1
|
Lizeth Katherine TN, Vendula B, Jaroslav K, Jaroslav C. Structure and Photocatalytic Properties of Ni-, Co-, Cu-, and Fe-Doped TiO 2 Aerogels. Gels 2023; 9:gels9050357. [PMID: 37232949 DOI: 10.3390/gels9050357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
TiO2 aerogels doped with Ni, Co, Cu, and Fe were prepared, and their structure and photocatalytic activity during the decomposition of a model pollutant, acid orange (AO7), were studied. After calcination at 500 °C and 900 °C, the structure and composition of the doped aerogels were evaluated and analyzed. XRD analysis revealed the presence of anatase/brookite and rutile phases in the aerogels along with other oxide phases from the dopants. SEM and TEM microscopy showed the nanostructure of the aerogels, and BET analysis showed their mesoporosity and high specific surface area of 130 to 160 m2·g-1. SEM-EDS, STEM-EDS, XPS, EPR methods and FTIR analysis evaluated the presence of dopants and their chemical state. The concentration of doped metals in aerogels varied from 1 to 5 wt.%. The photocatalytic activity was evaluated using UV spectrophotometry and photodegradation of the AO7 pollutant. Ni-TiO2 and Cu-TiO2 aerogels calcined at 500 °C showed higher photoactivity coefficients (kaap) than aerogels calcined at 900 °C, which were ten times less active due to the transformation of anatase and brookite to the rutile phase and the loss of textural properties of the aerogels.
Collapse
Affiliation(s)
- Tinoco Navarro Lizeth Katherine
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Bednarikova Vendula
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Kastyl Jaroslav
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Cihlar Jaroslav
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
- Institute of Materials Science and Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic
| |
Collapse
|
2
|
Esquivel-Castro TA, Martínez-Luévanos A, Cabrera AR, García-Cerda LA, Esparza-González SC, Ibarra-Alonso MC, Estrada-Flores S. ZrO2 aerogels as drugs delivery platforms: Synthesis, cytotoxicity, and diclofenac delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Liu X, Su C, Zhong Y, Zhu X, Wu Z, Cui S. High entropy (LaCeSmEuNd)2Zr2O7 ceramic aerogel with low thermal conductivity and excellent structural heat resistance. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.06.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kunčická L, Kocich R, Kačor P, Jambor M, Marek M. Characterising Correlations between Electric Conductivity and Structural Features in Rotary Swaged Al/Cu Laminated Conductors. MATERIALS 2022; 15:ma15031003. [PMID: 35160946 PMCID: PMC8839087 DOI: 10.3390/ma15031003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/30/2023]
Abstract
This study aims to characterize the correlations between electric characteristics and selected structural features of newly designed Al/Cu laminated conductors manufactured via room temperature rotary swaging. After swaging, the laminates with diameters of 15 mm were subjected to two different post-process annealing treatments. Structure analyses performed to evaluate the effects of thermomechanical processing were performed via scanning and transmission electron microscopies. Electric conductivity and resistivity of the laminates were experimentally measured and numerically simulated using models designed according to the real conditions. The results showed that the electric resistivity was affected by the grain size, bimodal grains’ distribution (where observed), the presence of twins, and, last but not least, dislocation density. Among the influencing factors were the area fractions of Al and Cu at the cross-sections of the of the laminated conductors, too. The results revealed that fabrication of the laminate via the technology of rotary swaging introduced more advantageous combinations of electric and mechanical properties than fabrication by conventional manufacturing techniques. The lowest specific electric resistivity of 20.6 Ωm × 10−9 was measured for the laminated conductor subjected to the post-process annealing treatment at 350 °C, which imparted significant structure restoration (confirmed by the presence of fine, equiaxed, randomly oriented grains).
Collapse
Affiliation(s)
- Lenka Kunčická
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 616 00 Brno, Czech Republic; (L.K.); (M.J.)
| | - Radim Kocich
- Faculty of Materials Science and Technology, VŠB–Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic
- Correspondence: ; Tel.: +420-596-994-455
| | - Petr Kačor
- Department of Electrical Power Engineering, VŠB–TU Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic;
| | - Michal Jambor
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 616 00 Brno, Czech Republic; (L.K.); (M.J.)
| | - Martin Marek
- Department of Technical Studies, College of Polytechnics Jihlava, Tolsteho 16, 586 01 Jihlava, Czech Republic;
| |
Collapse
|
5
|
Walker RC, Potochniak AE, Hyer AP, Ferri JK. Zirconia aerogels for thermal management: Review of synthesis, processing, and properties information architecture. Adv Colloid Interface Sci 2021; 295:102464. [PMID: 34364134 DOI: 10.1016/j.cis.2021.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/24/2023]
Abstract
Zirconia aerogels are porous nanomaterials with high specific surface areas and low thermal conductivities that are suitable for a wide range of functions. The applications of zirconia aerogels include numerous uses in thermal management systems that are specifically beneficial in aeronautics and aerospace systems. This review seeks to detail the synthesis, processing, and characterization of these unique materials. However, the many distinctive synthesis pathways and processing conditions of zirconia aerogels can make the optimization of these materials difficult, potentially inhibiting further development. Independent variables in the synthesis process alone include zirconium precursor, rare earth stabilizer, solvent system, gelation agent, and surfactant templating agent. If only two distinct options were available for each synthetic variable, there would be up to 32 different synthetic pathways; if there were three options for each variable, 243 different synthetic pathways would be possible. Apart from the gel synthesis, processing conditions, including drying method, drying temperature, drying solvent, and sintering temperature, as well as various techniques used to characterize aerogels, need to be considered. To mitigate the sheer volume of synthetic parameters, this review uses an architected information structure to contemplate approximately 600 aerogel materials, along with the synthesis and processing conditions that make each material unique. By utilizing this information structure, containing over 10,000 relationships amongst 3,800 nodes, the connection between specific properties of zirconia aerogels and the pathways used to produce them can be more easily visualized, leading to a more effective understanding of the many variables that are used in the synthesis and processing of these materials. This review seeks to utilize data science in a way that can elucidate structure-property relationships in colloidal chemistry, providing a more efficient way to evaluate the synthesis and processing of materials with high experimental dimensionality.
Collapse
Affiliation(s)
- Rebecca C Walker
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Anna E Potochniak
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Andres P Hyer
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - James K Ferri
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America.
| |
Collapse
|
6
|
Qu Y, Liu L. Zirconia Materials for Dental Implants: A Literature Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.687983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Titanium is currently the most commonly used material for manufacturing dental implants. However, its potential toxic effects and the gray color have resulted in increasing requests for metal-free treatment options. Zirconia is a type of ceramic materials that has been extensively used in medicine field, such as implant abutments and various joint replacement appliances. Amounts of clinical evaluations have indicated good biocompatibility for zirconia products. Besides, its toothlike color, low affinity for plaque and outstanding mechanical and chemical properties have made it an ideal candidate for dental implants. The aim of this study is to review the laboratory and clinical papers about several kinds of zirconia materials and zirconia surface modification techniques. Although there are plenty of literatures on these topics, most of the researches focused on the mechanical properties of the materials or based on cell and animal experiments. Randomized clinical trials on zirconia materials are still urgently needed to validate their application as dental implants.
Collapse
|
7
|
Straumal EA, Yurkova LL, Baranchikov AE, Kazachenko VP, Fursova TN, Lermontov SA. The Effect of Sulfating Agent Nature on the Catalytic Activity Tin Dioxide Aerogel. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621020194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Torres-Rodriguez J, Gutierrez-Cano V, Menelaou M, Kaštyl J, Cihlář J, Tkachenko S, González JA, Kalmár J, Fábián I, Lázár I, Čelko L, Kaiser J. Rare-Earth Zirconate Ln 2Zr 2O 7 (Ln: La, Nd, Gd, and Dy) Powders, Xerogels, and Aerogels: Preparation, Structure, and Properties. Inorg Chem 2019; 58:14467-14477. [PMID: 31613608 DOI: 10.1021/acs.inorgchem.9b01965] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The physicochemical properties of rare-earth zirconates can be tuned by the rational modification of their structures and phase compositions. In the present work, La3+-, Nd3+-, Gd3+-, and Dy3+-zirconate nanostructured materials were prepared by different synthetic protocols, leading to powders, xerogels, and, for the first time, monolithic aerogels. Powders were synthesized by the co-precipitation method, while xerogels and aerogels were synthesized by the sol-gel technique, followed by ambient and supercritical drying, respectively. Their microstructures, thermogravimetric profiles, textural properties, and crystallographic structures are reported. The co-precipitation method led to dense powders (SBET < 1 m2 g-1), while the sol-gel technique resulted in large surface area xerogels (SBET = 144 m2 g-1) and aerogels (SBET = 168 m2 g-1). In addition, the incorporation of lanthanide ions into the zirconia lattice altered the crystal structures of the powders, xerogels, and aerogels. Single-phase pyrochlores were obtained for La2Zr2O7 and Nd2Zr2O7 powders and xerogels, while defect fluorite structures formed in the case of Gd2Zr2O7 and Dy2Zr2O7. All aerogels contain a mixture of cubic and tetragonal ZrO2 phases. Thus, a direct effect is shown between the drying conditions and the resulting crystalline phases of the nanostructured rare-earth zirconates.
Collapse
Affiliation(s)
- Jorge Torres-Rodriguez
- Central European Institute of Technology , Brno University of Technology , Purkyňova 123 , Brno 61200 , Czech Republic
| | - Vanessa Gutierrez-Cano
- Department of Earth Sciences and Condensed Matter Physics , University of Cantabria , Av. de los Castros , Santander 39005 , Spain
| | - Melita Menelaou
- Central European Institute of Technology , Brno University of Technology , Purkyňova 123 , Brno 61200 , Czech Republic
| | - Jaroslav Kaštyl
- Central European Institute of Technology , Brno University of Technology , Purkyňova 123 , Brno 61200 , Czech Republic
| | - Jaroslav Cihlář
- Central European Institute of Technology , Brno University of Technology , Purkyňova 123 , Brno 61200 , Czech Republic
| | - Serhii Tkachenko
- Central European Institute of Technology , Brno University of Technology , Purkyňova 123 , Brno 61200 , Czech Republic
| | - Jesús A González
- Department of Earth Sciences and Condensed Matter Physics , University of Cantabria , Av. de los Castros , Santander 39005 , Spain
| | - József Kalmár
- Department of Inorganic and Analytical Chemistry , University of Debrecen , Egyetem tér 1 , Debrecen H-4032 , Hungary.,MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group , Egyetem tér 1 , Debrecen H-4032 , Hungary
| | - István Fábián
- Department of Inorganic and Analytical Chemistry , University of Debrecen , Egyetem tér 1 , Debrecen H-4032 , Hungary.,MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group , Egyetem tér 1 , Debrecen H-4032 , Hungary
| | - István Lázár
- Department of Inorganic and Analytical Chemistry , University of Debrecen , Egyetem tér 1 , Debrecen H-4032 , Hungary.,MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group , Egyetem tér 1 , Debrecen H-4032 , Hungary
| | - Ladislav Čelko
- Central European Institute of Technology , Brno University of Technology , Purkyňova 123 , Brno 61200 , Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology , Brno University of Technology , Purkyňova 123 , Brno 61200 , Czech Republic
| |
Collapse
|