1
|
Ishimoto N, Wong JLC, He S, Shirran S, Wright-Paramio O, Seddon C, Singh N, Balsalobre C, Sonani RR, Clements A, Egelmane EH, Frankel G, Beis K. Cryo-EM structure of the conjugation H-pilus reveals the cyclic nature of the TrhA pilin. Proc Natl Acad Sci U S A 2025; 122:e2427228122. [PMID: 40244678 PMCID: PMC12037004 DOI: 10.1073/pnas.2427228122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals. The reference IncHI1 plasmid R27, isolated from Salmonella enterica serovar Typhi, encodes the conjugative H-pilus subunit TrhA containing 74 residues after cleavage of the signal sequence. Here, we show that the H-pilus forms long filamentous structures that mediate MPF and describe its cryoelectron-microscopic (cryo-EM) structure at 2.2 Å resolution. Like the F pilus, the H-pilin subunits form helical assemblies with phospholipid molecules at a stoichiometric ratio of 1:1. While there were previous reports that the T-pilus from Agrobacterium tumefaciens was composed of cyclic subunits, three recent cryo-EM structures of the T-pilus found no such cyclization. Here, we report that the H-pilin is cyclic, with a covalent bond connecting the peptide backbone between the N and C termini. Both the cryo-EM map and mass spectrometry revealed cleavage of the last five residues of the pilin, followed by cyclization via condensation of the amine and carboxyl residues. Mutagenesis experiments revealed that loss of cyclization abolished pilus biogenesis and efficient plasmid transfer. The cyclic nature of the pilin could stabilize the pilus and may explain the high incidence of IncH plasmid dissemination.
Collapse
Affiliation(s)
- Naito Ishimoto
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Joshua L. C. Wong
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Shan He
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Sally Shirran
- Biomedical Sciences Research Complex Mass Spectrometry & Proteomics Facility, University of St Andrews, St AndrewsKY16 9ST, United Kingdom
| | | | - Chloe Seddon
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Nanki Singh
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Carlos Balsalobre
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona08028, Spain
| | - Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22908
| | - Abigail Clements
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
| | - Edward H. Egelmane
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22908
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Konstantinos Beis
- Rutherford Appleton Laboratory, Research Complex at Harwell, DidcotOxfordshireOX11 0FA, United Kingdom
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Jemouai Z, Sverzhinsky A, Sygusch J, Pascal J, Baron C. Inner membrane components of the plasmid pKM101 type IV secretion system TraE and TraD are DNA-binding proteins. Sci Rep 2025; 15:7530. [PMID: 40032854 PMCID: PMC11876611 DOI: 10.1038/s41598-025-85446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/02/2025] [Indexed: 03/05/2025] Open
Abstract
The increase of antimicrobial resistance constitutes a significant threat to human health. One of the mechanisms responsible for the spread of resistance to antimicrobials is the transfer of plasmids between bacteria by conjugation. This process is mediated by type IV secretion systems (T4SS) and previous studies have provided in vivo evidence for interactions between DNA and components of the T4SS. Here, we purified TraD and TraE, two inner membrane proteins from the Escherichia coli pKM101 T4SS. Using electrophoretic mobility shift assays and fluorescence polarization we showed that the purified proteins both bind single-stranded and double-stranded DNA in the nanomolar affinity range. The previously identified conjugation inhibitor BAR-072 inhibits TraE DNA binding in vitro, providing evidence for its mechanism of action. Site-directed mutagenesis identified conserved amino acids that are required for conjugation that may be targets for the development of more potent conjugation inhibitors.
Collapse
Affiliation(s)
- Zakaria Jemouai
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Jurgen Sygusch
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - John Pascal
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
3
|
Waksman G. Molecular basis of conjugation-mediated DNA transfer by gram-negative bacteria. Curr Opin Struct Biol 2025; 90:102978. [PMID: 39823762 DOI: 10.1016/j.sbi.2024.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Bacterial conjugation is the unidirectional transfer of DNA (often plasmids, but also other mobile genetic elements, or even entire genomes), from a donor cell to a recipient cell. In Gram-negative bacteria, it requires the formation of three complexes in the donor cell: i-a large, double-membrane-embedded transport machinery called the Type IV Secretion System (T4SS), ii-a long extracellular tube, the conjugative pilus, and iii-a DNA-processing machinery termed the relaxosome. While knowledge has expanded regarding molecular events in the donor cell, very little is known about the machinery involved in DNA transfer into the recipient cell. Here, focusing on systems principally involved in DNA transfer, we provide an update on progress made on various mechanistic aspects of conjugation.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, WC1E 6BT, United Kingdom.
| |
Collapse
|
4
|
Vadakkepat AK, Xue S, Redzej A, Smith TK, Ho BT, Waksman G. Cryo-EM structure of the R388 plasmid conjugative pilus reveals a helical polymer characterized by an unusual pilin/phospholipid binary complex. Structure 2024; 32:1335-1347.e5. [PMID: 39002540 DOI: 10.1016/j.str.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024]
Abstract
Bacterial conjugation is a process by which DNA is transferred unidirectionally from a donor cell to a recipient cell. It is the main means by which antibiotic resistance genes spread among bacterial populations. It is crucially dependent upon the elaboration of an extracellular appendage, termed "pilus," by a large double-membrane-spanning secretion system termed conjugative "type IV secretion system." Here we present the structure of the conjugative pilus encoded by the R388 plasmid. We demonstrate that, as opposed to all conjugative pili produced so far for cryoelectron microscopy (cryo-EM) structure determination, the conjugative pilus encoded by the R388 plasmid is greatly stimulated by the presence of recipient cells. Comparison of its cryo-EM structure with existing conjugative pilus structures highlights a number of important differences between the R388 pilus structure and that of its homologs, the most prominent being the highly distinctive conformation of its bound lipid.
Collapse
Affiliation(s)
- Abhinav K Vadakkepat
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK.
| | - Songlin Xue
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Adam Redzej
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Terry K Smith
- BSRC, School of Biology, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Brian T Ho
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Costa TRD, Patkowski JB, Macé K, Christie PJ, Waksman G. Structural and functional diversity of type IV secretion systems. Nat Rev Microbiol 2024; 22:170-185. [PMID: 37814112 PMCID: PMC11290344 DOI: 10.1038/s41579-023-00974-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.
Collapse
Affiliation(s)
- Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK.
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes and CNRS, Rennes, France
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK.
| |
Collapse
|
6
|
Kishida K, Li YG, Ogawa-Kishida N, Khara P, Al Mamun AAM, Bosserman RE, Christie PJ. Chimeric systems composed of swapped Tra subunits between distantly-related F plasmids reveal striking plasticity among type IV secretion machines. PLoS Genet 2024; 20:e1011088. [PMID: 38437248 PMCID: PMC10939261 DOI: 10.1371/journal.pgen.1011088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/14/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.
Collapse
Affiliation(s)
- Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Abu Amar M. Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Rachel E. Bosserman
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, United States of America
| |
Collapse
|
7
|
Beltrán L, Torsilieri H, Patkowski JB, Yang JE, Casanova J, Costa TRD, Wright ER, Egelman EH. The mating pilus of E. coli pED208 acts as a conduit for ssDNA during horizontal gene transfer. mBio 2024; 15:e0285723. [PMID: 38051116 PMCID: PMC10790687 DOI: 10.1128/mbio.02857-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Bacteria are constantly exchanging DNA, which constitutes horizontal gene transfer. While some of these occurs by a non-specific process called natural transformation, some occurs by a specific mating between a donor and a recipient cell. In specific conjugation, the mating pilus is extended from the donor cell to make contact with the recipient cell, but whether DNA is actually transferred through this pilus or by another mechanism involving the type IV secretion system complex without the pilus has been an open question. Using Escherichia coli, we show that DNA can be transferred through this pilus between a donor and a recipient cell that has not established a tight mating junction, providing a new picture for the role of this pilus.
Collapse
Affiliation(s)
- Leticia Beltrán
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Holly Torsilieri
- Department of Molecular Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jonasz B. Patkowski
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Jie E. Yang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James Casanova
- Department of Molecular Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Tiago R. D. Costa
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Kishida K, Li YG, Ogawa-Kishida N, Khara P, Al Mamun AAM, Bosserman RE, Christie PJ. Chimeric systems composed of swapped Tra subunits between distantly-related F plasmids reveal striking plasticity among type IV secretion machines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570194. [PMID: 38106057 PMCID: PMC10723329 DOI: 10.1101/2023.12.05.570194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate - TraD and TraD - T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.
Collapse
Affiliation(s)
- Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Rachel E. Bosserman
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, 6431 Fannin St, Houston, Texas 77030, United States of America
| |
Collapse
|
9
|
Weisberg AJ, Wu Y, Chang JH, Lai EM, Kuo CH. Virulence and Ecology of Agrobacteria in the Context of Evolutionary Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:1-23. [PMID: 37164023 DOI: 10.1146/annurev-phyto-021622-125009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Among plant-associated bacteria, agrobacteria occupy a special place. These bacteria are feared in the field as agricultural pathogens. They cause abnormal growth deformations and significant economic damage to a broad range of plant species. However, these bacteria are revered in the laboratory as models and tools. They are studied to discover and understand basic biological phenomena and used in fundamental plant research and biotechnology. Agrobacterial pathogenicity and capability for transformation are one and the same and rely on functions encoded largely on their oncogenic plasmids. Here, we synthesize a substantial body of elegant work that elucidated agrobacterial virulence mechanisms and described their ecology. We review findings in the context of the natural diversity that has been recently unveiled for agrobacteria and emphasize their genomics and plasmids. We also identify areas of research that can capitalize on recent findings to further transform our understanding of agrobacterial virulence and ecology.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Ryan ME, Damke PP, Bryant C, Sheedlo MJ, Shaffer CL. Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550604. [PMID: 37546756 PMCID: PMC10402047 DOI: 10.1101/2023.07.25.550604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π-π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π-π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Caitlynn Bryant
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| |
Collapse
|
11
|
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
12
|
Patkowski JB, Dahlberg T, Amin H, Gahlot DK, Vijayrajratnam S, Vogel JP, Francis MS, Baker JL, Andersson M, Costa TRD. The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation. Nat Commun 2023; 14:1879. [PMID: 37019921 PMCID: PMC10076315 DOI: 10.1038/s41467-023-37600-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Conjugation is used by bacteria to propagate antimicrobial resistance (AMR) in the environment. Central to this process are widespread conjugative F-pili that establish the connection between donor and recipient cells, thereby facilitating the spread of IncF plasmids among enteropathogenic bacteria. Here, we show that the F-pilus is highly flexible but robust at the same time, properties that increase its resistance to thermochemical and mechanical stresses. By a combination of biophysical and molecular dynamics methods, we establish that the presence of phosphatidylglycerol molecules in the F-pilus contributes to the structural stability of the polymer. Moreover, this structural stability is important for successful delivery of DNA during conjugation and facilitates rapid formation of biofilms in harsh environmental conditions. Thus, our work highlights the importance of F-pilus structural adaptations for the efficient spread of AMR genes in a bacterial population and for the formation of biofilms that protect against the action of antibiotics.
Collapse
Affiliation(s)
- Jonasz B Patkowski
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tobias Dahlberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | - Sukhithasri Vijayrajratnam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA.
| | | | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|