained into the behavior of peptides led directly to the realization that proteins were not only capable of being functional while disordered, but also that disorder provided a distinct functional advantage in many important cellular processes.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
6
|
Multivalency enables unidirectional switch-like competition between intrinsically disordered proteins. Proc Natl Acad Sci U S A 2022; 119:2117338119. [PMID: 35012986 PMCID: PMC8784115 DOI: 10.1073/pnas.2117338119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Intrinsically disordered proteins must compete for binding to common regulatory targets to carry out their biological functions. Previously, we showed that the activation domains of two disordered proteins, the transcription factor HIF-1α and its negative regulator CITED2, function as a unidirectional, allosteric molecular switch to control transcription of critical adaptive genes under conditions of oxygen deprivation. These proteins achieve transcriptional control by competing for binding to the TAZ1 domain of the transcriptional coactivators CREB-binding protein (CBP) and p300 (CREB: cyclic-AMP response element binding protein). To characterize the mechanistic details behind this molecular switch, we used solution NMR spectroscopy and complementary biophysical methods to determine the contributions of individual binding motifs in CITED2 to the overall competition process. An N-terminal region of the CITED2 activation domain, which forms a helix when bound to TAZ1, plays a critical role in initiating competition with HIF-1α by enabling formation of a ternary complex in a process that is highly dependent on the dynamics and disorder of the competing partners. Two other conserved binding motifs in CITED2, the LPEL motif and an aromatic/hydrophobic motif that we term ϕC, function synergistically to enhance binding of CITED2 and inhibit rebinding of HIF-1α. The apparent unidirectionality of competition between HIF-1α and CITED2 is lost when one or more of these binding regions is altered by truncation or mutation of the CITED2 peptide. Our findings illustrate the complexity of molecular interactions involving disordered proteins containing multivalent interaction motifs and provide insight into the unique mechanisms by which disordered proteins compete for occupancy of common molecular targets within the cell.
Collapse
|
7
|
Hóbor F, Hegedüs Z, Ibarra AA, Petrovicz VL, Bartlett GJ, Sessions RB, Wilson AJ, Edwards TA. Understanding p300-transcription factor interactions using sequence variation and hybridization. RSC Chem Biol 2022; 3:592-603. [PMID: 35656479 PMCID: PMC9092470 DOI: 10.1039/d2cb00026a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
The hypoxic response is central to cell function and plays a significant role in the growth and survival of solid tumours. HIF-1 regulates the hypoxic response by activating over 100...
Collapse
Affiliation(s)
- Fruzsina Hóbor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Amaurys Avila Ibarra
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Vencel L Petrovicz
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Gail J Bartlett
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|