1
|
Cubiella T, Celada L, San-Juan-Guardado J, Rodríguez-Aguilar R, Suárez-Priede Á, Poch M, Dominguez F, Fernández-Vega I, Montero-Pavón P, Fraga MF, Nakatani Y, Takata S, Yachida S, Valdés N, Chiara MD. PCDHGC3 hypermethylation as a potential biomarker of intestinal neuroendocrine carcinomas. J Pathol 2024; 263:418-428. [PMID: 38795318 DOI: 10.1002/path.6291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 05/27/2024]
Abstract
Neuroendocrine neoplasms (NENs) encompass tumors arising from neuroendocrine cells in various organs, including the gastrointestinal tract, pancreas, adrenal gland, and paraganglia. Despite advancements, accurately predicting the aggressiveness of gastroenteropancreatic (GEP) NENs based solely on pathological data remains challenging, thereby limiting optimal clinical management. Our previous research unveiled a crucial link between hypermethylation of the protocadherin PCDHGC3 gene and neuroendocrine tumors originating from the paraganglia and adrenal medulla. This epigenetic alteration was associated with increased metastatic potential and succinate dehydrogenase complex (SDH) dysfunction. Expanding upon this discovery, the current study explored PCDHGC3 gene methylation within the context of GEP-NENs in a cohort comprising 34 cases. We uncovered promoter hypermethylation of PCDHGC3 in 29% of GEP-NENs, with a significantly higher prevalence in gastrointestinal (GI) neuroendocrine carcinomas (NECs) compared with both pancreatic (Pan) NECs and neuroendocrine tumors (NETs) of GI and Pan origin. Importantly, these findings were validated in one of the largest multi-center GEP-NEN cohorts. Mechanistic analysis revealed that PCDHGC3 hypermethylation was not associated with SDH mutations or protein loss, indicating an SDH-independent epigenetic mechanism. Clinically, PCDHGC3 hypermethylation emerged as a significant prognostic factor, correlating with reduced overall survival rates in both patient cohorts. Significantly, whereas PCDHGC3 hypermethylation exhibited a strong correlation with TP53 somatic mutations, a hallmark of NEC, its predictive value surpassed that of TP53 mutations, with an area under the curve (AUC) of 0.95 (95% CI 0.83-1.0) for discriminating GI-NECs from GI-NETs, highlighting its superior predictive performance. In conclusion, our findings position PCDHGC3 methylation status as a promising molecular biomarker for effectively stratifying patients with GI-NENs. This discovery has the potential to advance patient care by enabling more precise risk assessments and tailored treatment strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tamara Cubiella
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Lucía Celada
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Jaime San-Juan-Guardado
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | | | - Álvaro Suárez-Priede
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - María Poch
- Department of Pathology, Hospital Universitario de Cabueñes, Gijón, Spain
| | | | - Iván Fernández-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pedro Montero-Pavón
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mario F Fraga
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
| | - Yoichiro Nakatani
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - So Takata
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nuria Valdés
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Hospital Universitario Cruces, Bizkaia, Spain
- Biobizkaia Health Research Institute, Bizkaia, Spain
- CIBERDEM (Network of Biomedical Research in Diabetes), Madrid, Spain
| | - María-Dolores Chiara
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
2
|
Tierney JF, Poirier J, Chivukula S, Pappas SG, Hertl M, Schadde E, Keutgen X. Primary Tumor Site Affects Survival in Patients with Gastroenteropancreatic and Neuroendocrine Liver Metastases. Int J Endocrinol 2019; 2019:9871319. [PMID: 30992703 PMCID: PMC6434277 DOI: 10.1155/2019/9871319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are commonly present with metastatic disease, and the liver is the most frequent metastatic site. Herein, we studied whether primary tumor site affects survival in patients with GEP-NETs and liver metastases (NELM). As a secondary endpoint, we studied whether extrahepatic disease and surgical resection impact survival in this patient population. METHODS Patients with NELM diagnosed from 2006 to 2014 were identified from the National Cancer Database. Kaplan-Meier curves and nested Cox proportional hazards were used to assess variables associated with survival. RESULTS 2947 patients with well- or moderately differentiated GEP-NETs and NELM met the inclusion criteria for this study. Patients with small bowel NETs survived the longest of all GEP-NETs with NELM (median not reached). Rectal and gastric NETs with NELM had the shortest survival (median 31 months). Patients with extrahepatic metastases who underwent any operation survived longer than those managed nonoperatively (median survival 38.7 months vs. 18.6 months, p = 0.01). On multivariable analysis, operations on the primary tumor and distant metastatic site (HR 0.23-0.43 vs. no surgery), treatment at an academic/research hospital, Charlson comorbidity index of 0, no extrahepatic metastases, and younger age were associated with prolonged survival (p < 0.01). CONCLUSIONS Primary tumor site affects survival in patients with GEP-NETs and NELM. Surgical resection seems beneficial for all GEP-NETs with NELM, even in the presence of extrahepatic metastases.
Collapse
Affiliation(s)
- John F. Tierney
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jennifer Poirier
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Sitaram Chivukula
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Sam G. Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Martin Hertl
- Division of Transplant, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Erik Schadde
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
- Division of Transplant, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
- Cantonal Hospital Winterthur, Department of Surgery, Winterthur, Zurich, Switzerland
- University of Zurich, Institute of Physiology, Zurich, Switzerland
| | - Xavier Keutgen
- Division of General Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Maxwell JE, Sherman SK, Howe JR. Translational Diagnostics and Therapeutics in Pancreatic Neuroendocrine Tumors. Clin Cancer Res 2018; 22:5022-5029. [PMID: 27742788 DOI: 10.1158/1078-0432.ccr-16-0435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022]
Abstract
Pancreatic neuroendocrine tumors (PNET) are rare tumors, but have been increasing in incidence. Although typically thought of as indolent, more than half of patients present with metastatic disease. For many years, the only mutations commonly known in these tumors were those in the MEN1 gene. Recently, the genetics underlying PNETs have been further defined through exome sequencing. The most frequent alterations found in sporadic PNETs are in MEN1, DAXX/ATRX, and a variety of genes in the mTOR pathway. Confirmation of these mutations has prompted trials with a number of drugs active in these pathways, and two drugs were eventually approved in 2011-sunitinib and everolimus. New data additionally identify the MET and CD47 receptors as potential novel drug targets. Yet despite improvements in progression-free survival with sunitinib and everolimus, further studies defining when to use these agents and factors associated with limitations in their utility are needed. As more discoveries are made in the laboratory that elucidate additional molecular mechanisms important in the initiation and metastasis of PNETs, continued efforts to translate these discoveries into distinct new therapies will be needed to improve patient survival. Clin Cancer Res; 22(20); 5022-9. ©2016 AACR SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "ENDOCRINE CANCERS REVISING PARADIGMS".
Collapse
Affiliation(s)
- Jessica E Maxwell
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Scott K Sherman
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - James R Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa.
| |
Collapse
|
4
|
Transcriptomic Profiling of Tumor Aggressiveness in Sporadic Nonfunctioning Pancreatic Neuroendocrine Neoplasms. Pancreas 2016; 45:1196-203. [PMID: 26918873 DOI: 10.1097/mpa.0000000000000610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The aim of the study was to compare RNA sequencing data of sporadic nonfunctioning pancreatic neuroendocrine neoplasms (PNENs) to identify gene expression patterns that may be important for molecular differentiation of tumor aggressiveness. METHODS RNA sequencing was performed on samples of sporadic nonfunctioning PNENs, grouped as tumors with mild behavior (nonmetastatic and Ki67 < 5%) or aggressive behavior (metastatic and Ki67 ≥ 5%), on an Illumina Genome Analyzer II platform. Bioinformatic analyses were performed on the resulting data. RESULTS Of 22,810 identified transcripts from protein-coding genes, a set of 309 genes were significantly differentially expressed between the 2 groups, of which 166 were upregulated and 143 downregulated in the aggressive disease group. Among the top protein-coding upregulated genes, we found genes encoding proteins involved in DNA packaging, ability to taste, chromosome structuring, cytoskeleton structuring, and cell-cell signaling. Among the top protein-coding downregulated genes, we found genes encoding proteins involved in neuronal differentiation, cytoskeleton structuring, cell-cell signaling, and immunological processes. CONCLUSIONS A higher degree of tumor aggressiveness in sporadic nonfunctioning PNENs seems to be associated with upregulation of genes involved in regulation of the cell cycle and cell division. Small sample size and lack of a replication set are limitations of this study.
Collapse
|
5
|
Insel PA, Wilderman A, Zambon AC, Snead AN, Murray F, Aroonsakool N, McDonald DS, Zhou S, McCann T, Zhang L, Sriram K, Chinn AM, Michkov AV, Lynch RM, Overland AC, Corriden R. G Protein-Coupled Receptor (GPCR) Expression in Native Cells: "Novel" endoGPCRs as Physiologic Regulators and Therapeutic Targets. Mol Pharmacol 2015; 88:181-7. [PMID: 25737495 PMCID: PMC4468643 DOI: 10.1124/mol.115.098129] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of signaling receptors in the human genome, are also the largest class of targets of approved drugs. Are the optimal GPCRs (in terms of efficacy and safety) currently targeted therapeutically? Especially given the large number (∼ 120) of orphan GPCRs (which lack known physiologic agonists), it is likely that previously unrecognized GPCRs, especially orphan receptors, regulate cell function and can be therapeutic targets. Knowledge is limited regarding the diversity and identity of GPCRs that are activated by endogenous ligands and that native cells express. Here, we review approaches to define GPCR expression in tissues and cells and results from studies using these approaches. We identify problems with the available data and suggest future ways to identify and validate the physiologic and therapeutic roles of previously unrecognized GPCRs. We propose that a particularly useful approach to identify functionally important GPCRs with therapeutic potential will be to focus on receptors that show selective increases in expression in diseased cells from patients and experimental animals.
Collapse
Affiliation(s)
- Paul A Insel
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Andrea Wilderman
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Alexander C Zambon
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Aaron N Snead
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Fiona Murray
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Nakon Aroonsakool
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Daniel S McDonald
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Shu Zhou
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Thalia McCann
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Lingzhi Zhang
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Krishna Sriram
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Amy M Chinn
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Alexander V Michkov
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Rebecca M Lynch
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Aaron C Overland
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Ross Corriden
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Gene expression accurately distinguishes liver metastases of small bowel and pancreas neuroendocrine tumors. Clin Exp Metastasis 2014; 31:935-44. [PMID: 25241033 DOI: 10.1007/s10585-014-9681-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/12/2014] [Indexed: 12/31/2022]
Abstract
Small bowel (SBNETs) and pancreatic neuroendocrine tumors (PNETs) often present with liver metastases. Although liver biopsy establishes a neuroendocrine diagnosis, the primary tumor site is frequently unknown without exploratory surgery. Gene expression differences in metastases may distinguish primary SBNETs and PNETs. This study sought to determine expression differences of four genes in neuroendocrine metastases and to create a gene expression algorithm to distinguish the primary site. Nodal and liver metastases from SBNETs and PNETs (n = 136) were collected at surgery under an Institutional Review Board-approved protocol. Quantitative PCR measured expression of bombesin-like receptor-3, opioid receptor kappa-1, oxytocin receptor, and secretin receptor in metastases. Logistic regression models defined an algorithm predicting the primary tumor site. Models were developed on a training set of 21 nodal metastases and performance was validated on an independent set of nodal and liver metastases. Expression of all four genes was significantly different in SBNET compared to PNET metastases. The optimal model employed expression of bombesin-like receptor-3 and opioid receptor kappa-1. When these genes did not amplify, the algorithm used oxytocin receptor and secretin receptor expression, which allowed classification of all 136 metastases with 94.1 % accuracy. In the independent liver metastasis validation set, 52/56 (92.9 %) were correctly classified. Positive predictive values were 92.5 % for SBNETs and 93.8 % for PNETs. This validated algorithm accurately distinguishes SBNET and PNET metastases based on their expression of four genes. High accuracy in liver metastases demonstrates applicability to the clinical setting. Studies assessing this algorithm's utility in prospective clinical decision-making are warranted.
Collapse
|
7
|
Sherman SK, Maxwell JE, Carr JC, Wang D, O'Dorisio MS, O'Dorisio TM, Howe JR. GIPR expression in gastric and duodenal neuroendocrine tumors. J Surg Res 2014; 190:587-93. [PMID: 24565507 DOI: 10.1016/j.jss.2014.01.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Compounds targeting somatostatin-receptor-type-2 (SSTR2) are useful for small bowel neuroendocrine tumor (SBNET) and pancreatic neuroendocrine tumor (PNET) imaging and treatment. We recently characterized expression of 13 cell surface receptor genes in SBNETs and PNETs, identifying three drug targets (GIPR, OXTR, and OPRK1). This study set out to characterize expression of this gene panel in the less common neuroendocrine tumors of the stomach and duodenum (gastric and duodenal neuroendocrine tumors [GDNETs]). METHODS Primary tumors and adjacent normal tissue were collected at surgery, RNA was extracted, and expression of 13 target genes was determined by quantitative polymerase chain reaction. Expression was normalized to GAPDH and POLR2A internal control genes. Expression relative to normal tissue (ddCT) and absolute expression (dCT) were calculated. Wilcoxon tests compared median expression with false discovery rate correction for multiple comparisons. RESULTS Gene expression was similar in two gastric and seven duodenal tumors, and these were analyzed together. Like SBNETs (n = 63) and PNETs (n = 51), GDNETs showed significant overexpression compared with normal tissue of BRS3, GIPR, GRM1, GPR113, OPRK1, and SSTR2 (P < 0.05 for all). Of these, SSTR2 had the highest absolute expression in GDNETs (median dCT 4.0). Absolute expression of BRS3, GRM1, GPR113, and OPRK1 was significantly lower than SSTR2 in GDNETs (P < 0.05 for all), whereas expression of GIPR was similar to SSTR2 (median 4.3, P = 0.4). CONCLUSIONS As in SBNETs and PNETs, GIPR shows absolute expression close to SSTR2 but has greater overexpression relative to normal tissue (21.1 versus 3.5-fold overexpression). We conclude that GIPR could provide an improved signal-to-noise ratio for imaging versus SSTR2 and represents a promising novel therapeutic target in GDNETs.
Collapse
Affiliation(s)
- Scott K Sherman
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jessica E Maxwell
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jennifer C Carr
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Donghong Wang
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - M Sue O'Dorisio
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Thomas M O'Dorisio
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - James R Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa.
| |
Collapse
|
8
|
Sherman SK, Carr JC, Wang D, O'Dorisio MS, O'Dorisio TM, Howe JR. Gastric inhibitory polypeptide receptor (GIPR) is a promising target for imaging and therapy in neuroendocrine tumors. Surgery 2014; 154:1206-13; discussion 1214. [PMID: 24238043 DOI: 10.1016/j.surg.2013.04.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/25/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Ligands binding the somatostatin receptor type 2 (SSTR2) are useful for imaging and treatment of neuroendocrine tumors (NETs), but not all tumors express high levels of these receptors. The aim of this study was to evaluate gene expression of new therapeutic targets in NETs relative to SSTR2. METHODS RNA was extracted from 103 primary small bowel and pancreatic NETs, matched normal tissue, and 123 metastases. Expression of 12 candidate genes was measured by quantitative polymerase chain reaction normalized to internal controls; candidate gene expression was compared with SSTR2. RESULTS Relative to normal tissue, primary NET expression of SSTR2, GPR98, BRS3, GIPR, GRM1, and OPRK1 were increased by 3, 8, 13, 13, 17, and 20-fold, respectively. Similar changes were found in metastases. Although most candidate genes showed lesser absolute expressions than SSTR2, absolute GIPR expression was closest to SSTR2 (mean dCT 3.6 vs. 2.7, P = .01). Absolute OPRK1 and OXTR expression varied greatly by primary tumor type and was close to SSTR2 in small bowel NETs but not pancreatic NETs. CONCLUSION Compared with the current treatment standard SSTR2, GIPR has only somewhat lesser absolute gene expression in tumor tissue but much lesser expression in normal tissue, making it a promising new target for NET imaging and therapy.
Collapse
Affiliation(s)
- Scott K Sherman
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | | | | | | | | |
Collapse
|
9
|
Chen YX, Fang JY. Current Perspective on the Pathogenesis of Small Intestinal Neuroendocrine Tumors: Progress in Biomarkers and Molecular Events. Gastrointest Tumors 2014; 1:2-8. [DOI: 10.1159/000354993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
<b><i>Background:</i></b> Neuroendocrine tumors of the gastrointestinal tract differ in their histopathologic and clinical presentation. Small intestinal neuroendocrine tumors (SI-NETs), representing only a small portion within gastrointestinal malignancies, are often associated with a delayed diagnosis due to their non-specific symptoms. The increased incidence of SI-NETs during the last decades demands earlier diagnosis and more effective treatment, which both rely on a better understanding on the underlying molecular mechanisms. <b><i>Summary:</i></b> The purpose of this review is to discuss the biomolecular changes responsible for the pathogenesis of SI-NETs, and potential biomarkers in the diagnostic and prognostic evaluation. <b>Key Message</b> A greater understanding of the molecular mechanisms that underpin the pathogenesis of small intestinal neuroendocrine tumors (SI-NETs) facilitates the classification, diagnosis and treatment of these relatively rare gastrointestinal malignancies. <b>Practical Implications</b> Currently, SI-NETs are diagnosed using histological examination and staining for various neuroendocrine markers. Genetically, SI-NETs are characterized by an absence of alterations to K-ras, p53 and DNA mismatch repair genes. Loss of chromosome 18, deletion of Smad2 and Smad4, and amplification of SRC, EGFR and PDGFR have been reported. Abnormal DNA methylation status, reflected by overexpression of DNA methyltransferase, higher methylation of the RASSF1A promoter and overexpression of histone H1x are also associated with SI-NETs. These tumors are also associated with fibrosis, possibly due to the high levels of serotonin and other fibrotic factors produced. Genetic studies have pinpointed genes that can differentiate SI-NETs from other neuroendocrine tumors (oxytocin receptor, G protein-coupled receptor 113, VMAT-1, CDX-2), enabling more accurate diagnosis. Paraneoplastic antigen Ma2, neurokinin A and the CART peptide are under investigation as prognostic biomarkers. There is, however, still an unmet need for more sensitive biomarkers for earlier diagnosis and for a more specific classification system that encompasses tumor histology and reliable predictors of clinical response.
Collapse
|
10
|
Metabonomic profiling: A novel approach in neuroendocrine neoplasias. Surgery 2013; 154:1185-92; discussion 1192-3. [DOI: 10.1016/j.surg.2013.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Carr JC, Sherman SK, Wang D, Dahdaleh FS, Bellizzi AM, O'Dorisio MS, O'Dorisio TM, Howe JR. Overexpression of membrane proteins in primary and metastatic gastrointestinal neuroendocrine tumors. Ann Surg Oncol 2013; 20 Suppl 3:S739-S746. [PMID: 24114056 DOI: 10.1245/s10434-013-3318-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Small bowel and pancreatic neuroendocrine tumors (SBNETs and PNETs) are rare tumors whose incidence is increasing. Drugs targeting the somatostatin receptor are beneficial in these tumors. To identify additional cell-surface targets, we recently found receptors and membrane proteins with gene expression significantly different from adjacent normal tissues in a small number of primary SBNETs and PNETs. We set out to validate these expression differences in a large group of primary neuroendocrine tumors and to determine whether they are present in corresponding liver and lymph node metastases. METHODS Primary SBNETs and PNETs, normal tissue, nodal, and liver metastases were collected and mRNA expression of six target genes was determined by quantitative PCR. Expression was normalized to GAPDH and POLR2A internal controls, and differences as compared to normal tissue were assessed by Welch's t test. RESULTS Gene expression was determined in 45 primary PNETs with 20 nodal and 17 liver metastases, and 51 SBNETs with 50 nodal and 29 liver metastases. Compared to normal tissue, the oxytocin receptor (OXTR) showed significant overexpression in both primary and metastatic SBNETs and PNETs. Significant overexpression was observed for MUC13 and MEP1B in PNET primary tumors, and for GPR113 in primary SBNETs and their metastases. SCTR and ADORA1 were significantly underexpressed in PNETs and their metastases. OXTR protein expression was confirmed by immunohistochemistry. CONCLUSIONS OXTR is significantly overexpressed relative to normal tissue in primary SBNETs and PNETs, and this overexpression is present in their liver and lymph node metastases, making OXTR a promising target for imaging and therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer C Carr
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Scott K Sherman
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Donghong Wang
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Fadi S Dahdaleh
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - M Sue O'Dorisio
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Thomas M O'Dorisio
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - James R Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|