1
|
Werner AD, Krapoth N, Norris MJ, Heine A, Klebe G, Saphire EO, Becker S. Development of a Crystallographic Screening to Identify Sudan Virus VP40 Ligands. ACS OMEGA 2024; 9:33193-33203. [PMID: 39100314 PMCID: PMC11292656 DOI: 10.1021/acsomega.4c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
The matrix protein VP40 of the highly pathogenic Sudan virus (genus Orthoebolavirus) is a multifunctional protein responsible for the recruitment of viral nucleocapsids to the plasma membrane and the budding of infectious virions. In addition to its role in assembly, VP40 also downregulates viral genome replication and transcription. VP40's existence in various homo-oligomeric states is presumed to underpin its diverse functional capabilities during the viral life cycle. Given the absence of licensed therapeutics targeting the Sudan virus, our study focused on inhibiting VP40 dimers, the structural precursors to critical higher-order oligomers, as a novel antiviral strategy. We have established a crystallographic screening pipeline for the identification of small-molecule fragments capable of binding to VP40. Dimeric VP40 of the Sudan virus was recombinantly expressed in bacteria, purified, crystallized, and soaked in a solution of 96 different preselected fragments. Salicylic acid was identified as a crystallographic hit with clear electron density in the pocket between the N- and the C-termini of the VP40 dimer. The binding interaction is predominantly coordinated by amino acid residues leucine 158 (L158) and arginine 214 (R214), which are key in stabilizing salicylic acid within the binding pocket. While salicylic acid displayed minimal impact on the functional aspects of VP40, we delved deeper into characterizing the druggability of the identified binding pocket. We analyzed the influence of residues L158 and R214 on the formation of virus-like particles and viral RNA synthesis. Site-directed mutagenesis of these residues to alanine markedly affected both VP40's budding activity and its effect on viral RNA synthesis, underscoring the potential of the salicylic acid binding pocket as a drug target. In summary, our findings lay the foundation for structure-guided drug design to provide lead compounds against Sudan virus VP40.
Collapse
Affiliation(s)
| | - Nils Krapoth
- Institute
for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany
- Institut
für Molekulare Biologie gGmbH, D-55128 Mainz, Rheinland-Pfalz, Germany
| | - Michael J. Norris
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Andreas Heine
- Institute
of Pharmaceutical Chemistry, University
of Marburg, D-35032 Marburg, Hessen, Germany
| | - Gerhard Klebe
- Institute
of Pharmaceutical Chemistry, University
of Marburg, D-35032 Marburg, Hessen, Germany
| | | | - Stephan Becker
- Institute
for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany
- Partnersite
Giessen-Marburg-Langen, German Centre for
Infection Research, D-35043 Marburg, Hessen, Germany
| |
Collapse
|
2
|
Narkhede Y, Saxena R, Sharma T, Conarty JP, Ramirez VT, Motsa BB, Amiar S, Li S, Chapagain PP, Wiest O, Stahelin RV. Computational and experimental identification of keystone interactions in Ebola virus matrix protein VP40 dimer formation. Protein Sci 2024; 33:e4978. [PMID: 38591637 PMCID: PMC11002992 DOI: 10.1002/pro.4978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/01/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
The Ebola virus (EBOV) is a lipid-enveloped virus with a negative sense RNA genome that can cause severe and often fatal viral hemorrhagic fever. The assembly and budding of EBOV is regulated by the matrix protein, VP40, which is a peripheral protein that associates with anionic lipids at the inner leaflet of the plasma membrane. VP40 is sufficient to form virus-like particles (VLPs) from cells, which are nearly indistinguishable from authentic virions. Due to the restrictions of studying EBOV in BSL-4 facilities, VP40 has served as a surrogate in cellular studies to examine the EBOV assembly and budding process from the host cell plasma membrane. VP40 is a dimer where inhibition of dimer formation halts budding and formation of new VLPs as well as VP40 localization to the plasma membrane inner leaflet. To better understand VP40 dimer stability and critical amino acids to VP40 dimer formation, we integrated computational approaches with experimental validation. Site saturation/alanine scanning calculation, combined with molecular mechanics-based generalized Born with Poisson-Boltzmann surface area (MM-GB/PBSA) method and molecular dynamics simulations were used to predict the energetic contribution of amino acids to VP40 dimer stability and the hydrogen bonding network across the dimer interface. These studies revealed several previously unknown interactions and critical residues predicted to impact VP40 dimer formation. In vitro and cellular studies were then pursued for a subset of VP40 mutations demonstrating reduction in dimer formation (in vitro) or plasma membrane localization (in cells). Together, the computational and experimental approaches revealed critical residues for VP40 dimer stability in an alpha-helical interface (between residues 106-117) as well as in a loop region (between residues 52-61) below this alpha-helical region. This study sheds light on the structural origins of VP40 dimer formation and may inform the design of a small molecule that can disrupt VP40 dimer stability.
Collapse
Affiliation(s)
- Yogesh Narkhede
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Roopashi Saxena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| | - Tej Sharma
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
| | - Jacob P. Conarty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| | - Valentina Toro Ramirez
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
- Pharmaceutical ChemistryUniversidad CESMedellínColombia
| | - Balindile B. Motsa
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| | - Souad Amiar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| | - Sheng Li
- Department of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Prem P. Chapagain
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
- Biomolecular Sciences Institute, Florida International UniversityMiamiFloridaUSA
| | - Olaf Wiest
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and The Purdue Institute for Inflammation, Immunology and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|