1
|
Lee SH, Song SY. Recent Advancement in Diagnosis of Biliary Tract Cancer through Pathological and Molecular Classifications. Cancers (Basel) 2024; 16:1761. [PMID: 38730713 PMCID: PMC11083053 DOI: 10.3390/cancers16091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Biliary tract cancers (BTCs), including intrahepatic, perihilar, and distal cholangiocarcinomas, as well as gallbladder cancer, are a diverse group of cancers that exhibit unique molecular characteristics in each of their anatomic and pathological subtypes. The pathological classification of BTCs compromises distinct growth patterns, including mass forming, periductal infiltrating, and intraductal growing types, which can be identified through gross examination. The small-duct and large-duct types of intrahepatic cholangiocarcinoma have been recently introduced into the WHO classification. The presentation of typical clinical symptoms, as well as the extensive utilization of radiological, endoscopic, and molecular diagnostic methods, is thoroughly detailed in the description. To overcome the limitations of traditional tissue acquisition methods, new diagnostic modalities are being explored. The treatment landscape is also rapidly evolving owing to the emergence of distinct subgroups with unique molecular alterations and corresponding targeted therapies. Furthermore, we emphasize the crucial aspects of diagnosing BTC in practical clinical settings.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Si Young Song
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03772, Republic of Korea
| |
Collapse
|
2
|
Liu F, Liu Y, Hao X, Liu B, Yan X, Li A, Jiang P, Huang W, Liu SM, Yuan Y. Altered bile metabolome and its diagnostic potential for biliopancreatic malignancies. Clin Chim Acta 2024; 554:117777. [PMID: 38220138 DOI: 10.1016/j.cca.2024.117777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Due to the difficulty of pathological sampling, the clinical differentiation between benign and malignant biliopancreatic diseases remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary diseases, enabling the collection of bile. This study assessed potential metabolic alterations in biliopancreatic malignancies by exploring changes in the bile metabolome and the diagnostic potential of bile metabolome analysis. METHODS A total of 264 bile samples were collected from patients who were divided into a discovery cohort (n = 85) and a validation cohort (n = 179). Untargeted metabolomic analysis was used in the discovery cohort, while targeted metabolomic analysis was used in the validation cohort for further investigation of the differentially abundant metabolites. RESULTS The untargeted metabolomic analysis revealed that the metabolic changes associated with biliopancreatic malignancies occurred mainly in lipid metabolites, among which fatty acid metabolism was most significantly altered, and differentially abundant metabolites identified in the discovery cohort were mainly enriched in unsaturated fatty acid synthesis and linolenic acid synthesis pathways. Analysis of free fatty acid (FFA) metabolism in the validation cohort revealed that the FFA levels and related indicators verified the abnormal fatty acid metabolism associated with biliopancreatic malignancies. The combined model for biliopancreatic malignancies based on the fatty acid indexes and clinical test results improved the diagnostic performance of current clinical level. Then, we used machine learning to define three different FFA metabolic clusters of biliopancreatic malignancies, and survival analysis showed significant differences in prognostic outcomes among the three clusters. CONCLUSIONS This study found metabolic alterations in biliopancreatic malignancies based on bile samples, which may provide new insights for the clinical diagnosis and prognostic assessment of biliopancreatic malignancies.
Collapse
Affiliation(s)
- Fusheng Liu
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Yingyi Liu
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xingyuan Hao
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Bin Liu
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xuyun Yan
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Anling Li
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China
| | - Ping Jiang
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Weihua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, PR China.
| |
Collapse
|
3
|
Liu F, Hao X, Liu B, Liu S, Yuan Y. Bile liquid biopsy in biliary tract cancer. Clin Chim Acta 2023; 551:117593. [PMID: 37839517 DOI: 10.1016/j.cca.2023.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Biliary tract cancers are heterogeneous in etiology, morphology and molecular characteristics thus impacting disease management. Diagnosis is complex and prognosis poor. The advent of liquid biopsy has provided a unique approach to more thoroughly understand tumor biology in general and biliary tract cancers specifically. Due to their minimally invasive nature, liquid biopsy can be used to serially monitor disease progression and allow real-time monitoring of tumor genetic profiles as well as therapeutic response. Due to the unique anatomic location of biliary tract cancer, bile provides a promising biologic fluid for this purpose. This review focuses on the composition of bile and the use of these various components, ie, cells, extracellular vesicles, nucleic acids, proteins and metabolites as potential biomarkers. Based on the disease characteristics and research status of biliary tract cancer, considerable effort should be made to increase understanding of this disease, promote research and development into early diagnosis, develop efficient diagnostic, therapeutic and prognostic markers.
Collapse
Affiliation(s)
- Fusheng Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xingyuan Hao
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Bin Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Songmei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, PR China.
| |
Collapse
|
4
|
Zhang J, Zhou Z(Z, Chen K, Kim S, Cho IS, Varadkar T, Baker H, Cho JH, Zhou L, Liu X(M. A CD276-Targeted Antibody-Drug Conjugate to Treat Non-Small Lung Cancer (NSCLC). Cells 2023; 12:2393. [PMID: 37830607 PMCID: PMC10572050 DOI: 10.3390/cells12192393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) patients, accounting for approximately 85% of lung cancer cases, are usually diagnosed in advanced stages. Traditional surgical resection and radiotherapy have very limited clinical benefits. The objective of this study was to develop and evaluate a targeted therapy, antibody-drug conjugate (ADC), for NSCLC treatment. Specifically, the CD276 receptor was evaluated and confirmed as an ideal surface target of NSCLC in the immunohistochemistry (IHC) staining of seventy-three patient tumor microarrays and western blotting analysis of eight cell lines. Our anti-CD276 monoclonal antibody (mAb) with cross-activity to both human and mouse receptors showed high surface binding, effective drug delivery and tumor-specific targeting in flow cytometry, confocal microscopy, and in vivo imaging system analysis. The ADC constructed with our CD276 mAb and payload monomethyl auristatin F (MMAF) showed high anti-NSCLC cytotoxicity to multiple lines and effective anti-tumor efficacy in both immunocompromised and immunocompetent NSCLC xenograft mouse models. The brief mechanism study revealed the integration of cell proliferation inhibition and immune cell reactivation in tumor microenvironments. The toxicity study did not detect off-target immune toxicity or peripheral toxicity. Altogether, this study suggested that anti-CD276 ADC could be a promising candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Jiashuai Zhang
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
| | - Zhuoxin (Zora) Zhou
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
| | - Irene Soohyun Cho
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Hailey Baker
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
| | - Ju Hwan Cho
- Comprehensive Cancer Center, The Ohio State University (OSU), 460 West 10th Avenue, Columbus, OH 43210, USA;
| | - Lufang Zhou
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
- Comprehensive Cancer Center, The Ohio State University (OSU), 460 West 10th Avenue, Columbus, OH 43210, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
- Comprehensive Cancer Center, The Ohio State University (OSU), 460 West 10th Avenue, Columbus, OH 43210, USA;
| |
Collapse
|
5
|
Kuwatani M, Sakamoto N. Pathological and molecular diagnoses of early cancer with bile and pancreatic juice. Dig Endosc 2022; 34:1340-1355. [PMID: 35543333 DOI: 10.1111/den.14348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
The dismal prognosis of pancreaticobiliary malignancies is mainly attributed to the extremely difficult detection of early-stage lesions, including intraepithelial neoplasia. To improve prognosis, several studies on the early detection of cancer have been conducted using bile and pancreatic juices for pathological or molecular analyses. One approach is liquid biopsy that includes information about the tumor, such as circulating tumor cells, circulating tumor DNA, microRNAs, and exosomes released by the tumor. Another approach is proteomics/metabolomics that reflects specific conditions in the tumor. These two approaches lead to artificial intelligence-based multiomics analyses that comprises genomics, proteomics/metabolomics, and transcriptomics. Based on the findings of molecular analysis, pathological analysis using immunohistochemical staining/fluorescence in situ hybridization has also been developed. Moreover, there have been reports of new methods/ingenuities for obtaining appropriate samples for the diagnosis of early-stage cancer. Here we review the knowledge on cutting-edge pathological and molecular analyses of bile and pancreatic juices, introduce some ingenuities in sampling and sample processing to promote effective clinical practice, and provide a basis for future studies.
Collapse
Affiliation(s)
- Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| |
Collapse
|
6
|
Li YC, Li KS, Liu ZL, Tang YC, Hu XQ, Li XY, Shi AD, Zhao LM, Shu LZ, Lian S, Yan ZD, Huang SH, Sheng GL, Song Y, Liu YJ, Huan F, Zhang MH, Zhang ZL. Research progress of bile biomarkers and their immunoregulatory role in biliary tract cancers. Front Immunol 2022; 13:1049812. [PMID: 36389727 PMCID: PMC9649822 DOI: 10.3389/fimmu.2022.1049812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Biliary tract cancers (BTCs), including cholangiocarcinoma and gallbladder carcinoma, originate from the biliary epithelium and have a poor prognosis. Surgery is the only choice for cure in the early stage of disease. However, most patients are diagnosed in the advanced stage and lose the chance for surgery. Early diagnosis could significantly improve the prognosis of patients. Bile has complex components and is in direct contact with biliary tract tumors. Bile components are closely related to the occurrence and development of biliary tract tumors and may be applied as biomarkers for BTCs. Meanwhile, arising evidence has confirmed the immunoregulatory role of bile components. In this review, we aim to summarize and discuss the relationship between bile components and biliary tract cancers and their ability as biomarkers for BTCs, highlighting the role of bile components in regulating immune response, and their promising application prospects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zong-li Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Khan M, Arooj S, Wang H. Soluble B7-CD28 Family Inhibitory Immune Checkpoint Proteins and Anti-Cancer Immunotherapy. Front Immunol 2021; 12:651634. [PMID: 34531847 PMCID: PMC8438243 DOI: 10.3389/fimmu.2021.651634] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Co-inhibitory B7-CD28 family member proteins negatively regulate T cell responses and are extensively involved in tumor immune evasion. Blockade of classical CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) and PD-1 (programmed cell death protein-1) checkpoint pathways have become the cornerstone of anti-cancer immunotherapy. New inhibitory checkpoint proteins such as B7-H3, B7-H4, and BTLA (B and T lymphocyte attenuator) are being discovered and investigated for their potential in anti-cancer immunotherapy. In addition, soluble forms of these molecules also exist in sera of healthy individuals and elevated levels are found in chronic infections, autoimmune diseases, and cancers. Soluble forms are generated by proteolytic shedding or alternative splicing. Elevated circulating levels of these inhibitory soluble checkpoint molecules in cancer have been correlated with advance stage, metastatic status, and prognosis which underscore their broader involvement in immune regulation. In addition to their potential as biomarker, understanding their mechanism of production, biological activity, and pathological interactions may also pave the way for their clinical use as a therapeutic target. Here we review these aspects of soluble checkpoint molecules and elucidate on their potential for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Adrait A, Dumonceau JM, Delhaye M, Annessi-Ramseyer I, Frossard JL, Couté Y, Farina A. Liquid Biopsy of Bile based on Targeted Mass Spectrometry for the Diagnosis of Malignant Biliary Strictures. Clin Transl Sci 2020; 14:148-152. [PMID: 33048472 PMCID: PMC7877827 DOI: 10.1111/cts.12890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Bile holds biomarkers of malignant biliary strictures (MBS) but is unsuited for automated analyzers used in routine diagnostic laboratories. Selected reaction monitoring (SRM) is a flexible high‐throughput analytical approach based on targeted mass spectrometry (MS) already implemented in clinical settings. We tested the hypothesis that SRM could be used to quantify cancer biomarkers in human bile. An SRM‐based assay was developed to simultaneously quantify up to 37 peptides from 13 bile proteins in a developmental cohort of 15 patients (MBS, n = 8; benign biliary stricture or obstruction (BBS), n = 7). The most reliable biomarkers were then absolutely quantified by SRM in a verification cohort of 67 patients (MBS, n = 37; BBS, n = 30). The diagnostic performances of single and combined biomarkers were assessed. In the developmental cohort, SRM‐based analysis revealed six protein biomarkers with significantly higher peptide ratios (endogenous vs. standard) in bile from MBS vs. BBS. In the verification cohort, five of these biomarkers proved good diagnostic ability (individual receiver operating characteristic‐area under the receiver operating characteristic curve (ROC‐AUC) up to 0.889, accuracies from 67.8% to 83.1%). Combining bile biomarkers and serum CA19‐9 in 2 panels allowed differentiating MBS from BBS with up to 0.929 ROC‐AUC and 89.8% accuracy. In this study, a newly developed SRM‐based assay proved able to simultaneously quantify multiple biomarkers in bile samples. The combination of bile biomarkers with serum CA19‐9 was highly accurate for the diagnosis of MBS. Liquid biopsy of bile based on targeted MS is eligible to support MBS diagnosis in clinical practice.
Collapse
Affiliation(s)
- Annie Adrait
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | - Myriam Delhaye
- Department of Gastroenterology, Hepatopancreatology and GI Oncology, Erasme University Hospital, Brussels, Belgium
| | | | - Jean-Louis Frossard
- Department of Medicine, Geneva University, Geneva, Switzerland.,Division of Gastroenterology, Geneva University Hospitals, Geneva, Switzerland
| | - Yohann Couté
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | - Annarita Farina
- Department of Medicine, Geneva University, Geneva, Switzerland.,Division of Gastroenterology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|