1
|
Stubberfield E, AbuOun M, Card RM, Welchman D, Anjum MF. Molecular characterization of antimicrobial resistance in Brachyspira species isolated from UK chickens: Identification of novel variants of pleuromutilin and beta-lactam resistance genes. Vet Microbiol 2024; 290:109992. [PMID: 38306769 DOI: 10.1016/j.vetmic.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Brachyspira species are Gram negative, anaerobic bacteria that colonise the gut of many animals, including poultry. In poultry, Brachyspira species can be commensal (B. innocens, B. murdochii, 'B. pulli') or pathogenic (B. pilosicoli, B. intermedia, B. alvinipulli or rarely B. hyodysenteriae), the latter causing avian intestinal spirochaetosis (AIS). Antimicrobial therapy options for treatment is limited, frequently involving administration of the pleuromutilin, tiamulin, in water. In this study 38 Brachyspira isolates from chickens in the UK, representing both commensal and pathogenic species, were whole genome sequenced to identify antimicrobial resistance (AMR) mechanisms and the minimum inhibitory concentration (MIC) to a number of antimicrobials was also determined. We identified several new variants of blaOXA in B. pilosicoli and B. pulli isolates, and variations in tva which led to two new tva variants in B.murdochii and B.pulli. A number of isolates also harboured mutations known to encode AMR in the 16S and 23S rRNA genes. The percentage of isolates that were genotypically multi-drug resistance (MDR) was 16%, with the most common resistance profile being: tetracycline, pleuromutilin and beta-lactam, which were found in three 'B. pulli' and one B. pilosicoli. There was good correlation with the genotype and the corresponding antibiotic MIC phenotypes: pleuromutilins (tiamulin and valnemulin), macrolides (tylosin and tylvalosin), lincomycin and doxycycline. The occurrence of resistance determinants identified in this study in pathogenic Brachyspira, especially those which were MDR, is likely to impact treatment of AIS and clearance of infections on farm.
Collapse
Affiliation(s)
- Emma Stubberfield
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Manal AbuOun
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | - Roderick M Card
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - David Welchman
- Animal and Plant Health Agency Winchester, Itchen Abbas, Winchester SO21 1BX, UK
| | - Muna F Anjum
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
2
|
An in silico reverse vaccinology study of Brachyspira pilosicoli, the causative organism of intestinal spirochaetosis, to identify putative vaccine candidates. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
French RK, Stone ZL, Parker KA, Holmes EC. Novel viral and microbial species in a translocated Toutouwai (Petroica longipes) population from Aotearoa/New Zealand. ONE HEALTH OUTLOOK 2022; 4:16. [PMID: 36224666 PMCID: PMC9558408 DOI: 10.1186/s42522-022-00072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Translocation is a common tool in wildlife management and its implementation has resulted in many conservation successes. During translocations, any associated infectious agents are moved with their wildlife hosts. Accordingly, translocations can present a risk of infectious disease emergence, although they also provide an opportunity to restore natural infectious communities ('infectome') and mitigate the long-term risks of reduced natural resistance. METHODS We used metatranscriptomic sequencing to characterise the cloacal infectome of 41 toutouwai (North Island robin, Petroica longipes) that were translocated to establish a new population within the North Island of New Zealand. We also screened for pathogenic bacteria, fungi and parasites. RESULTS Although we did not detect any known avian diseases, which is a positive outcome for the translocated toutouwai population, we identified a number of novel viruses of interest, including a novel avian hepatovirus, as well as a divergent calici-like virus and four hepe-like viruses of which the host species is unknown. We also revealed a novel spirochete bacterium and a coccidian eukaryotic parasite. CONCLUSIONS The presumably non-pathogenic viruses and microbial species identified here support the idea that most microorganisms likely do not cause disease in their hosts, and that translocations could serve to help restore and maintain native infectious communities. We advise greater surveillance of infectious communities of both native and non-native wildlife before and after translocations to better understand the impact, positive or negative, that such movements may have on both host and infectome ecology.
Collapse
Affiliation(s)
- Rebecca K French
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Zoë L Stone
- Zoology and Ecology Group, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Kevin A Parker
- Parker Conservation Ltd, 549 Rocks Road, Nelson, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
Nielsen SS, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Baldinelli F, Broglia A, Kohnle L, Van der Stede Y, Alvarez J. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Brachyspira hyodysenteriae in swine. EFSA J 2022; 20:e07124. [PMID: 35317125 PMCID: PMC8922405 DOI: 10.2903/j.efsa.2022.7124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brachyspira hyodysenteriae (B. hyodysenteriae) was identified among the most relevant antimicrobial-resistant (AMR) bacteria in the EU for swine in a previous scientific opinion. Thus, it has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to the bacterium. The assessment has been performed following a methodology previously published. The outcome is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with uncertain outcome. According to the assessment here performed, it is uncertain whether AMR B. hyodysenteriae can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (33-66% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that the bacterium does not meet the criteria in Sections 1, 2 and 3 (Categories A, B and C; 1-10%, 10-33% and 10-33% probability of meeting the criteria, respectively) and the AHAW Panel was uncertain whether it meets the criteria in Sections 4 and 5 (Categories D and E, 50-90% and 33-66% probability of meeting the criteria, respectively). The main animal species to be listed for AMR B. hyodysenteriae according to Article 8 criteria are pigs and some species of birds, such as chickens and ducks.
Collapse
|
5
|
McFadzean H, Schock A, Stubberfield E, Card RM, Thomson J, Rohde J, Murray L, Velo-Rego E, Ainsworth H, Barlow AM, Welchman D. Retrospective analysis of necrotizing typhlitis cases associated with Brachyspira spp. in British rheas. Avian Pathol 2021; 50:1-11. [PMID: 33779433 DOI: 10.1080/03079457.2021.1907305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
This paper describes a retrospective analysis of necrotizing typhlitis in common rheas (Rhea americana) diagnosed in the United Kingdom by the Animal & Plant Health Agency (APHA). From January 2008 to January 2020, seven cases of spirochaetal typhlitis associated with Brachyspira spp. were identified using the Veterinary Investigation Diagnosis Analysis database. Gross examination was combined with selective anaerobic culture, polymerase chain reaction, and histopathology to diagnose typhlitis associated with spirochaetal infection. Whole-genome sequencing was subsequently utilized on archived isolates from six of the seven submissions, overcoming issues with traditional testing methods and yielded gains in the identification of Brachyspira to species level. Brachyspira hyodysenteriae, an organism traditionally associated with typhlitis in rheas, was isolated in three sequenced submissions. One of these also demonstrated co-infection with Brachyspira intermedia. Brachyspira suanatina, Brachyspira hampsonii, and Brachyspira alvinipulli were identified by sequencing as single infections in the remaining three animals. This report demonstrates the ability of Brachyspira species other than B. hyodysenteriae to colonize the caeca of rheas presenting with typhlitis. Additionally, the B. alvinipulli isolate harboured a tva(A) gene, indicating higher potential pleuromutilin resistance, which has not previously been described in this Brachyspira species. This study discusses the epidemiology of examined cases and examines the potential role other species may play in these outbreaks.
Collapse
Affiliation(s)
| | - Alex Schock
- Animal and Plant Health Agency Lasswade, Midlothian, UK
| | | | | | - Jill Thomson
- SAC Consulting, Veterinary Services, Midlothian, UK
| | - Judith Rohde
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Laura Murray
- Animal and Plant Health Agency Starcross, Devon, UK
| | | | | | - Alex M Barlow
- Animal Health and Veterinary Laboratories Agency Langford, Somerset, UK
| | - David Welchman
- Animal and Plant Health Agency Winchester, Hampshire, UK
| |
Collapse
|
6
|
Pandey A, Humbert MV, Jackson A, Passey JL, Hampson DJ, Cleary DW, La Ragione RM, Christodoulides M. Evidence of homologous recombination as a driver of diversity in Brachyspira pilosicoli. Microb Genom 2020; 6:mgen000470. [PMID: 33174833 PMCID: PMC8116685 DOI: 10.1099/mgen.0.000470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The enteric, pathogenic spirochaete Brachyspira pilosicoli colonizes and infects a variety of birds and mammals, including humans. However, there is a paucity of genomic data available for this organism. This study introduces 12 newly sequenced draft genome assemblies, boosting the cohort of examined isolates by fourfold and cataloguing the intraspecific genomic diversity of the organism more comprehensively. We used several in silico techniques to define a core genome of 1751 genes and qualitatively and quantitatively examined the intraspecific species boundary using phylogenetic analysis and average nucleotide identity, before contextualizing this diversity against other members of the genus Brachyspira. Our study revealed that an additional isolate that was unable to be species typed against any other Brachyspira lacked putative virulence factors present in all other isolates. Finally, we quantified that homologous recombination has as great an effect on the evolution of the core genome of the B. pilosicoli as random mutation (r/m=1.02). Comparative genomics has informed Brachyspira diversity, population structure, host specificity and virulence. The data presented here can be used to contribute to developing advanced screening methods, diagnostic assays and prophylactic vaccines against this zoonotic pathogen.
Collapse
Affiliation(s)
- Anish Pandey
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Trust, SO166YD, UK
| | - Maria Victoria Humbert
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Alexandra Jackson
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Jade L. Passey
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - David J. Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David W. Cleary
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Trust, SO166YD, UK
| | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Myron Christodoulides
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
La T, Phillips ND, Hampson DJ. An Investigation into the Etiological Agents of Swine Dysentery in Australian Pig Herds. PLoS One 2016; 11:e0167424. [PMID: 27907102 PMCID: PMC5131991 DOI: 10.1371/journal.pone.0167424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Swine dysentery (SD) is a mucohemorrhagic colitis, classically seen in grower/finisher pigs and caused by infection with the anaerobic intestinal spirochete Brachyspira hyodysenteriae. More recently, however, the newly described species Brachyspira hampsonii and Brachyspira suanatina have been identified as causing SD in North America and/or Europe. Furthermore, there have been occasions where strains of B. hyodysenteriae have been recovered from healthy pigs, including in multiplier herds with high health status. This study investigated whether cases of SD in Australia may be caused by the newly described species; how isolates of B. hyodysenteriae recovered from healthy herds compared to isolates from herds with disease; and how contemporary isolates compare to those recovered in previous decades, including in their plasmid gene content and antimicrobial resistance profiles. In total 1103 fecal and colon samples from pigs in 97 Australian herds were collected and tested. Of the agents of SD only B. hyodysenteriae was found, being present in 34 (35.1%) of the herds, including in 14 of 24 (58%) herds that had been considered to be free of SD. Multilocus sequence typing applied to 96 isolates from 30 herds and to 53 Australian isolates dating from the 1980s through the early 2000s showed that they were diverse, distinct from those reported in other countries, and that the 2014/16 isolates generally were different from those from earlier decades. These findings provided evidence for ongoing evolution of B. hyodysenteriae strains in Australia. In seven of the 20 herds where multiple isolates were available, two to four different sequence types (STs) were identified. Isolates with the same STs also were found in some herds with epidemiological links. Analysis of a block of six plasmid virulence-associated genes showed a lack of consistency between their presence or absence and their origin from herds currently with or without disease; however, significantly fewer isolates from the 2000s and from 2014/16 had this block of genes compared to isolates from the 1980s and 1990s. It is speculated that loss of these genes may have been responsible for the occurrence of milder disease occurring in recent years. In addition, fewer isolates from 2014/16 were susceptible to the antimicrobials lincomycin, and to a lesser extent tiamulin, than those from earlier Australian studies. Four distinct multi-drug resistant strains were identified in five herds, posing a threat to disease control.
Collapse
Affiliation(s)
- Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Nyree D. Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - David J. Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- * E-mail:
| |
Collapse
|
8
|
Aller-Morán LM, Martínez-Lobo FJ, Rubio P, Carvajal A. Cross-reactions in specific Brachyspira spp. PCR assays caused by "Brachyspira hampsonii" isolates: implications for detection. J Vet Diagn Invest 2016; 28:755-759. [PMID: 27664096 DOI: 10.1177/1040638716667528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An emerging novel spirochete in swine, provisionally designated "Brachyspira hampsonii," has been detected worldwide. It has been associated with swine dysentery and cannot be differentiated from B. hyodysenteriae, the classical etiologic agent of this disease, using standard phenotypic methods. We evaluated cross-reactions of "B. hampsonii" isolates recovered from avian species in some of the currently available species-specific polymerase chain reaction (PCR) assays for the identification of swine Brachyspira species. Ten avian "B. hampsonii" isolates recovered from wild waterfowl were used. No false-positive results were recorded with a B. pilosicoli-specific PCR based on the amplification of a fragment of the 16S rRNA gene. However, the percentage of false-positive results varied, with a range of 10-80%, in the evaluated B. hyodysenteriae-specific assays based on the amplification of the 23S rRNA, nox, and tlyA genes. Similarly, results of the B. intermedia-specific PCR assays yielded poor specificity, with up to 80% of the "B. hampsonii" isolates tested giving false-positive results. Finally, 2 "B. hampsonii" avian isolates yielded a positive result in a B. innocens- and B. murdochii-specific PCR. This result should be interpreted very cautiously as these 2 isolates could represent a recombinant genotype.
Collapse
Affiliation(s)
- Luis M Aller-Morán
- Department of Infectious Diseases and Epidemiology, Veterinary Faculty, University of León, León, Spain
| | - F Javier Martínez-Lobo
- Department of Infectious Diseases and Epidemiology, Veterinary Faculty, University of León, León, Spain
| | - Pedro Rubio
- Department of Infectious Diseases and Epidemiology, Veterinary Faculty, University of León, León, Spain
| | - Ana Carvajal
- Department of Infectious Diseases and Epidemiology, Veterinary Faculty, University of León, León, Spain
| |
Collapse
|
9
|
Abstract
Swine dysentery is a severe enteric disease in pigs, which is characterized by bloody to mucoid diarrhea and associated with reduced growth performance and variable mortality. This disease is most often observed in grower–finisher pigs, wherein susceptible pigs develop a significant mucohemorrhagic typhlocolitis following infection with strongly hemolytic spirochetes of the genus Brachyspira. While swine dysentery is endemic in many parts of the world, the disease had essentially disappeared in much of the United States by the mid-1990s as a result of industry consolidation and effective treatment, control, and elimination methods. However, since 2007, there has been a reported increase in laboratory diagnosis of swine dysentery in parts of North America along with the detection of novel pathogenic Brachyspira spp worldwide. Accordingly, there has been a renewed interest in swine dysentery and Brachyspira spp infections in pigs, particularly in areas where the disease was previously eliminated. This review provides an overview of knowledge on the etiology, pathogenesis, and diagnosis of swine dysentery, with insights into risk factors and control.
Collapse
Affiliation(s)
- E. R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Le Roy CI, Mappley LJ, La Ragione RM, Woodward MJ, Claus SP. Brachyspira pilosicoli-induced avian intestinal spirochaetosis. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:28853. [PMID: 26679774 PMCID: PMC4683989 DOI: 10.3402/mehd.v26.28853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/22/2022]
Abstract
Avian intestinal spirochaetosis (AIS) is a common disease occurring in poultry that can be caused by Brachyspira pilosicoli, a Gram-negative bacterium of the order Spirochaetes. During AIS, this opportunistic pathogen colonises the lower gastrointestinal (GI) tract of poultry (principally, the ileum, caeca, and colon), which can cause symptoms such as diarrhoea, reduced growth rate, and reduced egg production and quality. Due to the large increase of bacterial resistance to antibiotic treatment, the European Union banned in 2006 the prophylactic use of antibiotics as growth promoters in livestock. Consequently, the number of outbreaks of AIS has dramatically increased in the UK resulting in significant economic losses. This review summarises the current knowledge about AIS infection caused by B. pilosicoli and discusses various treatments and prevention strategies to control AIS.
Collapse
Affiliation(s)
- Caroline I Le Roy
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Luke J Mappley
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Roberto M La Ragione
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, UK.,Department of Bacteriology, APHA, Weybridge, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK;
| |
Collapse
|
11
|
Jansson DS, Mushtaq M, Johansson KE, Bonnedahl J, Waldenström J, Andersson DI, Broman T, Berg C, Olsen B. Intestinal spirochaetes (genus Brachyspira) colonise wild birds in the southern Atlantic region and Antarctica. Infect Ecol Epidemiol 2015; 5:29296. [PMID: 26584828 PMCID: PMC4653322 DOI: 10.3402/iee.v5.29296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 11/14/2022] Open
Abstract
Introduction The genus Brachyspira contains well-known enteric pathogens of veterinary significance, suggested agents of colonic disease in humans, and one potentially zoonotic agent. There are recent studies showing that Brachyspira are more widespread in the wildlife community than previously thought. There are no records of this genus in wildlife from the southern Atlantic region and Antarctica. Our aim was therefore, to determine whether intestinal spirochaetes of genus Brachyspira colonise marine and coastal birds in this region. Method Faecal samples were collected from marine and coastal birds in the southern Atlantic region, including sub-Antarctic islands and Antarctica, in 2002, 2009, and 2012, with the aim to isolate and characterise zoonotic agents. In total, 205 samples from 11 bird species were selectively cultured for intestinal spirochaetes of genus Brachyspira. To identify isolates to species level, they were subjected to phenotyping, species-specific polymerase chain reactions, sequencing of partial 16S rRNA, NADH oxidase (nox), and tlyA genes, and phylogenetic analysis. Antimicrobial susceptibility tests were performed. Results Fourteen unique strains were obtained from 10 birds of three species: four snowy sheathbills (Chionis albus), three kelp geese (Chloephaga hybrida subsp. malvinarum), and three brown skua (Stercorarius antarcticus subsp. lonnbergi) sampled on the Falkland Islands, Tierra del Fuego in Argentina, South Georgia, South Shetland Islands, and the Antarctic Peninsula. Five Brachyspira strains were closely related to potentially enteropathogenic Brachyspira sp. of chickens: B. intermedia (n=2, from snowy sheathbills), and B. alvinipulli (n=3, from a kelp goose and two snowy sheathbills). Three strains from kelp geese were most similar to the presumed non-pathogenic species ‘B. pulli’ and B. murdochii, whereas the remaining six strains could not be attributed to currently known species. No isolates related to human strains were found. None of the tested strains showed decreased susceptibility to tiamulin, valnemulin, doxycycline, tylvalosin, lincomycin, or tylosin. Conclusions This is the first report of intestinal spirochaetes from this region. Despite limitations of current diagnostic methods, our results, together with earlier studies, show that Brachyspira spp., including potentially pathogenic strains, occur globally among free-living avian hosts, and that this genus encompasses a higher degree of biodiversity than previously recognised.
Collapse
Affiliation(s)
- Désirée S Jansson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden;
| | - Memoona Mushtaq
- Department of Animal Breeding and Genetics, Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Karl-Erik Johansson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonas Bonnedahl
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden.,Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tina Broman
- Division of CBRN Defence and Security, FOI - Swedish Defence Research Agency, Umeå, Sweden
| | - Charlotte Berg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Björn Olsen
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Molecular Epidemiology of Novel Pathogen "Brachyspira hampsonii" Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species. J Clin Microbiol 2015; 53:2908-18. [PMID: 26135863 DOI: 10.1128/jcm.01236-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/22/2015] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated "Brachyspira hampsonii," with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species.
Collapse
|
13
|
Alavi L, Jamshidian M, Seifi-Abadshapuri MR, Mayahi M, Alavi SM. Isolation of Brachyspira pilocicoli from Gastrointestinal Tract of Commercial Chickens in Khuzestan, South West Iran. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2013. [DOI: 10.17795/ijep15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Martínez-Lobo FJ, Hidalgo Á, García M, Argüello H, Naharro G, Carvajal A, Rubio P. First identification of "Brachyspira hampsonii" in wild European waterfowl. PLoS One 2013; 8:e82626. [PMID: 24349322 PMCID: PMC3857821 DOI: 10.1371/journal.pone.0082626] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022] Open
Abstract
Anseriformes deserve special attention in the epidemiology of Brachyspira spp. because diverse Anseriformes species have been described to act as highly efficient carriers of several Brachyspira spp. that can also infect livestock. The aim of this study was to investigate the prevalence and diversity of Brachyspira spp. in waterfowl that winter in Spain. Brachyspira spp. were isolated from 51 of the 205 faecal samples collected from graylag geese and mallards in the Villafáfila Lagoons Nature Reserve (Northwestern Spain). The Brachyspira species identified through phenotyping, PCR and sequencing of the nox gene were B. pilosicoli (5.9%), B. alvinipulli (11.8%), "B. hampsonii" (19.6%), B. murdochii (23.5%) and B. innocens (39.2%). The most relevant finding of this study is the description of "B. hampsonii" in specimens from birds for the first time. Phylogenetic analysis of the nox gene sequences grouped all of the obtained "B. hampsonii" isolates into a cluster with Brachyspira strains previously identified by others as "B. hampsonii" and separated from other Brachyspira spp. isolates and reference strains. Additionally, this cluster was related to clades that grouped B. murdochii and B. innocens isolates. The identification of "B. hampsonii" was also achieved in 8 of the 10 isolates by sequencing the16S rRNA gene and tlyA gene. Regardless of the species identified, no antimicrobial resistance was observed in any of the enteropathogenic isolates recovered. This is the first description of "B. hampsonii" in European waterfowl, which might represent hosts that serve as natural reservoirs of this Brachyspira species. This finding indicates that this spirochete is not limited to North America, and its presence in wild birds in Europe poses a risk of transmission to livestock.
Collapse
Affiliation(s)
| | - Álvaro Hidalgo
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Marta García
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Héctor Argüello
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Germán Naharro
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Ana Carvajal
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Pedro Rubio
- Infectious Diseases and Epidemiology Unit, Faculty of Veterinary Medicine, University of León, León, Spain
| |
Collapse
|
15
|
Mappley LJ, La Ragione RM, Woodward MJ. Brachyspira and its role in avian intestinal spirochaetosis. Vet Microbiol 2013; 168:245-60. [PMID: 24355534 DOI: 10.1016/j.vetmic.2013.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
The fastidious, anaerobic spirochaete Brachyspira is capable of causing enteric disease in avian, porcine and human hosts, amongst others, with a potential for zoonotic transmission. Avian intestinal spirochaetosis (AIS), the resulting disease from colonisation of the caeca and colon of poultry by Brachyspira leads to production losses, with an estimated annual cost of circa £ 18 million to the commercial layer industry in the United Kingdom. Of seven known and several proposed species of Brachyspira, three are currently considered pathogenic to poultry; B. alvinipulli, B. intermedia and B. pilosicoli. Currently, AIS is primarily prevented by strict biosecurity controls and is treated using antimicrobials, including tiamulin. Other treatment strategies have been explored, including vaccination and probiotics, but such developments have been hindered by a limited understanding of the pathobiology of Brachyspira. A lack of knowledge of the metabolic capabilities and little genomic information for Brachyspira has resulted in a limited understanding of the pathobiology. In addition to an emergence of antibiotic resistance amongst Brachyspira, bans on the prophylactic use of antimicrobials in livestock are driving an urgent requirement for alternative treatment strategies for Brachyspira-related diseases, such as AIS. Advances in the molecular biology and genomics of Brachyspira heralds the potential for the development of tools for genetic manipulation to gain an improved understanding of the pathogenesis of Brachyspira.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK.
| | - Roberto M La Ragione
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK; School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, Berkshire RG6 6AP, UK
| |
Collapse
|
16
|
Osorio J, Carvajal A, Naharro G, Rubio P, La T, Phillips ND, Hampson DJ. Identification of weakly haemolytic Brachyspira isolates recovered from pigs with diarrhoea in Spain and Portugal and comparison with results from other countries. Res Vet Sci 2013; 95:861-9. [PMID: 23928181 DOI: 10.1016/j.rvsc.2013.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/02/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
Weakly haemolytic anaerobic intestinal spirochaetes of the genus Brachyspira are commonly identified based on species-specific gene sequences. Apart from the pathogenic Brachyspira pilosicoli, the distribution and disease associations of the other weakly haemolytic Brachyspira species in pigs have not been comprehensively investigated. In this study weakly haemolytic Brachyspira isolates (n=67) from Spanish and Portuguese pigs with diarrhoea, negative in a routine diagnostic PCR for B. pilosicoli, were identified by sequencing their NADH oxidase genes (nox). Nearly half the isolates were identified as Brachyspira murdochii (n=31; 46.3%). The others were Brachyspira innocens (n=26; 38.8%), Brachyspira intermedia (n=7; 10.4%), "Brachyspira pulli" (n=1; 1.5%) and a potentially novel Brachyspira species (n=2; 3%). Multilocus sequence typing (MLST) on a subset of 18 isolates confirmed their species designations, including the potential new species, and identified similarities to strains from other countries.
Collapse
Affiliation(s)
- J Osorio
- Animal Health Department, Faculty of Veterinary Sciences, University of León, León 24071, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Swine dysentery: aetiology, pathogenicity, determinants of transmission and the fight against the disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:1927-47. [PMID: 23665849 PMCID: PMC3709357 DOI: 10.3390/ijerph10051927] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022]
Abstract
Swine Dysentery (SD) is a severe mucohaemorhagic enteric disease of pigs caused by Brachyspira hyodysenteriae, which has a large impact on pig production and causes important losses due to mortality and sub-optimal performance. Although B. hyodysenteriae has been traditionally considered a pathogen mainly transmitted by direct contact, through the introduction of subclinically infected animals into a previously uninfected herd, recent findings position B. hyodysenteriae as a potential threat for indirect transmission between farms. This article summarizes the knowledge available on the etiological agent of SD and its virulence traits, and reviews the determinants of SD transmission. The between-herds and within-herd transmission routes are addressed. The factors affecting disease transmission are thoroughly discussed, i.e., environmental survival of the pathogen, husbandry factors (production system, production stage, farm management), role of vectors, diet influence and interaction of the microorganism with gut microbiota. Finally, prophylactic and therapeutic approaches to fight against the disease are briefly described.
Collapse
|