1
|
Geng C, Zeng J, Deng X, Xia F, Xu X. Molecular Dynamics Investigation into the Stability of KRas and CRaf Multimeric Complexes. J Phys Chem B 2025; 129:3306-3316. [PMID: 40126127 DOI: 10.1021/acs.jpcb.4c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In the Ras/Raf/MAPK signaling pathway, Ras and Raf proteins interact synergistically to form a tetrameric complex. NMR experiments have demonstrated that Ras dimerizes in solution and binds stably to Raf, forming Ras·Raf complexes. In this study, we constructed the ternary and quaternary complexes of KRas and CRaf based on crystal structures, denoted as (KRas)2·CRaf and (KRas)2·(CRaf)2, respectively. Molecular dynamics (MD) simulations were performed to investigate the stability of these complexes, while hydrogen bonds as well as salt bridges formed at the protein-protein interaction interfaces were analyzed based on simulation trajectories. The results revealed that the KRas·CRaf complex is more stable in explicit solvent compared with the KRas dimer. Formation of the stable quaternary complex (KRas)2·(CRaf)2 might be attributed to the association of two binary KRas·CRaf complexes. Additionally, MD simulations of the KRasG12D·CRaf complex revealed a stable and extended binding site at the KRas-CRaf interaction interface. This binding site was identified as a potential therapeutic target to block abnormal signal transmission in the pathway.
Collapse
Affiliation(s)
- Chongli Geng
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen University, 361003 Xiamen, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Manley LJ, Lin MM. Kinetic and thermodynamic allostery in the Ras protein family. Biophys J 2023; 122:3882-3893. [PMID: 37598291 PMCID: PMC10560677 DOI: 10.1016/j.bpj.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
Allostery, the transfer of information between distant parts of a macromolecule, is a fundamental feature of protein function and regulation. However, allosteric mechanisms are usually not explained by protein structure, requiring information on correlated fluctuations uniquely accessible to molecular simulation. Existing work to extract allosteric pathways from molecular dynamics simulations has focused on thermodynamic correlations. Here, we show how kinetic correlations encode complementary information essential to explain observed variations in allosteric regulation. We applied kinetic and thermodynamic correlation analysis on atomistic simulations of H, K, and NRas isoforms in the apo, GTP, and GDP-bound states of Ras protein, with and without complexing to its downstream effector, Raf. We show that switch I and switch II are the primary components of thermodynamic and kinetic allosteric networks, consistent with the key roles of these two motifs. These networks connect the switches to an allosteric loop recently discovered from a crystal structure of HRas. This allosteric loop is inactive in KRas, but is coupled to the hydrolysis arm switch II in NRas and HRas. We find that the mechanism in the latter two isoforms are thermodynamic and kinetic, respectively. Binding of Raf-RBD further activates thermodynamic allostery in HRas and KRas but has limited effect on NRas. These results indicate that kinetic and thermodynamic correlations are both needed to explain protein function and allostery. These two distinct channels of allosteric regulation, and their combinatorial variability, may explain how subtle mutational differences can lead to diverse regulatory profiles among enzymatic proteins.
Collapse
Affiliation(s)
- Leigh J Manley
- Green Center for Systems Biology, Lyda Hill Department of Bioinformatics, Department of Biophysics, Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Milo M Lin
- Green Center for Systems Biology, Lyda Hill Department of Bioinformatics, Department of Biophysics, Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
3
|
Johnson CW, Fetics SK, Davis KP, Rodrigues JA, Mattos C. Allosteric site variants affect GTP hydrolysis on Ras. Protein Sci 2023; 32:e4767. [PMID: 37615343 PMCID: PMC10510474 DOI: 10.1002/pro.4767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
RAS GTPases are proto-oncoproteins that regulate cell growth, proliferation, and differentiation in response to extracellular signals. The signaling functions of RAS, and other small GTPases, are dependent on their ability to cycle between GDP-bound and GTP-bound states. Structural analyses suggest that GTP hydrolysis catalyzed by HRAS can be regulated by an allosteric site located between helices 3, 4, and loop 7. Here we explore the relationship between intrinsic GTP hydrolysis on HRAS and the position of helix 3 and loop 7 through manipulation of the allosteric site, showing that the two sites are functionally connected. We generated several hydrophobic mutations in the allosteric site of HRAS to promote shifts in helix 3 relative to helix 4. By combining crystallography and enzymology to study these mutants, we show that closure of the allosteric site correlates with increased hydrolysis of GTP on HRAS in solution. Interestingly, binding to the RAS binding domain of RAF kinase (RAF-RBD) inhibits GTP hydrolysis in the mutants. This behavior may be representative of a cluster of mutations found in human tumors, which potentially cooperate with RAF complex formation to stabilize the GTP-bound state of RAS.
Collapse
Affiliation(s)
- Christian W. Johnson
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Susan K. Fetics
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kathleen P. Davis
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Jose A. Rodrigues
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Carla Mattos
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
4
|
Li ZL, Buck M. A proteome-scale analysis of vertebrate protein amino acid occurrence: Thermoadaptation shows a correlation with protein solvation but less so with dynamics. Proteins 2023; 91:3-15. [PMID: 36053994 PMCID: PMC10087973 DOI: 10.1002/prot.26404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Despite differences in behaviors and living conditions, vertebrate organisms share the great majority of proteins, often with subtle differences in amino acid sequence. Here, we present a simple way to analyze the difference in amino acid occurrence by comparing highly homologous proteins on a subproteome level between several vertebrate model organisms. Specifically, we use this method to identify a pattern of amino acid conservation as well as a shift in amino acid occurrence between homeotherms (warm-blooded species) and poikilotherms (cold-blooded species). Importantly, this general analysis and a specific example further establish a broad correlation, if not likely connection between the thermal adaptation of protein sequences and two of their physical features: on average a change in their protein dynamics and, even more strongly, in their solvation. For poikilotherms, such as frog and fish, the lower body temperature is expected to increase the protein-protein interaction due to a decrease in protein internal dynamics. In order to counteract the tendency for enhanced binding caused by low temperatures, poikilotherms enhance the solvation of their proteins by favoring polar amino acids. This feature appears to dominate over possible changes in dynamics for some proteins. The results suggest that a general trend for amino acid choice is part of the mechanism for thermoadaptation of vertebrate organisms at the molecular level.
Collapse
Affiliation(s)
- Zhen-Lu Li
- School of Life Science, Tianjin University, Tianjin, China.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Departments of Pharmacology and of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Zhong F, Albert T, Moënne-Loccoz P, Pletneva EV. Influence of the Interdomain Interface on Structural and Redox Properties of Multiheme Proteins. Inorg Chem 2022; 61:20949-20963. [PMID: 36493379 PMCID: PMC11034829 DOI: 10.1021/acs.inorgchem.2c03427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiheme proteins are important in energy conversion and biogeochemical cycles of nitrogen and sulfur. A diheme cytochrome c4 (c4) was used as a model to elucidate roles of the interdomain interface on properties of iron centers in its hemes A and B. Isolated monoheme domains c4-A and c4-B, together with the full-length diheme c4 and its Met-to-His ligand variants, were characterized by a variety of spectroscopic and stability measurements. In both isolated domains, the heme iron is Met/His-ligated at pH 5.0, as in the full-length c4, but becomes His/His-ligated in c4-B at higher pH. Intradomain contacts in c4-A are minimally affected by the separation of c4-A and c4-B domains, and isolated c4-A is folded. In contrast, the isolated c4-B is partially unfolded, and the interface with c4-A guides folding of this domain. The c4-A and c4-B domains have the propensity to interact even without the polypeptide linker. Thermodynamic cycles have revealed properties of monomeric folded isolated domains, suggesting that ferrous (FeII), but not ferric (FeIII) c4-A and c4-B, is stabilized by the interface. This study illustrates the effects of the interface on tuning structural and redox properties of multiheme proteins and enriches our understanding of redox-dependent complexation.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | | |
Collapse
|
6
|
Clements CM, Vögeli B, Shellman YG, Henen MA. SAM1 domain of SASH1 harbors distinctive structural heterogeneity. J Struct Biol 2022; 214:107914. [PMID: 36341956 PMCID: PMC9733425 DOI: 10.1016/j.jsb.2022.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
The sterile alpha motif (SAM) domains are among the most versatile protein domains in biology, and the variety of the oligomerization states contribute to their diverse roles in many diseases. A better understanding of the structure and dynamics of various SAM domains will provide a scientific basis for drug development targeting them. Here, we used SEC-MALS, HPLC, NMR, and other biophysical techniques to characterize the structural features and dynamics of the SAM1 domain in SASH1. SASH1 is a scaffold protein belonging to the same family as SASH3. Unlike the dimerization seen in SASH3's SAM domain, our SEC-MALS and SE-HPLC showed that SAM1 exists primarily as a less compact monomer with a minor oligomer. NMR assignment, relaxation, and exchange experiments revealed the presence of both a disordered monomer and a more structured oligomer with multiple timescale exchange regimes in solution. Mutagenesis and SE-HPLC showed that D663A/T664K substitutions in SAM1 increased its oligomerization. In sum, this study is the first to characterize a disordered structure for a SAM domain, provides additional evidence and framework for the diversity of SAM domains, and identifies a region in SAM1 as a potential starting point to further characterize the structural mechanism of oligomerization of the domain.
Collapse
Affiliation(s)
- Christopher M Clements
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Yiqun G Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
8
|
Mendelman N, Pshetitsky Y, Li Z, Zerbetto M, Buck M, Meirovitch E. Microsecond MD Simulations of the Plexin-B1 RBD: 2. N-H Probability Densities and Conformational Entropy in Ligand-Free, Rac1-Bound, and Dimer RBD. J Phys Chem B 2022; 126:6408-6418. [PMID: 35976064 DOI: 10.1021/acs.jpcb.2c03435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Orientational probability densities, Peq = exp(-u) (u, local potential), of bond-vectors in proteins provide information on structural flexibility. The related conformational entropy, Sk = -∫Peq(ln Peq)dΩ - ln ∫dΩ, provides the entropic contribution to the free energy of the physical/biological process studied. We have developed a new method for deriving Peq and Sk from MD simulations, using the N-H bond as probe. Recently we used it to study the dimerization of the Rho GTPase binding domain of Plexin-B1 (RBD). Here we use it to study RBD binding to the small GTPase Rac1. In both cases 1 μs MD simulations have been employed. The RBD has the ubiquitin fold with four mostly long loops. L3 is associated with GTPase binding, L4 with RBD dimerization, L2 participates in interdomain interactions, and L1 has not been associated with function. We find that RBD-Rac1 binding renders L1, L3, and L4 more rigid and the turns β2/α1 and α2/β5 more flexible. By comparison, RBD dimerization renders L4 more rigid, and the α-helices, the β-strands, and L2 more flexible. The rigidity of L1 in RBDRAC is consistent with L1-L3 contacts seen in previous MD simulations. The analysis of the L3-loop reveals two states of distinct flexibility which we associate with involvement in slow conformational exchange processes differing in their rates. Overall, the N-H bonds make an unfavorable entropic contribution of (5.9 ± 0.9) kJ/mol to the free energy of RBD-Rac1 binding; they were found to make a favorably contribution of (-7.0 ± 0.7) kJ/mol to the free energy of RBD dimerization. In summary, the present study provides a new perspective on the impact of Rac1 binding and dimerization on the flexibility characteristics of the RBD. Further studies are stimulated by the results of this work.
Collapse
Affiliation(s)
- Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yaron Pshetitsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Zhenlu Li
- Case Western Reserve University, Department of Physiology and Biophysics, Cleveland, Ohio 44106, United States
| | - Mirco Zerbetto
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Matthias Buck
- Case Western Reserve University, Department of Physiology and Biophysics, Cleveland, Ohio 44106, United States
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|