1
|
Ramakrishna NB, Mohamad Sahari UB, Johmura Y, Ali NA, Alghamdi M, Bauer P, Khan S, Ordoñez N, Ferreira M, Pinto Basto J, Alkuraya FS, Faqeih EA, Mori M, Almontashiri NAM, Al Shamsi A, ElGhazali G, Abu Subieh H, Al Ojaimi M, El-Hattab AW, Said Al-Kindi SA, Alhashmi N, Alhabshan F, Al Saman A, Tfayli H, Arabi M, Khalifeh S, Taylor A, Alfadhel M, Jain R, Sinha S, Shenbagam S, Ramachandran R, Altunoğlu U, Jacob A, Thalange N, El Bejjani M, Perrin A, Shin JW, Al-Maawali A, Al-Shidhani A, Al-Futaisi A, Rabea F, Chekroun I, Almarri MA, Ohta T, Nakanishi M, Alsheikh-Ali A, Ali FR, Bertoli-Avella AM, Reversade B, Abou Tayoun A. FBXO22 deficiency defines a pleiotropic syndrome of growth restriction and multi-system anomalies associated with a unique epigenetic signature. Am J Hum Genet 2025; 112:1233-1246. [PMID: 40215970 DOI: 10.1016/j.ajhg.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/04/2025] Open
Abstract
FBXO22 encodes an F-box protein, which acts as a substrate-recognition component of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex. Despite its known roles in the post-translational ubiquitination and degradation of specific substrates, including histone demethylases, the impact of FBXO22 on human development remains unknown. Here, we characterize a pleiotropic syndrome with prominent prenatal onset growth restriction and notable neurodevelopmental delay across 16 cases from 14 families. Through exome and genome sequencing, we identify four distinct homozygous FBXO22 variants with loss-of-function effects segregating with the disease: three predicted to lead to premature translation termination due to frameshift effects and a single-amino-acid-deletion variant, which, we show, impacts protein stability in vitro. We confirm that affected primary fibroblasts with a frameshift mutation are bereft of endogenous FBXO22 and show increased levels of the known substrate histone H3K9 demethylase KDM4B. Accordingly, we delineate a unique epigenetic signature for this disease in peripheral blood via long-read sequencing. Altogether, we identify and demonstrate that FBXO22 deficiency leads to a pleiotropic syndrome in humans, encompassing growth restriction and neurodevelopmental delay, the pathogenesis of which may be explained by broad chromatin alterations.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Umar Bin Mohamad Sahari
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, Singapore 119260, Singapore
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Nur Ain Ali
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Malak Alghamdi
- Unit of Medical Genetics, Department of Pediatrics, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Ali Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Mari Mori
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia; Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Aisha Al Shamsi
- Paediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Gehad ElGhazali
- HQ Medical Operations Division, Union 71, Abu Dhabi, United Arab Emirates
| | - Hala Abu Subieh
- Maternal Fetal Medicine Department, Kanad Hospital, Al Ain, United Arab Emirates
| | - Mode Al Ojaimi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - Fahad Alhabshan
- Department of Cardiac Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulaziz Al Saman
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hala Tfayli
- Pediatric Endocrinology and Diabetes, American University of Beirut Medical Center (AUBMC), Beirut, Lebanon
| | - Mariam Arabi
- Department of Pediatrics and Adolescent Medicine, Pediatric Cardiology Division, Children's Heart Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Simone Khalifeh
- Pediatric Neurology Division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Alan Taylor
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Majid Alfadhel
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia; Medical Genomic Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ruchi Jain
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Shruti Sinha
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Shruti Shenbagam
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Umut Altunoğlu
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul 34010, Turkey
| | - Anju Jacob
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Nandu Thalange
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Mireille El Bejjani
- Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Arnaud Perrin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Jay W Shin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, Singapore 119260, Singapore
| | - Almundher Al-Maawali
- Child Health Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Azza Al-Shidhani
- Child Health Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amna Al-Futaisi
- Child Health Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fatma Rabea
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Ikram Chekroun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Genome Center, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Dubai Health, Dubai, United Arab Emirates
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | | | - Bruno Reversade
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul 34010, Turkey; NUS Cardiovascular-Metabolic Disease Translational Research Programme (CVMD-TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Laboratory of Human Genetics & Therapeutics, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Ahmad Abou Tayoun
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, United Arab Emirates; Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
| |
Collapse
|
2
|
Rotenberg N, Fortuno C, Varga MJ, Chamberlin AC, Ramadane-Morchadi L, Feng BJ, de la Hoya M, Richardson ME, Spurdle AB. Integration of protein stability and AlphaMissense scores improves bioinformatic impact prediction for p53 missense and in-frame amino acid deletion variants. Am J Hum Genet 2025; 112:1003-1014. [PMID: 40233742 DOI: 10.1016/j.ajhg.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 04/17/2025] Open
Abstract
The clinical classification of germline missense variants and single-amino-acid deletions is challenging. The BayesDel and Align-GVGD bioinformatic prediction tools currently used for ClinGen TP53 variant curation expert panel (VCEP) classification do not directly capture changes in protein folding stability, measured using computed destabilization energies (ΔΔG scores). The AlphaMissense tool recently developed by Google DeepMind to predict pathogenicity for all human proteome missense variants is trained in part using AlphaFold2 architecture. Our study investigated whether protein folding stability and/or AlphaMissense scores could improve impact prediction for p53 missense and single-amino-acid deletion variants. ΔΔG scores were calculated for missense variants using FoldX and for single-amino-acid deletions using an AlphaFold2/RosettaRelax protocol. Residue surface exposure was categorized using relative solvent accessibility (RSA) measures. The predictive values of ΔΔG scores, AlphaMissense, BayesDel, and Align-GVGD were examined using Boruta and binary logistic regression based on functionally defined reference sets. The likelihood ratio (LR) toward pathogenicity was estimated and used to refine optimal categories for predicting variant pathogenicity for different RSA values. We showed that current VCEP predictive approaches for missense variants were improved by integrating ΔΔG scores ≥2.5 kcal/mol for partially buried and buried residues, but better performance was achieved using AlphaMissense with ΔΔG and RSA. For deletion variants, ΔΔG scores ≥4.8 Rosetta energy unit (REU) in buried residues outperformed currently used predictive approaches. Future TP53 VCEP specifications for p53 missense impact prediction may consider AlphaMissense, ΔΔG score, and RSA combined for substitution variants and ΔΔG score alone for deletion variants.
Collapse
Affiliation(s)
- Nitsan Rotenberg
- Molecular Cancer Epidemiology Laboratory, QIMR Berghofer MRI, Herston, QLD 4006, Australia; University of Queensland, Brisbane, QLD, Australia
| | - Cristina Fortuno
- Molecular Cancer Epidemiology Laboratory, QIMR Berghofer MRI, Herston, QLD 4006, Australia
| | | | | | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Bing-Jian Feng
- University of Utah Department of Dermatology, Salt Lake City, UT, USA; University of Utah Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | | | - Amanda B Spurdle
- Molecular Cancer Epidemiology Laboratory, QIMR Berghofer MRI, Herston, QLD 4006, Australia; University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Huo W, Chen M, Chang C, Yu J, Chen D, Wang R. Modulation of the tumor immune microenvironment by Interferon Regulatory Factor 8 enhances immunotherapy in lung adenocarcinoma. Sci Rep 2025; 15:9565. [PMID: 40113982 PMCID: PMC11926069 DOI: 10.1038/s41598-025-94424-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Interferon regulatory factors (IRFs) are integral in governing the expression of Type I interferon (IFN) genes. However, the precise role of IRFs in lung adenocarcinoma remains elusive. Our objective is to elucidate the prognostic implications of IRFs and their potential influence on the immunotherapeutic response in patients with lung adenocarcinoma (LUAD). The association between IRFs expression and clinical as well as prognostic features was evaluated utilizing the TCGA database. Prognostic determinants for LUAD were pinpointed via univariate and multivariate analyses. Nomogram to evaluate prognosis predicated on IRF expression levels. Gene enrichments were conducted to elucidate the mechanisms of action. The degree of immune infiltration was using bioinformatics methods and was validated through a single-cell dataset. We compiled our unique cohort of LUAD patients who underwent anti-PD-1 therapy for subsequent immunohistochemistry and multicolor immunofluorescence staining to gauge the conclusion above. Our findings revealed that IRF8 serves as an independent risk factor for overall survival (OS) in patients with LUAD. An analysis of patients undergoing immunotherapy revealed a positive association between the expression of IRF8 and the response to the treatment. In our specific cohort treated with anti-PD-1, high IRF8 expression was observed to enhance immunotherapy response and prolong OS by modulating immune cell infiltration. Our retrospective analysis suggests that elevated IRF8 expression correlates with improved prognosis in LUAD, with higher IRF8 expression being predictive of a more robust immunotherapy response. Mechanistically, IRF8 expression is associated with a modulated tumor immune microenvironment and improved immunotherapeutic response.
Collapse
Affiliation(s)
- Wen Huo
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Minxin Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Cheng Chang
- Nuclear Medicine Department, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Jinming Yu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Dawei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Ruozheng Wang
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
4
|
Larsen-Ledet S, Lindemose S, Panfilova A, Gersing S, Suhr CH, Genzor AV, Lanters H, Nielsen SV, Lindorff-Larsen K, Winther JR, Stein A, Hartmann-Petersen R. Systematic characterization of indel variants using a yeast-based protein folding sensor. Structure 2025; 33:262-273.e6. [PMID: 39706198 DOI: 10.1016/j.str.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins. Applying the folding sensor to a saturated library of single-residue indels in human dihydrofolate reductase (DHFR) revealed that most regions that tolerate indels are confined to internal loops, the termini, and a central α helix. Several indels are temperature sensitive, and folding is rescued upon binding to methotrexate. Rosetta and AlphaFold2 predictions correlate with the observed effects, suggesting that most indels destabilize the native fold and that these computational tools are useful for the classification of indels observed in population sequencing.
Collapse
Affiliation(s)
- Sven Larsen-Ledet
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Søren Lindemose
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Aleksandra Panfilova
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Sarah Gersing
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Caroline H Suhr
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Heleen Lanters
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Sofie V Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Jakob R Winther
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Amelie Stein
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | | |
Collapse
|
5
|
Vincenzi M, Mercurio FA, Autiero I, Leone M. Sam-Sam Association Between EphA2 and SASH1: In Silico Studies of Cancer-Linked Mutations. Molecules 2025; 30:718. [PMID: 39942820 PMCID: PMC11820823 DOI: 10.3390/molecules30030718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Recently, SASH1 has emerged as a novel protein interactor of a few Eph tyrosine kinase receptors like EphA2. These interactions involve the first N-terminal Sam (sterile alpha motif) domain of SASH1 (SASH1-Sam1) and the Sam domain of Eph receptors. Currently, the functional meaning of the SASH1-Sam1/EphA2-Sam complex is unknown, but EphA2 is a well-established and crucial player in cancer onset and progression. Thus, herein, to investigate a possible correlation between the formation of the SASH1-Sam1/EphA2-Sam complex and EphA2 activity in cancer, cancer-linked mutations in SASH1-Sam1 were deeply analyzed. Our research plan relied first on searching the COSMIC database for cancer-related SASH1 variants carrying missense mutations in the Sam1 domain and then, through a variety of bioinformatic tools and molecular dynamic simulations, studying how these mutations could affect the stability of SASH1-Sam1 alone, leading eventually to a defective fold. Next, through docking studies, with the support of AlphaFold2 structure predictions, we investigated if/how mutations in SASH1-Sam1 could affect binding to EphA2-Sam. Our study, apart from presenting a solid multistep research protocol to analyze structural consequences related to cancer-associated protein variants with the support of cutting-edge artificial intelligence tools, suggests a few mutations that could more likely modulate the interaction between SASH1-Sam1 and EphA2-Sam.
Collapse
Affiliation(s)
| | | | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.); (I.A.)
| |
Collapse
|
6
|
Yang Y, Braga MV, Dean MD. Insertion-Deletion Events Are Depleted in Protein Regions with Predicted Secondary Structure. Genome Biol Evol 2024; 16:evae093. [PMID: 38735759 PMCID: PMC11102076 DOI: 10.1093/gbe/evae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024] Open
Abstract
A fundamental goal in evolutionary biology and population genetics is to understand how selection shapes the fate of new mutations. Here, we test the null hypothesis that insertion-deletion (indel) events in protein-coding regions occur randomly with respect to secondary structures. We identified indels across 11,444 sequence alignments in mouse, rat, human, chimp, and dog genomes and then quantified their overlap with four different types of secondary structure-alpha helices, beta strands, protein bends, and protein turns-predicted by deep-learning methods of AlphaFold2. Indels overlapped secondary structures 54% as much as expected and were especially underrepresented over beta strands, which tend to form internal, stable regions of proteins. In contrast, indels were enriched by 155% over regions without any predicted secondary structures. These skews were stronger in the rodent lineages compared to the primate lineages, consistent with population genetic theory predicting that natural selection will be more efficient in species with larger effective population sizes. Nonsynonymous substitutions were also less common in regions of protein secondary structure, although not as strongly reduced as in indels. In a complementary analysis of thousands of human genomes, we showed that indels overlapping secondary structure segregated at significantly lower frequency than indels outside of secondary structure. Taken together, our study shows that indels are selected against if they overlap secondary structure, presumably because they disrupt the tertiary structure and function of a protein.
Collapse
Affiliation(s)
- Yi Yang
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew V Braga
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Vincenzi M, Mercurio FA, Autiero I, Leone M. Cancer-Related Mutations in the Sam Domains of EphA2 Receptor and Ship2 Lipid Phosphatase: A Computational Study. Molecules 2024; 29:1024. [PMID: 38474536 DOI: 10.3390/molecules29051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)-Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2-Sam and Ship2-Sam reciprocal binding interfaces. Next, potential differences in the chemical-physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2-Sam and Ship2-Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2-Sam/Ship2-Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
8
|
Selvasingh JA, McDonald EF, Neufer PD, McKinney JR, Meiler J, Ledwitch KV. Dark nanodiscs for evaluating membrane protein thermostability by differential scanning fluorimetry. Biophys J 2024; 123:68-79. [PMID: 37978799 PMCID: PMC10808023 DOI: 10.1016/j.bpj.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Measuring protein thermostability provides valuable information on the biophysical rules that govern the structure-energy relationships of proteins. However, such measurements remain a challenge for membrane proteins. Here, we introduce a new experimental system to evaluate membrane protein thermostability. This system leverages a recently developed nonfluorescent membrane scaffold protein to reconstitute proteins into nanodiscs and is coupled with a nano-format of differential scanning fluorimetry (nanoDSF). This approach offers a label-free and direct measurement of the intrinsic tryptophan fluorescence of the membrane protein as it unfolds in solution without signal interference from the "dark" nanodisc. In this work, we demonstrate the application of this method using the disulfide bond formation protein B (DsbB) as a test membrane protein. NanoDSF measurements of DsbB reconstituted in dark nanodiscs loaded with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) lipids show a complex biphasic thermal unfolding pattern with a minor unfolding transition followed by a major transition. The inflection points of the thermal denaturation curve reveal two distinct unfolding midpoint melting temperatures (Tm) of 70.5°C and 77.5°C, consistent with a three-state unfolding model. Further, we show that the catalytically conserved disulfide bond between residues C41 and C130 drives the intermediate state of the unfolding pathway for DsbB in a DMPC and DMPG nanodisc. To extend the utility of this method, we evaluate and compare the thermostability of DsbB in different lipid environments. We introduce this method as a new tool that can be used to understand how compositionally and biophysically complex lipid environments drive membrane protein stability.
Collapse
Affiliation(s)
- Jazlyn A Selvasingh
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Eli F McDonald
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Preston D Neufer
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Jacob R McKinney
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Kaitlyn V Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
9
|
Larsen-Ledet S, Stein A. Mind the gap. Structure 2023; 31:641-643. [PMID: 37267922 DOI: 10.1016/j.str.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023]
Abstract
Amino acid deletions are high-risk, high-reward mutations, yet structural consequences are poorly understood. In this issue of Structure, Woods et al. (2023) individually deleted 65 residues from a small α-helical protein, structurally assayed the 17 soluble variants, and developed a computational model of deletion solubility combining Rosetta and AlphaFold2.
Collapse
Affiliation(s)
- Sven Larsen-Ledet
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Amelie Stein
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
10
|
Selvasingh JA, McDonald EF, Mckinney JR, Meiler J, Ledwitch KV. Dark nanodiscs as a model membrane for evaluating membrane protein thermostability by differential scanning fluorimetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539917. [PMID: 37214798 PMCID: PMC10197605 DOI: 10.1101/2023.05.08.539917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Measuring protein thermostability provides valuable information on the biophysical rules that govern structure-energy relationships of proteins. However, such measurements remain a challenge for membrane proteins. Here, we introduce a new experimental system to evaluate membrane protein thermostability. This system leverages a recently-developed non-fluorescent membrane scaffold protein (MSP) to reconstitute proteins into nanodiscs and is coupled with a nano-format of differential scanning fluorimetry (nanoDSF). This approach offers a label-free and direct measurement of the intrinsic tryptophan fluorescence of the membrane protein as it unfolds in solution without signal interference from the "dark" nanodisc. In this work, we demonstrate the application of this method using the disulfide bond formation protein B (DsbB) as a test membrane protein. NanoDSF measurements of DsbB reconstituted in dark nanodiscs show a complex biphasic thermal unfolding pattern in the presence of lipids with a minor unfolding transition followed by a major transition. The inflection points of the thermal denaturation curve reveal two distinct unfolding midpoint melting temperatures (Tm) of 70.5 °C and 77.5 °C, consistent with a three-state unfolding model. Further, we show that the catalytically conserved disulfide bond between residues C41 and C130 drives the intermediate state of the unfolding pathway for DsbB in a nanodisc. We introduce this method as a new tool that can be used to understand how compositionally, and biophysically complex lipid environments drive membrane protein stability.
Collapse
Affiliation(s)
- Jazlyn A. Selvasingh
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Eli Fritz McDonald
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob R. Mckinney
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Kaitlyn V. Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Lead contact
| |
Collapse
|