1
|
Venkidasamy B, Subramanian U, Almoallim HS, Alharbi SA, Lakshmikumar RRC, Thiruvengadam M. Vanillic Acid Nanocomposite: Synthesis, Characterization Analysis, Antimicrobial, and Anticancer Potentials. Molecules 2024; 29:3098. [PMID: 38999050 PMCID: PMC11243421 DOI: 10.3390/molecules29133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Recently, nanoparticles have received considerable attention owing to their efficiency in overcoming the limitations of traditional chemotherapeutic drugs. In our study, we synthesized a vanillic acid nanocomposite using both chitosan and silver nanoparticles, tested its efficacy against lung cancer cells, and analyzed its antimicrobial effects. We used several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to determine the stability, morphological characteristics, and properties of the biosynthesized vanillic acid nanocomposites. Furthermore, the vanillic acid nanocomposites were tested for their antimicrobial effects against Escherichia coli and Staphylococcus aureus, and Candida albicans. The data showed that the nanocomposite effectively inhibited microbes, but its efficacy was less than that of the individual silver and chitosan nanoparticles. Moreover, the vanillic acid nanocomposite exhibited anticancer effects by increasing the expression of pro-apoptotic proteins (BAX, Casp3, Casp7, cyt C, and p53) and decreasing the gene expression of Bcl-2. Overall, vanillic acid nanocomposites possess promising potential against microbes, exhibit anticancer effects, and can be effectively used for treating diseases such as cancers and infectious diseases.
Collapse
Affiliation(s)
- Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Umadevi Subramanian
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Hesham S. Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia;
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Rahul Raj Chennam Lakshmikumar
- Department of General Surgery, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India;
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Zare-Zardini H, Saberian E, Jenča A, Jenča A, Petrášová A, Jenčová J. A Narrative Review on the Promising Potential of Graphene in Vaccine Design: Evaluating the Benefits and Drawbacks of Carbon Nanoplates in Nanovaccine Production. Vaccines (Basel) 2024; 12:660. [PMID: 38932389 PMCID: PMC11209486 DOI: 10.3390/vaccines12060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Graphene, a two-dimensional material consisting of a single layer of carbon atoms arranged in a honeycomb lattice, has shown great potential in various fields, including biomedicine. When it comes to vaccine development, graphene can offer several advantages due to its unique properties. Potential applications of graphene in vaccine development include improved vaccine delivery, adjuvant properties, improved vaccine stability, improved immune response, and biosensing capabilities. Although graphene offers many potential benefits in vaccine development, there are also some drawbacks and challenges associated with its use. Although graphene shows promising potential for vaccine development, overcoming the challenges and limitations associated with its use is critical to realizing its full potential in the field of immunization. Further research and development efforts are needed to overcome these drawbacks and take advantage of graphene for improved vaccine formulations. In this review, we focus on the advantages and disadvantages of graphene for vaccine development.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod 89616-99557, Iran
| | - Elham Saberian
- Klinika and Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 11 Kosice, Slovakia (A.P.)
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 11 Kosice, Slovakia (A.P.)
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 11 Kosice, Slovakia (A.P.)
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, 040 11 Kosice, Slovakia (A.P.)
| |
Collapse
|
3
|
Beikzadeh S, Akbarinejad A, Taylor J, Perera J, Ross J, Swift S, Kilmartin PA, Travas-Sejdic J. From energy storage to pathogen eradication: unveiling the antibacterial and antiviral capacities of flexible solid-state carbon cloth supercapacitors. J Mater Chem B 2023; 11:8170-8181. [PMID: 37401360 DOI: 10.1039/d3tb01085f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
With the emergence of deadly viral and bacterial infections, preventing the spread of microorganisms on surfaces has gained ever-increasing importance. This study investigates the potential of solid-state supercapacitors as antibacterial and antiviral devices. We developed a low-cost and flexible carbon cloth supercapacitor (CCSC) with highly efficient antibacterial and antiviral surface properties. The CCSC comprised two parallel layers of carbon cloth (CC) electrodes assembled in a symmetric, electrical double-layer supercapacitor structure that can be charged at low potentials between 1 to 2 V. The optimized CCSC exhibited a capacitance of 4.15 ± 0.3 mF cm-2 at a scan rate of 100 mV s-1, high-rate capability (83% retention of capacitance at 100 mV s-1 compared to its value at 5 mV s-1), and excellent electrochemical stability (97% retention of the initial capacitance after 1000 cycles). Moreover, the CCSC demonstrated outstanding flexibility and retained its full capacitance even when bent at high angles, making it suitable for wearable or flexible devices. Using its stored electrical charge, the charged CCSC disinfects bacteria effectively and neutralizes viruses upon surface contact with the positive and negative electrodes. The charged CCSC device yielded a 6-log CFU reduction of Escherichia coli bacterial inocula and a 5-log PFU reduction of HSV-1 herpes virus. Antibacterial and antiviral carbon cloth supercapacitors represent a promising platform technology for various applications, including electronic textiles and electronic skins, health monitoring or motion sensors, wound dressings, personal protective equipment (e.g., masks) and air filtration systems.
Collapse
Affiliation(s)
- Sara Beikzadeh
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1023, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand
| | - Alireza Akbarinejad
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1023, New Zealand.
| | - John Taylor
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Janesha Perera
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Jacqueline Ross
- Department of Anatomy and Medical Imaging, The University of Auckland, Private Bag, Auckland 92019, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Paul A Kilmartin
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1023, New Zealand.
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1023, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand
| |
Collapse
|
4
|
Wibowo YG, Ramadan BS, Taher T, Khairurrijal K. Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-24. [PMID: 37363141 PMCID: PMC10171735 DOI: 10.1007/s44174-023-00086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
In December 2019, an outbreak of unknown pneumonia emerged in Wuhan City, Hubei Province, China. It was later identified as the SARS-CoV-2 virus and has since infected over 9 million people in more than 213 countries worldwide. Massive papers on the topic of SARS-CoV-2 that have already been published are necessary to be analyzed and discussed. This paper used the combination of systematic literature network analysis and content analysis to develop a comprehensive discussion related to the use of nanotechnology and materials in environmental and human protection. Its is shown that various efforts have been made to control the transmission of this pandemic. Nanotechnology plays a crucial role in modern vaccine design, as nanomaterials are essential tools for antigen delivery, adjuvants, and mimics of viral structures. In addition, nanomaterials and nanotechnology also reported a crucial role in environmental protection for defence and treating the pandemic. To eradicate pandemics now and in the future, successful treatments must enable rapid discovery, scalable manufacturing, and global distribution. In this review, we discuss the current approaches to COVID-19 development and highlight the critical role of nanotechnology and nanomaterials in combating the virus in the human body and the environment.
Collapse
Affiliation(s)
- Yudha Gusti Wibowo
- Department of Mining Engineering, Institut Teknologi Sumatrea, Lampung, 35365 Indonesia
| | | | - Tarmizi Taher
- Department of Environmental Engineering, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Institut Teknologi Sumatera, Lampung, 35365 Indonesia
- Department of Physics, Institut Teknologi Bandung, Bandung, 40132 Indonesia
| |
Collapse
|
5
|
Bhatt S, Pathak R, Punetha VD, Punetha M. Recent advances and mechanism of antimicrobial efficacy of graphene-based materials: a review. JOURNAL OF MATERIALS SCIENCE 2023; 58:7839-7867. [PMID: 37200572 PMCID: PMC10166465 DOI: 10.1007/s10853-023-08534-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Graphene-based materials have undergone substantial investigation in recent years owing to their wide array of physicochemical characteristics. Employment of these materials in the current state, where infectious illnesses caused by microbes have severely damaged human life, has found widespread application in combating fatal infectious diseases. These materials interact with the physicochemical characteristics of the microbial cell and alter or damage them. The current review is dedicated to molecular mechanisms underlying the antimicrobial property of graphene-based materials. Various physical and chemical mechanisms leading to cell membrane stress, mechanical wrapping, photo-thermal ablation as well as oxidative stress exerting antimicrobial effect have also been thoroughly discussed. Furthermore, an overview of the interactions of these materials with membrane lipids, proteins, and nucleic acids has been provided. A thorough understanding of discussed mechanisms and interactions is essential to develop extremely effective antimicrobial nanomaterial for application as an antimicrobial agent. Graphical abstract
Collapse
Affiliation(s)
- Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Kosamba-Surat, Gujarat 394125 India
| |
Collapse
|
6
|
Correa JDS, Primo JDO, Balaba N, Pratsch C, Werner S, Toma HE, Anaissi FJ, Wattiez R, Zanette CM, Onderwater RCA, Bittencourt C. Copper(II) and Cobalt(II) Complexes Based on Abietate Ligands from Pinus Resin: Synthesis, Characterization and Their Antibacterial and Antiviral Activity against SARS-CoV-2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1202. [PMID: 37049296 PMCID: PMC10096983 DOI: 10.3390/nano13071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Co-abietate and Cu-abietate complexes were obtained by a low-cost and eco-friendly route. The synthesis process used Pinus elliottii resin and an aqueous solution of CuSO4/CoSO4 at a mild temperature (80 °C) without organic solvents. The obtained complexes are functional pigments for commercial architectural paints with antipathogenic activity. The pigments were characterized by Fourier-transform infrared spectroscopy (FTIR), mass spectrometry (MS), thermogravimetry (TG), near-edge X-ray absorption fine structure (NEXAFS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and colorimetric analysis. In addition, the antibacterial efficiency was evaluated using the minimum inhibitory concentration (MIC) test, and the antiviral tests followed an adaptation of the ISO 21702:2019 guideline. Finally, virus inactivation was measured using the RT-PCR protocol using 10% (w/w) of abietate complex in commercial white paint. The Co-abietate and Cu-abietate showed inactivation of >4 log against SARS-CoV-2 and a MIC value of 4.50 µg·mL-1 against both bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The results suggest that the obtained Co-abietate and Cu-abietate complexes could be applied as pigments in architectural paints for healthcare centers, homes, and public places.
Collapse
Affiliation(s)
- Jamille de S. Correa
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Julia de O. Primo
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Nayara Balaba
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Christoph Pratsch
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Stephan Werner
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Henrique E. Toma
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Fauze J. Anaissi
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Ruddy Wattiez
- Department of Chemistry, University of Mons, Place du Parc 23, 7000 Mons, Belgium;
| | - Cristina M. Zanette
- Department of Food Engineering, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | | | - Carla Bittencourt
- Department of Chemistry, University of Mons, Place du Parc 23, 7000 Mons, Belgium;
| |
Collapse
|
7
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
8
|
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. Nano-antivirals: A comprehensive review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1064615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties.
Collapse
|
9
|
Joseph J, Baby HM, Zhao S, Li X, Cheung K, Swain K, Agus E, Ranganathan S, Gao J, Luo JN, Joshi N. Role of bioaerosol in virus transmission and material-based countermeasures. EXPLORATION (BEIJING, CHINA) 2022; 2:20210038. [PMID: 37324804 PMCID: PMC10190935 DOI: 10.1002/exp.20210038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/15/2022] [Indexed: 06/17/2023]
Abstract
Respiratory pathogens transmit primarily through particles such as droplets and aerosols. Although often overlooked, the resuspension of settled droplets is also a key facilitator of disease transmission. In this review, we discuss the three main mechanisms of aerosol generation: direct generation such as coughing and sneezing, indirect generation such as medical procedures, and resuspension of settled droplets and aerosols. The size of particles and environmental factors influence their airborne lifetime and ability to cause infection. Specifically, humidity and temperature are key factors controlling the evaporation of suspended droplets, consequently affecting the duration in which particles remain airborne. We also suggest material-based approaches for effective prevention of disease transmission. These approaches include electrostatically charged virucidal agents and surface coatings, which have been shown to be highly effective in deactivating and reducing resuspension of pathogen-laden aerosols.
Collapse
Affiliation(s)
- John Joseph
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Helna Mary Baby
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Spencer Zhao
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Xiang‐Ling Li
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Krisco‐Cheuk Cheung
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Kabir Swain
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Eli Agus
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Sruthi Ranganathan
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Jingjing Gao
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - James N Luo
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Nitin Joshi
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
10
|
Ahmad V, Ansari MO. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224002. [PMID: 36432288 PMCID: PMC9694244 DOI: 10.3390/nano12224002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
Graphene (GN)-related nanomaterials such as graphene oxide, reduced graphene oxide, quantum dots, etc., and their composites have attracted significant interest owing to their efficient antimicrobial properties and thus newer GN-based composites are being readily developed, characterized, and explored for clinical applications by scientists worldwide. The GN offers excellent surface properties, i.e., a large surface area, pH sensitivity, and significant biocompatibility with the biological system. In recent years, GN has found applications in tissue engineering owing to its impressive stiffness, mechanical strength, electrical conductivity, and the ability to innovate in two-dimensional (2D) and three-dimensional (3D) design. It also offers a photothermic effect that potentiates the targeted killing of cells via physicochemical interactions. It is generally synthesized by physical and chemical methods and is characterized by modern and sophisticated analytical techniques such as NMR, Raman spectroscopy, electron microscopy, etc. A lot of reports show the successful conjugation of GN with existing repurposed drugs, which improves their therapeutic efficacy against many microbial infections and also its potential application in drug delivery. Thus, in this review, the antimicrobial potentialities of GN-based nanomaterials, their synthesis, and their toxicities in biological systems are discussed.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | | |
Collapse
|
11
|
Alamdari S, Mirzaee O, Nasiri Jahroodi F, Tafreshi MJ, Ghamsari MS, Shik SS, Ara MHM, Lee KY, Park HH. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. SURFACES AND INTERFACES 2022; 34:102349. [PMID: 36160476 PMCID: PMC9490491 DOI: 10.1016/j.surfin.2022.102349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 05/16/2023]
Abstract
Following the global corona virus pandemic and environmental contamination caused by chemical plastic packaging, awareness of the need for environmentally friendly biofilms and antibacterial coatings is increasing. In this study, a biodegradable hybrid film, comprising of green-synthesized zinc oxide nanoparticles (ZnO NPs) with a chitosan (CS) matrix, was fabricated using a simple casting procedure. The ZnO NPs were synthesized using wild Mentha pulegium extract, and the synthesized NPs and films were characterized using different approaches. The structural, morphological, mechanical, antibacterial, and optical properties, as well as the hydrophilicity, of the prepared samples were investigated using various techniques. Gas chromatography-mass spectrometry measurements revealed the presence of phenolic compounds in the M. pulegium extract. In addition, a strong coordination connection between Zn2+ and the chitosan matrix was confirmed, which resulted in a good dispersion of ZnO in the chitosan film. The surface of the composite films was transparent, smooth, and uniform, and the flexible bio-based hybrid films exhibited significant antibacterial and antioxidant characteristics, strong visible emission in the 480 nm region, and UV-blocking properties. The ZnO/CS films displayed a potential to extend the shelf life of fruits by up to eight days when stored at 23°C, and also acted as an acceptable barrier against oxygen and water. The biodegradable ZnO/CS film is expected to keep fruit fresher than general chemical plastic films and be used for the packaging of active ingredients.
Collapse
Affiliation(s)
- Sanaz Alamdari
- Faculty of Physics, Semnan University, P.O. Box:35195‑363, Semnan, Iran
- Photonics Laboratory, Department of Physics, Kharazmi University, Alborz, Iran
- Nanophotonics Laboratory, Applied Science Research Center, Kharazmi University, Alborz, Iran
| | - Omid Mirzaee
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | | | | | - Morteza Sasani Ghamsari
- Photonics & Quantum Technologies Research School, Nuclear Science, and Technology Research Institute, Tehran, 11155-3486, Iran
| | | | - Mohammad Hossein Majles Ara
- Photonics Laboratory, Department of Physics, Kharazmi University, Alborz, Iran
- Nanophotonics Laboratory, Applied Science Research Center, Kharazmi University, Alborz, Iran
| | - Kyu-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
12
|
Patial S, Kumar A, Raizada P, Le QV, Nguyen VH, Selvasembian R, Singh P, Thakur S, Hussain CM. Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107527. [PMID: 35280853 PMCID: PMC8902865 DOI: 10.1016/j.jece.2022.107527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 05/13/2023]
Abstract
Coronavirus disease-2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been one of the most challenging worldwide epidemics of recent times. Semiconducting materials (photocatalysts) could prove effectual solar-light-driven technology on account of variant reactive oxidative species (ROS), including superoxide (•O2 - ) and hydroxyl (•OH) radicals either by degradation of proteins, DNA, RNA, or preventing cell development by terminating cellular membrane. Graphene-based materials have been exquisitely explored for antiviral applications due to their extraordinary physicochemical features including large specific surface area, robust mechanical strength, tunable structural features, and high electrical conductivity. Considering that, the present study highlights a perspective on the potentials of graphene based materials for photocatalytic antiviral activity. The interaction of virus with the surface of graphene based nanomaterials and the consequent physical, as well as ROS induced inactivation process, has been highlighted and discussed. It is highly anticipated that the present review article emphasizing mechanistic antiviral insights could accelerate further research in this field.
Collapse
Affiliation(s)
- Shilpa Patial
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Van-Huy Nguyen
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
13
|
Taşaltın N, Güllülü S, Karakuş S. Dual-role of β borophene nanosheets as highly effective antibacterial and antifungal agent. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|