1
|
Sengupta P, Mukhopadhyay D. IGF1R/ARRB1 Mediated Regulation of ERK and cAMP Pathways in Response to Aβ Unfolds Novel Therapeutic Avenue in Alzheimer's Disease. Mol Neurobiol 2025; 62:8065-8083. [PMID: 39969678 PMCID: PMC12078455 DOI: 10.1007/s12035-025-04735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
IGF1R/INSR signaling is crucial for understanding Alzheimer's disease (AD) and may aid in the development of potent therapeutic strategies. This study investigated the expression and activity of these receptors and their potential to form functional hybrids in response to amyloid beta (Aβ). IGF1R, INSR, and ARRB1 were found to be upregulated in AD. The propensity for functional hybrid formation was also greater in the presence of Aβ. The association of IGF1R with ARRB1 reached a maximum at 60 min of Aβ treatment, which coincided with increased pERK activity at approximately the same time, indicating the importance of this association in pERK regulation. Knocking down IGF1R, INSR, and ARRB1 independently reduced cAMP, whereas overexpressing IGF1R significantly increased cAMP. Knocking down ARRB1 in IGF1R-overexpressing cells led to a reduction in cAMP, indicating that the interaction of ARRB1 and IGF1R possibly contributes to cAMP dysregulation. Since cAMP plays a crucial role in cognition and memory, alterations in cAMP after receptor hybridization could be significant in AD. Additionally, we noted hyperactivation of MAPK, which is associated with aberrant cellular activity, transcriptional control, and stress pathways. This finding highlights the importance of IGF1R and INSR dysregulation, which plays a major role in addition to conventional RTK signaling through multiple pathways. Here, we focused on the ARRB1 and IGF1R interaction and showed that picropodophyllin (PPP), an IGF1R-specific inhibitor, blocks this interaction and alters the ERK and cAMP status under disease conditions. Cell viability studies further revealed that the PPP substantially improved cell viability in the presence of Aβ. This highlights the role of the PPP in regulating these cascades and opens the arena for further therapeutic development for AD.
Collapse
Affiliation(s)
- Priyanka Sengupta
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Debashis Mukhopadhyay
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
2
|
Smith TJ, Holt RJ, Fu Q, Qashqai A, Barretto N, Conrad E, Brant JA. Assessment of Hearing Dysfunction in Patients With Graves' Disease and Thyroid Eye Disease Without or With Teprotumumab. J Clin Endocrinol Metab 2025; 110:811-819. [PMID: 39138817 PMCID: PMC11834702 DOI: 10.1210/clinem/dgae560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
CONTEXT Thyroid eye disease (TED) negatively affects quality of life. TED occurs predominantly in Graves' disease (GD). Teprotumumab improves TED but concern for hearing adverse events (AEs) has emerged. Hearing dysfunction is reported in thyroid autoimmune disease but the background prevalence in GD/TED without teprotumumab remains uncertain. OBJECTIVE This work aimed to quantify ear-related diagnostic codes/hearing AEs in GD, TED, and patients receiving teprotumumab by examining medical claims and clinical trials. METHODS Deidentified claims for ear/labyrinth-related International Classification of Disorders, Tenth Revision codes (KOMODO) were examined in GD patients without TED, and TED patients without/with teprotumumab treatment. Hearing AE incidence/severity was evaluated in teprotumumab clinical trials. Graves' Ophthalmopathy Quality of Life questionnaire (GO-QOL) scores were compared in teprotumumab TED trial patients without/with hearing AEs. RESULTS GD (469 720), TED (38 566) and teprotumumab-treated (967) patients were identified in the claims database. Ear-related codes (including those not specific for hearing) occurred in 24% GD, 33% TED, and 32% teprotumumab-treated patients. "Sensorineural hearing loss bilateral" was most frequent: 7% (32 961/469 720) GD, 11.1% (4279/38 566) TED, and 10.8% (104/967) teprotumumab patients. Before teprotumumab use, 17.1% (165) patients had ear-related codes, while 10.1% (98) had new ear-related codes post treatment.Eight teprotumumab oncology trials revealed 8.1% (51/633) had ear/labyrinth disorders with 2.1% (13) considered study-drug-related and 3.8% (24) hearing impairment/tinnitus-related AEs with 1.3% (8) considered study-drug-related. Similar rates occurred in TED trials.GO-QOL improved in teprotumumab-treated patients without/with hearing AEs. Incidence/severity was consistent across patients with chronic and acute TED. CONCLUSION These analyses indicate similar prevalence of hearing claims in patients with GD/TED alone as following teprotumumab treatment. Future analyses of incremental hearing risk from teprotumumab should use a priori study designs accounting for background hearing dysfunction in patients with GD/TED.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Robert J Holt
- Medical Affairs, Amgen Inc, Thousand Oaks, CA 91320, USA
| | - Qianhong Fu
- Medical Affairs, Amgen Inc, Thousand Oaks, CA 91320, USA
| | | | - Naina Barretto
- Medical Affairs, Amgen Inc, Thousand Oaks, CA 91320, USA
| | | | - Jason A Brant
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Choi E, Duan C, Bai XC. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00826-3. [PMID: 39930003 DOI: 10.1038/s41580-025-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/24/2025]
Abstract
Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin-IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin-IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin-IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin-IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin-IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand-receptor interactions and functions of insulin-IGF receptor signalling in diseases.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Huang J, Su A, Yang J, Zhuang W, Li Z. Postmarketing Safety Concerns of Teprotumumab: A Real-World Pharmacovigilance Assessment. J Clin Endocrinol Metab 2024; 110:159-165. [PMID: 38878281 PMCID: PMC11651674 DOI: 10.1210/clinem/dgae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Indexed: 12/19/2024]
Abstract
CONTEXT Teprotumumab, which targets the insulin-like growth factor-1 receptor, is the only drug approved by the US Food and Drug Administration (FDA) for the treatment of thyroid eye disease (TED). OBJECTIVE This study aimed to identify potential safety signals of teprotumumab by analyzing postmarketing safety data from the FDA Adverse Event Reporting System (FAERS) database in 2023. METHODS The case/noncase approach was used to estimate the reporting odds ratio (ROR) and information component (IC) with relevant 95% CI for adverse events (AEs) that numbered 3 or more. RESULTS A total of 2158 cases were included in the analysis. Main safety signals identified were ear and labyrinth disorders, reproductive system and breast disorders, metabolism and nutrition disorders, and gastrointestinal disorders. Specifically, autophony (ROR [95% CI] = 4188.34 [1403.29-12500.8]), eyelid retraction (ROR [95% CI] = 2094.17 [850.69-5155.29]), permanent deafness (ROR [95% CI] = 1552.35 [789.07-3053.98]), bilateral deafness (ROR [95% CI] = 73.12 [41.14-129.97]), inflammatory bowel disease (ROR [95% CI] = 23.26 [13.46-40.19]), hyperglycemic hyperosmolar nonketotic syndrome (ROR [95% CI] = 17.75 [5.70-55.28]), and amenorrhea (ROR [95% CI] = 47.98 [36.22-63.54]) showed significant safety signals with teprotumumab. CONCLUSION This study identified ear and labyrinth disorders, and reproductive system and breast disorders, as specific safety signals of teprotumumab. Clinicians and pharmacists should be vigilant regarding these AEs. However, available data are currently insufficient, and further pharmacovigilance and surveillance are needed to fully understand this issue.
Collapse
Affiliation(s)
- Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Yang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Zhuang
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Catalytic activities of wild-type C. elegans DAF-2 kinase and dauer-associated mutants. FEBS J 2024; 291:5435-5454. [PMID: 39428852 DOI: 10.1111/febs.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
DAF-2, the Caenorhabditis elegans insulin-like receptor homolog, regulates larval development, metabolism, stress response, and lifespan. The availability of numerous daf-2 mutant alleles has made it possible to elucidate the genetic mechanisms underlying these physiological processes. The DAF-2 pathway is significantly conserved with the human insulin/IGF-1 signaling pathway; it includes proteins homologous to human IRS, GRB-2, and PI3K, making it an important model to investigate human pathological conditions. We expressed and purified the kinase domain of wild-type DAF-2 to examine the catalytic activity and substrate specificity of the enzyme. Like the human insulin receptor kinase, DAF-2 kinase phosphorylates tyrosines within specific YxN or YxxM motifs, which are important for recruiting downstream effectors. DAF-2 kinase phosphorylated peptides derived from the YxxM and YxN motifs located in the C-terminal extension of the receptor tyrosine kinase, consistent with the idea that the DAF-2 receptor may possess independent signaling capacity. Unlike the human insulin or IGF-1 receptor kinases, DAF-2 kinase was poorly inhibited by the small-molecule inhibitor linsitinib. We also expressed and purified mutant kinases corresponding to daf-2 alleles that result in partial loss-of-function phenotypes in C. elegans. These mutations caused a complete loss of kinase function in vitro. Our biochemical investigations provide new insights into DAF-2 kinase function, and the approach should be useful for studying other mutations to shed light on DAF-2 signaling in C. elegans physiology.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
- Department of Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
6
|
Myers CG, Viswambharan H, Haywood NJ, Bridge K, Turvey S, Armstrong T, Lunn L, Meakin PJ, Porter KE, Clavane EM, Beech DJ, Cubbon RM, Wheatcroft SB, McPhillie MJ, Issad T, Fishwick CW, Kearney MT, Simmons KJ. Small molecule modulation of insulin receptor-insulin like growth factor-1 receptor heterodimers in human endothelial cells. Mol Cell Endocrinol 2024; 594:112387. [PMID: 39419341 DOI: 10.1016/j.mce.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES The insulin receptor (IR) and insulin like growth factor-1 receptor (IGF-1R) are heterodimers consisting of two extracellular α-subunits and two transmembrane β -subunits. Insulin αβ and insulin like growth factor-1 αβ hemi-receptors can heterodimerize to form hybrids composed of one IR αβ and one IGF-1R αβ. The function of hybrids in the endothelium is unclear. We sought insight by developing a small molecule capable of reducing hybrid formation in endothelial cells. METHODS We performed a high-throughput small molecule screening, based on a homology model of the apo hybrid structure. Endothelial cells were studied using western blotting and qPCR to determine the effects of small molecules that reduced hybrid formation. RESULTS Our studies unveil a first-in-class quinoline-containing heterocyclic small molecule that reduces hybrids by >50% in human umbilical vein endothelial cells (HUVECs) with no effects on IR or IGF-1R. This small molecule reduced expression of the negative regulatory p85α subunit of phosphatidylinositol 3-kinase, increased basal phosphorylation of the downstream target Akt and enhanced insulin/insulin-like growth factor-1 and shear stress-induced serine phosphorylation of Akt. In primary saphenous vein endothelial cells (SVEC) from patients with type 2 diabetes mellitus undergoing coronary artery bypass (CABG) surgery, hybrid receptor expression was greater than in patients without type 2 diabetes mellitus. The small molecule significantly reduced hybrid expression in SVEC from patients with type 2 diabetes mellitus. CONCLUSIONS We identified a small molecule that decreases the formation of IR: IGF-1R hybrid receptors in human endothelial cells, without significant impact on the overall expression of IR or IGF-1R. In HUVECs, reduction of IR: IGF-1R hybrid receptors leads to an increase in insulin-induced serine phosphorylation of the critical downstream signalling kinase, Akt. The underpinning mechanism appears, at least in part to involve the attenuation of the inhibitory effect of IR: IGF-1R hybrid receptors on PI3-kinase signalling.
Collapse
Affiliation(s)
- Chloe G Myers
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Samuel Turvey
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Armstrong
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Lydia Lunn
- Department of Chemistry University of Leeds, Leeds, United Kingdom
| | - Paul J Meakin
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Karen E Porter
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva M Clavane
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Tarik Issad
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | | | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom.
| | - Katie J Simmons
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, United Kingdom
| |
Collapse
|
7
|
Levintov L, Gorai B, Vashisth H. Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases. Biochemistry 2024; 63:2692-2703. [PMID: 39322977 PMCID: PMC11483822 DOI: 10.1021/acs.biochem.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt Λ-shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signal-inducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having a physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations.
Collapse
Affiliation(s)
- Lev Levintov
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Biswajit Gorai
- Institute
of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Harish Vashisth
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
- Integrated
Applied Mathematics Program, University
of New Hampshire, Durham, New Hampshire 03824, United States
- Molecular
and Cellular Biotechnology Program, University
of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
8
|
Takács T, László L, Tilajka Á, Novák J, Buday L, Vas V. Insulin receptor substrate 1 is a novel member of EGFR signaling in pancreatic cells. Eur J Cell Biol 2024; 103:151457. [PMID: 39326351 DOI: 10.1016/j.ejcb.2024.151457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is an extremely incurable cancer type characterized by cells with highly proliferative capacity and resistance against the current therapeutic options. Our study reveals that IRS1 acts as a bridging molecule between EGFR and IGFR/InsR signalization providing a potential mechanism for the interplay between signaling pathways and bypassing EGFR-targeted or IGFR/InsR-targeted therapies. The analysis of IRS1 phosphorylation status in four pancreatic cell lines identified the impact of EGFR signaling on IRS1 activation in comparison with InsR/IGFR signaling. Significantly reduced viability was observed in IRS1-silenced cells even upon EGF stimulation showing the critical role of IRS1 in the EGFR signaling network in both malignant and normal pancreatic cells. This study also demonstrated that EGFR binds directly to IRS1 and at least on two tyrosine sites, Y612 and Y896, IRS1 becomes phosphorylated in response to EGF stimulation. Mechanistically, the EGFR-mediated phosphorylation of IRS1 can further activate the MAPK signaling pathway with the recruitment of GRB2 protein. Collectively, in this study, IRS1 was identified as a crucial regulator in the EGFR signaling suggesting IRS1 as a potential target for more durable responses to targeted PDAC therapy.
Collapse
Affiliation(s)
- Tamás Takács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Loretta László
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Álmos Tilajka
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest 1117, Hungary
| | - Julianna Novák
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - László Buday
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Department of Molecular Biology, Semmelweis University, Budapest 1094, Hungary
| | - Virag Vas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| |
Collapse
|
9
|
Levintov L, Gorai B, Vashisth H. Spontaneous Dimerization and Distinct Packing Modes of Transmembrane Domains in Receptor Tyrosine Kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593448. [PMID: 38798363 PMCID: PMC11118388 DOI: 10.1101/2024.05.09.593448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt Λ-shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signal-inducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham 03824, New Hampshire, USA
| | - Biswajit Gorai
- Institute of Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham 03824, New Hampshire, USA
- Department of Chemistry, University of New Hampshire, Durham 03824, New Hampshire, USA
- Integrated Applied Mathematics Program, University of New Hampshire, Durham 03824, New Hampshire, USA
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham 03824, New Hampshire, USA
| |
Collapse
|
10
|
Turvey S, Muench SP, Issad T, Fishwick CWG, Kearney MT, Simmons KJ. Using site-directed mutagenesis to further the understanding of insulin receptor-insulin like growth factor-1 receptor heterodimer structure. Growth Horm IGF Res 2024; 77:101607. [PMID: 39033666 DOI: 10.1016/j.ghir.2024.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Type 2 diabetes is characterised by the disruption of insulin and insulin-like growth factor (IGF) signalling. The key hubs of these signalling cascades - the Insulin receptor (IR) and Insulin-like growth factor 1 receptor (IGF1R) - are known to form functional IR-IGF1R hybrid receptors which are insulin resistant. However, the mechanisms underpinning IR-IGF1R hybrid formation are not fully understood, hindering the ability to modulate this for future therapies targeting this receptor. To pinpoint suitable sites for intervention, computational hotspot prediction was utilised to identify promising epitopes for targeting with point mutagenesis. Specific IGF1R point mutations F450A, R391A and D555A show reduced affinity of the hybrid receptor in a BRET based donor-saturation assay, confirming hybrid formation could be modulated at this interface. These data provide the basis for rational design of more effective hybrid receptor modulators, supporting the prospect of identifying a small molecule that specifically interacts with this target.
Collapse
Affiliation(s)
- Samuel Turvey
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, UK
| | - Tarik Issad
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | | | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Katie J Simmons
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, UK.
| |
Collapse
|
11
|
Smith TJ, Cavida D, Hsu K, Kim S, Fu Q, Barbesino G, Wester ST, Holt RJ, Bhattacharya RK. Glycemic Trends in Patients with Thyroid Eye Disease Treated with Teprotumumab in 3 Clinical Trials. Ophthalmology 2024; 131:815-826. [PMID: 38253291 DOI: 10.1016/j.ophtha.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE Assess incidence, severity, and glucose excursion outcomes in thyroid eye disease (TED) patients receiving the insulin-like growth factor-1 receptor inhibitor teprotumumab from 3 clinical trials. DESIGN Analysis of pooled glycemic data over time. PARTICIPANTS Eighty-four teprotumumab- and 86 placebo-treated active TED patients from the phase 2 and phase 3 (OPTIC) controlled clinical trials and 51 teprotumumab-treated patients from the OPTIC extension (OPTIC-X) trial. METHODS Eight intravenous infusions were given over 21 weeks. Phase 2 serum glucose was measured at weeks 1, 4, 15, and 21, with fasting measurements at weeks 1 and 4. Serum glucose was measured at each study visit in OPTIC and OPTIC-X, with fasting measurements at weeks 1 and 4 (in patients without diabetes) or all visits (in patients with diabetes). In all studies, hemoglobin A1c (HbA1c) was measured at baseline, 12, and 24 weeks plus weeks 36 and 48 in OPTIC-X. MAIN OUTCOME MEASURES Serum glucose and HbA1c. RESULTS In the phase 2 and 3 studies, 9 hyperglycemic episodes occurred in 8 teprotumumab patients; mean HbA1c level increased 0.22% from baseline to week 24 (to 5.8%; range, 5.0%-7.9%) versus 0.04% in patients receiving the placebo (to 5.6%; range, 4.6%-8.1%). At study end, 78% (59/76) of teprotumumab patients and 87% (67/77) of patients receiving placebo had normoglycemic findings. Normoglycemia was maintained in 84% (57/68) of patients receiving teprotumumab and 93% (64/69) of patients receiving placebo. Among baseline prediabetic patients, 43% (3/7) remained prediabetic in both groups, and 29% (2/7) of teprotumumab patients and 14% (1/7) of patients receiving placebo had diabetic findings at week 24. OPTIC-X patients trended toward increased fasting glucose and HbA1c whether initially treated or retreated with teprotumumab. Fasting glucose commonly rose after 2 or 3 infusions and stabilized thereafter. Most hyperglycemic incidents occurred in patients with baseline prediabetes/diabetes but were controlled with medication. No evidence was found for progression or increased incidence of hyperglycemia with subsequent doses. CONCLUSIONS Serious glycemic excursions are uncommon in patients with normoglycemia before teprotumumab therapy. Patients with controlled diabetes or impaired glucose tolerance can be treated safely if baseline screening, regular monitoring of glycemic control, and timely treatment of hyperglycemia are practiced. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Terry J Smith
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences and Department of Internal Medicine-Michigan Medicine and University of Michigan, Ann Arbor, Michigan.
| | | | - Kate Hsu
- Amgen Inc, Thousand Oaks, California
| | - Sun Kim
- Amgen Inc, Thousand Oaks, California
| | | | | | - Sara Tullis Wester
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | | |
Collapse
|
12
|
Mancarella C, Morrione A, Scotlandi K. Extracellular Interactors of the IGF System: Impact on Cancer Hallmarks and Therapeutic Approaches. Int J Mol Sci 2024; 25:5915. [PMID: 38892104 PMCID: PMC11172729 DOI: 10.3390/ijms25115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Dysregulation of the insulin-like growth factor (IGF) system determines the onset of various pathological conditions, including cancer. Accordingly, therapeutic strategies have been developed to block this system in tumor cells, but the results of clinical trials have been disappointing. After decades of research in the field, it is safe to say that one of the major reasons underlying the poor efficacy of anti-IGF-targeting agents is derived from an underestimation of the molecular complexity of this axis. Genetic, transcriptional, post-transcriptional and functional interactors interfere with the activity of canonical components of this axis, supporting the need for combinatorial approaches to effectively block this system. In addition, cancer cells interface with a multiplicity of factors from the extracellular compartment, which strongly affect cell destiny. In this review, we will cover novel extracellular mechanisms contributing to IGF system dysregulation and the implications of such dangerous liaisons for cancer hallmarks and responses to known and new anti-IGF drugs. A deeper understanding of both the intracellular and extracellular microenvironments might provide new impetus to better decipher the complexity of the IGF axis in cancer and provide new clues for designing novel therapeutic approaches.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
13
|
Banjac K, Obradovic M, Zafirovic S, Isenovic ER. Insulin-like growth factor-1 reduces cardiac autosis through decreasing AMPK/FOXO1 signaling and Na +/K +-ATPase-Beclin-1 interaction. Arch Med Sci 2024; 20:1011-1015. [PMID: 39050160 PMCID: PMC11264057 DOI: 10.5114/aoms/177618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/26/2023] [Indexed: 07/27/2024] Open
Abstract
Introduction Insulin-like growth factor-1 (IGF-1) promotes survival and inhibits cardiac autophagy disruption. Methods Male Wistar rats were treated with IGF-1 (50 µg/kg), and 24 h after injection hearts were excised. The level of interaction between Beclin-1 and the α1 subunit of sodium/potassium-adenosine triphosphates (Na+/K+-ATPase), and phosphorylated forms of IGF-1 receptor/insulin receptor (IGF-1R/IR), forkhead box protein O1 (FOXO1) and AMP-activated protein kinase (AMPK) were measured. Results The results indicate that IGF-1 decreased Beclin-1's association with Na+/K+-ATPase (p < 0.05), increased IGF-1R/IR and FOXO1 phosphorylation (p < 0.05), and decreased AMPK phosphorylation (p < 0.01) in rats' hearts. Conclusions The new IGF-1 therapy may control autosis and minimize cardiomyocyte mortality.
Collapse
Affiliation(s)
- Katarina Banjac
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sonja Zafirovic
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Kertisová A, Žáková L, Macháčková K, Marek A, Šácha P, Pompach P, Jiráček J, Selicharová I. Insulin receptor Arg717 and IGF-1 receptor Arg704 play a key role in ligand binding and in receptor activation. Open Biol 2023; 13:230142. [PMID: 37935358 PMCID: PMC10645074 DOI: 10.1098/rsob.230142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
The insulin receptor (IR, with its isoforms IR-A and IR-B) and the insulin-like growth factor 1 receptor (IGF-1R) are related tyrosine kinase receptors. Recently, the portfolio of solved hormone-receptor structures has grown extensively thanks to advancements in cryo-electron microscopy. However, the dynamics of how these receptors transition between their inactive and active state are yet to be fully understood. The C-terminal part of the alpha subunit (αCT) of the receptors is indispensable for the formation of the hormone-binding site. We mutated the αCT residues Arg717 and His710 of IR-A and Arg704 and His697 of IGF-1R. We then measured the saturation binding curves of ligands on the mutated receptors and their ability to become activated. Mutations of Arg704 and His697 to Ala in IGF-1R decreased the binding of IGF-1. Moreover, the number of binding sites for IGF-1 on the His697 IGF-1R mutant was reduced to one-half, demonstrating the presence of two binding sites. Both mutations of Arg717 and His710 to Ala in IR-A inactivated the receptor. We have proved that Arg717 is important for the binding of insulin to its receptor, which suggests that Arg717 is a key residue for the transition to the active conformation.
Collapse
Affiliation(s)
- Anna Kertisová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, 128 40 Prague 2, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Kateřina Macháčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Petr Pompach
- Institute of Biotechnology, Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10 Prague 6, Czech Republic
| |
Collapse
|
15
|
Su J, Tang L, Luo Y, Xu J, Ouyang S. Research progress on drugs for diabetes based on insulin receptor/insulin receptor substrate. Biochem Pharmacol 2023; 217:115830. [PMID: 37748666 DOI: 10.1016/j.bcp.2023.115830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The number of people with diabetes worldwide is increasing annually, resulting in a serious economic burden. Insulin resistance is a major pathology in the early onset of diabetes mellitus, and therefore, related drug studies have attracted research attention. The insulin receptor/insulin receptor substrate (INSR/IRS) serves as the primary conduit in the insulin signal transduction cascade, and dysregulation of this pathway can lead to insulin resistance. Currently, there exist a plethora of hypoglycemic drugs in the market; however, drugs that specifically target INSR/IRS are comparatively limited. The literature was collected by direct access to the PubMed database, and was searched using the terms "diabetes mellitus; insulin resistance; insulin receptor; insulin receptor substrate; diabetes drug" as the main keywords for literature over the last decade. This article provides a comprehensive analysis of the structure and function of INSR and IRS proteins, as well as the drugs used for the treatment of diabetes. Additionally, it serves as a valuable reference for the advancement of novel therapeutic agents for diabetes management.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lu Tang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yingsheng Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jingran Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
16
|
Soni UK, Jenny L, Hegde RS. IGF-1R targeting in cancer - does sub-cellular localization matter? J Exp Clin Cancer Res 2023; 42:273. [PMID: 37858153 PMCID: PMC10588251 DOI: 10.1186/s13046-023-02850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.
Collapse
Affiliation(s)
- Upendra K Soni
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liam Jenny
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Viola CM, Frittmann O, Jenkins HT, Shafi T, De Meyts P, Brzozowski AM. Structural conservation of insulin/IGF signalling axis at the insulin receptors level in Drosophila and humans. Nat Commun 2023; 14:6271. [PMID: 37805602 PMCID: PMC10560217 DOI: 10.1038/s41467-023-41862-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
The insulin-related hormones regulate key life processes in Metazoa, from metabolism to growth, lifespan and aging, through an evolutionarily conserved insulin signalling axis (IIS). In humans the IIS axis is controlled by insulin, two insulin-like growth factors, two isoforms of the insulin receptor (hIR-A and -B), and its homologous IGF-1R. In Drosophila, this signalling engages seven insulin-like hormones (DILP1-7) and a single receptor (dmIR). This report describes the cryoEM structure of the dmIR ectodomain:DILP5 complex, revealing high structural homology between dmIR and hIR. The excess of DILP5 yields dmIR complex in an asymmetric 'T' conformation, similar to that observed in some complexes of human IRs. However, dmIR binds three DILP5 molecules in a distinct arrangement, showing also dmIR-specific features. This work adds structural support to evolutionary conservation of the IIS axis at the IR level, and also underpins a better understanding of an important model organism.
Collapse
Affiliation(s)
- Cristina M Viola
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Orsolya Frittmann
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- Department of Haematology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, Netherlands
| | - Huw T Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Talha Shafi
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Pierre De Meyts
- Department of Cell Signalling, de Duve Institute, B-1200, Brussels, Belgium
- Department of Cell Therapy Research, Novo Nordisk A/S, DK-2670, Maaloev, Denmark
| | - Andrzej M Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
18
|
Rygiel KA, Elkins JM. Recent advances in the structural biology of tyrosine kinases. Curr Opin Struct Biol 2023; 82:102665. [PMID: 37562149 DOI: 10.1016/j.sbi.2023.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
The past few years have seen exciting discoveries in the area of tyrosine kinase structural biology including the first high resolution models of full-length receptor tyrosine kinases and new mechanistic insights into the structural mechanisms of receptor tyrosine kinase activation. Despite being a mature area of research, the application of new technologies continues to advance our understanding. In this article we highlight a selection of recent studies that illustrate the current areas of research interest, focussing in particular on the exciting progress made possible by cryo-electron-microscopy. These new discoveries may herald a wave of new design ideas for therapeutics acting through novel mechanisms.
Collapse
Affiliation(s)
- Karolina A Rygiel
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Jonathan M Elkins
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| |
Collapse
|
19
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
20
|
Stan MN, Krieger CC. The Adverse Effects Profile of Teprotumumab. J Clin Endocrinol Metab 2023; 108:e654-e662. [PMID: 37071658 PMCID: PMC10686693 DOI: 10.1210/clinem/dgad213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
CONTEXT Teprotumumab therapy for thyroid eye disease (TED) patients represents a major step forward. It targets and inhibits the insulin-like growth factor-1 receptor (IGF-1R), and its effectiveness is based on its interconnectedness with the thyrotropin receptor. However, IGF-1R has a ubiquitous expression and several adverse effects have been reported with teprotumumab use. OBJECTIVE Describing these adverse effects for better understanding is the purpose of this review. METHODS We reviewed the oncological studies in which teprotumumab was initially used. Subsequently we reviewed the clinical trials for TED and then the case series and case reports associated with teprotumumab use since it is US Food and Drug Administration approval (January 2020). We focused on common and/or serious adverse effects reported with the use of teprotumumab. RESULTS We described the common occurrence of hyperglycemia (10%-30% incidence), its risk factors and suggested management. Hearing changes are described, a broad spectrum from mild ear pressure to hearing loss (sensorineural mechanism). Risk factors, suggested monitoring, and possible upcoming therapies are reviewed. We also reviewed data on fatigue, muscle spasms, hair loss, weight loss, gastrointestinal disturbances, menstrual changes, and infusion reactions. We noted some discrepancies between adverse effects in oncological studies vs studies focused on TED, and we aimed to explain these differences. CONCLUSION The use of teprotumumab should consider patient's values and preferences in balancing the expected benefit with these potential risks. Future drugs targeting IGF-1R should investigate these adverse effects for a possible class effect. Combination therapies with different agents hopefully will be identified that maximize benefits and minimize risks.
Collapse
Affiliation(s)
- Marius N Stan
- Division of Endocrinology, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | - Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Abstract
The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA;
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
22
|
Abstract
Insulin is a peptide hormone essential for maintaining normal blood glucose levels. Individuals unable to secrete sufficient insulin or not able to respond properly to insulin develop diabetes. Since the discovery of insulin its structure and function has been intensively studied with the aim to develop effective diabetes treatments. The three-dimensional crystal structure of this 51 amino acid peptide paved the way for discoveries, outlined in this review, of determinants important for receptor binding and hormone stability that have been instrumental in development of insulin analogs used in the clinic today. Important for the future development of effective diabetes treatments will be a detailed understanding of the insulin receptor structure and function. Determination of the three-dimensional structure of the insulin receptor, a receptor tyrosine kinase, proved challenging but with the recent advent of high-resolution cryo-electron microscopy significant progress has been made. There are now >40 structures of the insulin:insulin receptor complex deposited in the Protein Data Bank. From these structures we have a detailed picture of how insulin binds and activates the receptor. Still lacking are details of the initial binding events and the exact sequence of structural changes within the receptor and insulin. In this review, the focus will be on the most recent structural studies of insulin:insulin receptor complexes and how they have contributed to the current understanding of insulin receptor activation and signaling outcome. Molecular mechanisms underlying insulin receptor signaling bias emerging from the latest structures are described.
Collapse
Affiliation(s)
- Briony E Forbes
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
23
|
Lin J, Selicharová I, Mitrová K, Fabre B, Miriyala VM, Lepšík M, Jiráček J, Hernández MSG. Targeting the insulin receptor with hormone and peptide dimers. J Pept Sci 2023; 29:e3461. [PMID: 36336650 DOI: 10.1002/psc.3461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Insulin is a key hormone involved in the regulation of overall energetic homeostasis of the organism. The dimeric character of the receptor for insulin evokes ideas about its activation or inhibition with peptide dimers that could either trigger or block the structural transition of the insulin receptor, leading to its activation. Herewith, we present the chemical engineering and biological characterization of several series of insulin dimers or dimers of specific peptides that should be able to bind receptors for insulin or insulin growth factor 1. The hormones or peptides in the dimers were interconnected with different linkers, consisting of triazole moieties and 3, 6, 8, 11, or 23 polyethylene glycol units. The prepared dimers were weaker in binding to insulin receptors than human insulin. However, some of the insulin dimers showed preferential binding specificity toward the isoform A of the insulin receptor, and the insulin dimers also stimulated the insulin receptor more strongly than would be consistent with their binding affinities. Our results suggest that designing insulin dimers may be a promising strategy for modulating the ability of the hormone to activate the receptor or to alter its specificity toward insulin receptor isoforms.
Collapse
Affiliation(s)
- Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
24
|
Wu C, Huang X, Dong F, Tang W, Shi J, Lu X, Shu Q, Zhang X. Cryo-EM structure shows how two IGF1 hormones bind to the human IGF1R receptor. Biochem Biophys Res Commun 2022; 636:121-124. [DOI: 10.1016/j.bbrc.2022.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
|
25
|
Smith NA, Menting JG, Weiss MA, Lawrence MC, Smith BJ. Single-chain insulin analogs threaded by the insulin receptor αCT domain. Biophys J 2022; 121:4063-4077. [PMID: 36181268 PMCID: PMC9675026 DOI: 10.1016/j.bpj.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin is a mainstay of therapy for diabetes mellitus, yet its thermal stability complicates global transportation and storage. Cold-chain transport, coupled with optimized formulation and materials, prevents to some degree nucleation of amyloid and hence inactivation of hormonal activity. These issues hence motivate the design of analogs with increased stability, with a promising approach being single-chain insulins (SCIs), whose C domains (foreshortened relative to proinsulin) resemble those of the single-chain growth factors (IGFs). We have previously demonstrated that optimized SCIs can exhibit native-like hormonal activity with enhanced thermal stability and marked resistance to fibrillation. Here, we describe the crystal structure of an ultrastable SCI (C-domain length 6; sequence EEGPRR) bound to modules of the insulin receptor (IR) ectodomain (N-terminal α-subunit domains L1-CR and C-terminal αCT peptide; "microreceptor" [μIR]). The structure of the SCI-μIR complex, stabilized by an Fv module, was determined using diffraction data to a resolution of 2.6 Å. Remarkably, the αCT peptide (IR-A isoform) "threads" through a gap between the flexible C domain and the insulin core. To explore such threading, we undertook molecular dynamics simulations to 1) compare threaded with unthreaded binding modes and 2) evaluate effects of C-domain length on these alternate modes. The simulations (employing both conventional and enhanced sampling simulations) provide evidence that very short linkers (C-domain length of -1) would limit gap opening in the SCI and so impair threading. We envisage that analogous threading occurs in the intact SCI-IR complex-rationalizing why minimal C-domain lengths block complete activity-and might be exploited to design novel receptor-isoform-specific analogs.
Collapse
Affiliation(s)
- Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - John G Menting
- WEHI, Parkville, Victoria, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Michael C Lawrence
- WEHI, Parkville, Victoria, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Zhu Y, Chen L, Song B, Cui Z, Chen G, Yu Z, Song B. Insulin-like Growth Factor-2 (IGF-2) in Fibrosis. Biomolecules 2022; 12:1557. [PMID: 36358907 PMCID: PMC9687531 DOI: 10.3390/biom12111557] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
The insulin family consists of insulin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 2 (IGF-2), their receptors (IR, IGF-1R and IGF-2R), and their binding proteins. All three ligands are involved in cell proliferation, apoptosis, protein synthesis and metabolism due to their homologous sequences and structural similarities. Insulin-like growth factor 2, a member of the insulin family, plays an important role in embryonic development, metabolic disorders, and tumorigenesis by combining with three receptors with different degrees of affinity. The main pathological feature of various fibrotic diseases is the excessive deposition of extracellular matrix (ECM) after tissue and organ damage, which eventually results in organic dysfunction because scar formation replaces tissue parenchyma. As a mitogenic factor, IGF-2 is overexpressed in many fibrotic diseases. It can promote the proliferation of fibroblasts significantly, as well as the production of ECM in a time- and dose-dependent manner. This review aims to describe the expression changes and fibrosis-promoting effects of IGF-2 in the skin, oral cavity, heart, lung, liver, and kidney fibrotic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|