1
|
Jovanović Glavaš O, Sviličić Petrić I, Palijan G. Influence of Naturally Occurring Bacteria on Embryonic and Larval Development of Common Toad Tadpoles. BIOLOGY 2025; 14:308. [PMID: 40136564 PMCID: PMC11939905 DOI: 10.3390/biology14030308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Amphibians, as the most threatened group of vertebrates, are the focus of investigation of various agents that could affect their fitness and survival. In this context, we examined the effects of naturally occurring bacteria and their combinations on the embryonic and larval development of common toad tadpoles (Bufo bufo). One egg string that was collected from the wild was disinfected in the lab and divided into short strings, each containing 20 eggs. These strings were exposed to three different control treatments, i.e., a sterile FETAX solution, water collected from the tadpoles' native habitat, and sterilized habitat water, as well as to three different bacterial cultures isolated from habitat water (Bacillus sp., Mesobacillus sp.). We analyzed several morphometric variables (snout-vent length, total length, and weight), the energy budget by measuring body composition (proteins, carbohydrates, and lipids), and biomarker activity (acetylcholinesterase and lactate dehydrogenase). Our results indicate that the native microbial community had a negative effect on egg and tadpole development, as sterilized habitat water supported their highest development. Additionally, when grown in FETAX, pure bacterial cultures and their combinations decreased acetylcholinesterase activity but positively affected both tadpole size and energy budget. These findings suggest that bacteria can influence the larval development of common toads by modifying physiological traits. Future research should identify which microbes have beneficial or detrimental effects on amphibian development.
Collapse
Affiliation(s)
- Olga Jovanović Glavaš
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia;
| | | | - Goran Palijan
- Department of Biology, University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia;
| |
Collapse
|
2
|
Liu YF, Yang L, He QP, Xu YL, Zhu YT, Mi YL, Zhou L, Yang SZ, Gu JD, Mu BZ. Gelling and reducing agents are potential carbon and energy sources in culturing of anaerobic microorganisms. Appl Environ Microbiol 2025; 91:e0227624. [PMID: 39936905 PMCID: PMC11921371 DOI: 10.1128/aem.02276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
The majority of microorganisms in the environment have yet to be isolated in pure cultures, and the reasons behind this phenomenon remain elusive. In this study, we investigated the possibility of the commonly used gelling agent including agar and gellan gum as a source of carbon and energy in anaerobic roll-tube cultivation from one mangrove sediment sample and two high-temperature oilfield samples. Based on growth tests and genomic evidence, anaerobic gellan degraders were retrieved from genera of Clostridium, Lacrimispora, and lineages from the rarely cultivated phylum Atribacterota. Anaerobic agarolytic microorganisms were found to be members of Bacillus and Clostridium. We also proved the role of carbon and energy sources of L-cysteine, a routine agent used to make culture media anoxic/anaerobic in both enrichment cultures and isolated strains representing Acetomicrobium, Thermodesulfovibrio, Lacrimispora, Clostridium, Bacillus, Coprothermobacter, Citrobacter, and Enterobacter. Furthermore, the isolates and enriched microbial communities utilizing L-cysteine under anaerobic conditions were mainly through L-cysteine desulfuration to pyruvate, ammonia, and sulfide. This study demonstrates that the widely used gelling and reducing agents in the basal medium can serve as carbon and energy sources for anaerobic microorganisms and thus may bias the enrichment and isolation. IMPORTANCE Most microbial species inhabiting natural environments have not been isolated in pure cultures using conventional media and laboratory conditions, but the reason behind this is unclear. Here, we provided a new explanation for the phenomenon, in that both the gelling agents, like agar and gellan gum, and reducing agent L-cysteine-HCl in the media provide extra carbon and energy sources to microorganisms and therefore decrease the chance in isolation specifically for the supplemented substrate which is supposed to be the sole source of carbon and energy. This result demonstrated that further improvement in the effectiveness of isolation of targeted microorganisms will be facilitated by subtracting the overlooked organic ingredients in the medium and more innovations.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Liu Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Qing-Ping He
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Yi-Lin Xu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Tong Zhu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan-Le Mi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of MEOR, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Comparative Analysis of Brucepastera parasyntrophica gen. nov., sp. nov. and Teretinema zuelzerae gen. nov., comb. nov. ( Treponemataceae) Reveals the Importance of Interspecies Hydrogen Transfer in the Energy Metabolism of Spirochetes. Appl Environ Microbiol 2022; 88:e0050322. [PMID: 35862663 PMCID: PMC9317865 DOI: 10.1128/aem.00503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most members of the family Treponemataceae (Spirochaetales) are associated with vertebrate hosts. However, a diverse clade of uncultured, putatively free-living treponemes comprising several genus-level lineages is present in other anoxic environments. The only cultivated representative to date is Treponema zuelzerae, isolated from freshwater mud. Here, we describe the isolation of strain RmG11 from the intestinal tract of cockroaches. The strain represents a novel genus-level lineage of Treponemataceae and is metabolically distinct from T. zuelzerae. While T. zuelzerae grows well on various sugars, forming acetate and H2 as major fermentation products, strain RmG11 grew poorly on glucose, maltose, and starch, forming mainly ethanol and only small amounts of acetate and H2. In contrast to the growth of T. zuelzerae, that of strain RmG11 was strongly inhibited at high H2 partial pressures but improved considerably when H2 was removed from the headspace. Cocultures of strain RmG11 with the H2-consuming Methanospirillum hungatei produced acetate and methane but no ethanol. Comparative genomic analysis revealed that strain RmG11 possesses only a single, electron-confurcating hydrogenase that forms H2 from NADH and reduced ferredoxin, whereas T. zuelzerae also possesses a second, ferredoxin-dependent hydrogenase that allows the thermodynamically more favorable formation of H2 from ferredoxin via the Rnf complex. In addition, we found that T. zuelzerae utilizes xylan and possesses the genomic potential to degrade other plant polysaccharides. Based on phenotypic and phylogenomic evidence, we describe strain RmG11 as Brucepastera parasyntrophica gen. nov., sp. nov. and Treponema zuelzerae as Teretinema zuelzerae gen. nov., comb. nov. IMPORTANCE Spirochetes are widely distributed in various anoxic environments and commonly form molecular hydrogen as a major fermentation product. Here, we show that two closely related members of the family Treponemataceae differ strongly in their sensitivity to high hydrogen partial pressure, and we explain the metabolic mechanisms that cause these differences by comparative genome analysis. We demonstrate a strong boost in the growth of the hydrogen-sensitive strain and a shift in its fermentation products to acetate during cocultivation with a H2-utilizing methanogen. Our results add a hitherto unrecognized facet to the fermentative metabolism of spirochetes and also underscore the importance of interspecies hydrogen transfer in not-obligately-syntrophic interactions among fermentative and hydrogenotrophic guilds in anoxic environments.
Collapse
|
4
|
Mao Z, Gräßle F, Frey J, Franchini P, Schleheck D, Müller N, Schink B. Phosphitispora fastidiosa gen. nov. sp. nov., a new dissimilatory phosphite-oxidizing anaerobic bacterium isolated from anaerobic sewage sludge. Int J Syst Evol Microbiol 2021; 71. [PMID: 34878375 DOI: 10.1099/ijsem.0.005142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new strictly anaerobic bacterium, strain DYL19T, was enriched and isolated with phosphite as the sole electron donor and CO2 as a single carbon source and electron acceptor from anaerobic sewage sludge sampled at a sewage treatment plant in Constance, Germany. It is a Gram-positive, spore-forming, slightly curved, rod-shaped bacterium which oxidizes phosphite to phosphate while reducing CO2 to biomass and small amounts of acetate. Optimal growth is observed at 30 °C, pH 7.2, with a doubling time of 3 days. Beyond phosphite, no further inorganic or organic electron donor can be used, and no other electron acceptor than CO2 is reduced. Sulphate inhibits growth with phosphite and CO2. The G+C content is 45.95 mol%, and dimethylmenaquinone-7 is the only quinone detectable in the cells. On the basis of 16S rRNA gene sequence analysis and other chemotaxonomic properties, strain DYL19T is described as the type strain of a new genus and species, Phosphitispora fastidiosa gen. nov., sp. nov.
Collapse
Affiliation(s)
- Zhuqing Mao
- Department of Biology, University of Konstanz, Constance, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Fabian Gräßle
- Department of Biology, University of Konstanz, Constance, Germany
| | - Jasmin Frey
- Department of Biology, University of Konstanz, Constance, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Constance, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Constance, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Constance, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Constance, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
5
|
Andreeva SV, Filippova YY, Devyatova EV, Nokhrin DY. Variability of the structure of winter microbial communities in Chelyabinsk lakes. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Microorganisms form complex and dynamic communities that play a key role in the biogeochemical cycles of lakes. A high level of urbanization is currently a serious threat to bacterial communities and the ecosystem of freshwater bodies. To assess the contribution of anthropogenic load to variations in the structure of winter microbial communities in lakes, microorganisms of four water bodies of Chelyabinsk region were studied for the first time. We used cultural, chromatography-mass spectrometric, and modern methods of statistical data processing (particularly, multivariate exploratory analysis and canonical analysis of correspondences). The research showed that the composition of winter microbial communities in lakes Chebarkul’, Smolino, Pervoye, and Shershenevskoye Reservoir did not differ significantly between the main phyla of microorganisms. The dominant microorganisms were found to be of the Firmicutes phylum and Actinobacteria phylum. The structure of bacterial communities had special features depending on the characteristics of the water body and the sampling depths. Thus, in the lakes Smolino, Pervoye, and Shershenevskoye Reservoir, an important role was played by associations between microorganisms – indicators of fecal contamination: coliform bacteria and Enterococcus. On the contrary, in Chebarkul’ Lake, members of the genus Bacillus, which are natural bioremediators, formed stable winter associations. However, the differences between water bodies and sampling depths reflected 28.1% and 9.8% of the variability of the winter microbial communities, respectively. The largest contribution (about 60%) to the variability of the structure was made by intra-water processes, which determined the high heterogeneity of samples from different water areas. We assume that an important role in this variability was played by the high anthropogenic impact in a large industrial metropolis. In our opinion, this line of research is very promising for addressing key environmental issues.
Collapse
|
6
|
Andreeva SV, Filippova YY, Devyatova EV, Nokhrin DY. Variability of the structure of winter microbial communities in Chelyabinsk lakes. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Microorganisms form complex and dynamic communities that play a key role in the biogeochemical cycles of lakes. A high level of urbanization is currently a serious threat to bacterial communities and the ecosystem of freshwater bodies. To assess the contribution of anthropogenic load to variations in the structure of winter microbial communities in lakes, microorganisms of four water bodies of Chelyabinsk region were studied for the first time. We used cultural, chromatography-mass spectrometric, and modern methods of statistical data processing (particularly, multivariate exploratory analysis and canonical analysis of correspondences). The research showed that the composition of winter microbial communities in lakes Chebarkul’, Smolino, Pervoye, and Shershenevskoye Reservoir did not differ significantly between the main phyla of microorganisms. The dominant microorganisms were found to be of the Firmicutes phylum and Actinobacteria phylum. The structure of bacterial communities had special features depending on the characteristics of the water body and the sampling depths. Thus, in the lakes Smolino, Pervoye, and Shershenevskoye Reservoir, an important role was played by associations between microorganisms – indicators of fecal contamination: coliform bacteria and Enterococcus. On the contrary, in Chebarkul’ Lake, members of the genus Bacillus, which are natural bioremediators, formed stable winter associations. However, the differences between water bodies and sampling depths reflected 28.1% and 9.8% of the variability of the winter microbial communities, respectively. The largest contribution (about 60%) to the variability of the structure was made by intra-water processes, which determined the high heterogeneity of samples from different water areas. We assume that an important role in this variability was played by the high anthropogenic impact in a large industrial metropolis. In our opinion, this line of research is very promising for addressing key environmental issues.
Collapse
|
7
|
Gräßle F, Plugge C, Franchini P, Schink B, Schleheck D, Müller N. Pelorhabdus rhamnosifermentans gen. nov., sp. nov., a strictly anaerobic rhamnose degrader from freshwater lake sediment. Syst Appl Microbiol 2021; 44:126225. [PMID: 34198168 DOI: 10.1016/j.syapm.2021.126225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/14/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
A rhamnose-degrading bacterium, strain BoRhaAT, was isolated from profundal sediment of Lake Constance in agar dilution series with l-rhamnose as substrate and with a background lawn of Methanospirillum hungatei. The isolated strain was a motile rod that stained Gram positive. Growth was observed within a pH range of 4.0-7.5 and a temperature range of 15-30°C. Fermentation products of rhamnose or glucose were acetate, propionate, ethanol, butyrate, and 1-propanol. The G+C content was 40.6% G+C. The dominant fatty acids are C16:1ω9c, i-C13:03OH, C16:0 and C17:1ω8c with 8-21% relative abundance. Polar lipids were glycolipids, phosphatidylethanolamine, phosphoaminolipid and other lipids, of which phosphatidylethanolamine was most abundant. The sequence of the 16S rRNA gene of the new isolate matches the sequence of its closest relative Anaerosporomusa subterranea to 92.4%. A comparison of the genome with this strain showed 60.2% genome-wide average amino acid identity (AAI), comparisons with other type strains showed a maximum of 62.7% AAI. Thus, the definition of a new genus is justified for which we propose the name Pelorhabdus. For strain BoRhaAT, we propose the name Pelorhabdus rhamnosifermentans gen. nov., sp. nov., with strain BoRhaAT (DSM 111565T = JCM 39158T) as the type strain.
Collapse
Affiliation(s)
- Fabian Gräßle
- Department of Biology, University of Konstanz, Konstanz, Germany; Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany
| | - Caroline Plugge
- Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany; Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Konstanz, Germany; Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany; Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Konstanz, Germany; Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
8
|
Isolation of a member of the candidate phylum 'Atribacteria' reveals a unique cell membrane structure. Nat Commun 2020; 11:6381. [PMID: 33318506 PMCID: PMC7736352 DOI: 10.1038/s41467-020-20149-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/04/2020] [Indexed: 11/11/2022] Open
Abstract
A key feature that differentiates prokaryotic cells from eukaryotes is the absence of an intracellular membrane surrounding the chromosomal DNA. Here, we isolate a member of the ubiquitous, yet-to-be-cultivated phylum ‘Candidatus Atribacteria’ (also known as OP9) that has an intracytoplasmic membrane apparently surrounding the nucleoid. The isolate, RT761, is a subsurface-derived anaerobic bacterium that appears to have three lipid membrane-like layers, as shown by cryo-electron tomography. Our observations are consistent with a classical gram-negative structure with an additional intracytoplasmic membrane. However, further studies are needed to provide conclusive evidence for this unique intracellular structure. The RT761 genome encodes proteins with features that might be related to the complex cellular structure, including: N-terminal extensions in proteins involved in important processes (such as cell-division protein FtsZ); one of the highest percentages of transmembrane proteins among gram-negative bacteria; and predicted Sec-secreted proteins with unique signal peptides. Physiologically, RT761 primarily produces hydrogen for electron disposal during sugar degradation, and co-cultivation with a hydrogen-scavenging methanogen improves growth. We propose RT761 as a new species, Atribacter laminatus gen. nov. sp. nov. and a new phylum, Atribacterota phy. nov. A key feature that differentiates prokaryotic cells from eukaryotes is the absence of an intracellular membrane surrounding the chromosomal DNA. Here, the authors isolate a member of the ubiquitous, yet-to-be-cultivated bacterial phylum ‘Candidatus Atribacteria’ that has an intracytoplasmic membrane apparently surrounding the nucleoid.
Collapse
|
9
|
Zhang G, Yang R, Chen T, Zhang B, Yang H, Wu X, Gao H, Zhang W, Liu G. Mesobacillus harenae sp. nov., isolated from the sandy soil of a cold desert. Int J Syst Evol Microbiol 2020; 71. [PMID: 33270002 DOI: 10.1099/ijsem.0.004594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated Y40T, was isolated from sandy soil sampled on the Qinghai-Tibet Plateau. A polyphasic study confirmed the affiliation of the strain with the genus Mesobacillus. Strain Y40T was found to be an aerobic, Gram-stain-positive, motile and rod-shaped bacterium. The strain grew at 10-42 °C, pH 6-9 and with 0-2 % (w/v) NaCl. The diagnostic amino acid was meso-diaminopimeilic acid. MK7 was predominant menaquinone, and iso-C15:0, iso-C17:1 ω10c and anteiso-C15:0 were the major fatty acids. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid. The DNA G+C content was 40.6 mol%. Based on he results of 16S rRNA gene sequence analysis, strain Y40T was phylogenetically closely related to Mesobacillus zeae JJ-247T and Mesobacillus foraminis CV53T, with similarities of 98.0 and 97.7 %, respectively. The average nucleotide identity (ANIb) values between strain Y40T and Mesobacillus zeae JJ-247T and Mesobacillus foraminis CV53T were 69.9 and 70.0 %, respectively. Based on the morphological, physiological, and chemotaxonomic data, it is proposed that strain Y40T (=CICC 24459T=JCM 32794T) should be classified into the genus Mesobacillus as Mesobacillus harenae sp. nov.
Collapse
Affiliation(s)
- Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,Key Laboratory of Microbial Resources Exploition and Application, Gansu Province, Lanzhou 730000, PR China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China
| | - Ruiqi Yang
- School of Geography and Environmental Engineering, Lanzhou City University, Lanzhou 730070, PR China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Binglin Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China
| | - Hui Yang
- Key Laboratory of Microbial Resources Exploition and Application, Gansu Province, Lanzhou 730000, PR China
| | - Xiukun Wu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Haining Gao
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Zhangye 734000, PR China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou 730000, PR China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
10
|
Li Y, Tang Y, Xiong P, Zhang M, Deng Q, Liang D, Zhao Z, Feng Y, Zhang Y. High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge. WATER RESEARCH 2020; 176:115763. [PMID: 32272323 DOI: 10.1016/j.watres.2020.115763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Kitchen wastes (KW) have been widely investigated for bio-ethanol production, while no study utilizes KW as ethanol source to stimulate the methanogenic communities to perform direct interspecies electron transfer (DIET), since the excess acidity contained after the biological ethanol-type fermentation pretreatment (BEFP) can seriously inhibit the DIET-based syntrophic metabolism. In this study, a strategy that utilized waste activated sludge (WAS) as co-substrate to relieve the excess acidity after BEFP during anaerobic co-digestion (AcoD) was proposed. The results showed that, under the mixed ratio of 1:2 and 1:5 (KW:WAS, volume ratio), both methane production and organic compound removal evidently increased, compared with that treating the sole WAS. Conversely, under the other mixed ratios (sole KW, 5:1, 2:1 and 1:1), no methane but the evident hydrogen production was detected, and syntrophic metabolism of organic acids and alcohols was prevented. Three-dimensional excitation emission matrix (3D-EEM) analysis showed that the protein-like organic compounds contained in both KW and WAS were effectively degraded. Furthermore, the maximum methane production potential from WAS during AcoD (260.5 ± 4.1 and 264.3 ± 2.7 mL/g-COD) was higher than that treating sole WAS (250.8 ± 0.1 mL/g-COD). Microbial community analysis showed that, some genera capable of metabolizing the complex organic compounds with the reduction of the elemental sulfur or equipped with the electrically conductive pili were specially enriched during AcoD under the mixed ratio of 1:2 and 1:5. They might proceed DIET with methanogens, such as Methanosarcina and Methanospirillum species, to maintain the syntrophic metabolism effective and stable, since the abundance of both Methanosarcina and Methanospirillum species evidently increased.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Yapeng Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Pu Xiong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Mingqian Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Qingling Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406-438. [PMID: 31617837 DOI: 10.1099/ijsem.0.003775] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bacillus, harbouring 293 species/subspecies, constitutes a phylogenetically incoherent group. In the absence of reliable means for grouping known Bacillus species into distinct clades, restricting the placement of new species into this genus has proven difficult. To clarify the evolutionary relationships among Bacillus species, 352 available genome sequences from the family Bacillaceae were used to perform comprehensive phylogenomic and comparative genomic analyses. Four phylogenetic trees were reconstructed based on multiple datasets of proteins including 1172 core Bacillaceae proteins, 87 proteins conserved within the phylum Firmicutes, GyrA-GyrB-RpoB-RpoC proteins, and UvrD-PolA proteins. All trees exhibited nearly identical branching of Bacillus species and consistently displayed six novel monophyletic clades encompassing 5-23 Bacillus species (denoted as the Simplex, Firmus, Jeotgali, Niacini, Fastidiosus and Alcalophilus clades), interspersed with other Bacillaceae species. Species from these clades also generally grouped together in 16S rRNA gene trees. In parallel, our comparative genomic analyses of Bacillus species led to the identification of 36 molecular markers comprising conserved signature indels in protein sequences that are specifically shared by the species from these six observed clades, thus reliably demarcating these clades based on multiple molecular synapomorphies. Based on the strong evidence from multiple lines of investigations supporting the existence of these six distinct 'Bacillus' clades, we propose the transfer of species from these clades into six novel Bacillaceae genera viz. Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. These results represent an important step towards clarifying the phylogeny/taxonomy of the genus Bacillus.
Collapse
Affiliation(s)
- Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
12
|
Müller N, Timmers P, Plugge CM, Stams AJM, Schink B. Syntrophy in Methanogenic Degradation. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2018. [DOI: 10.1007/978-3-319-98836-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zhang MY, Cheng J, Cai Y, Zhang TY, Wu YY, Manikprabhu D, Li WJ, Zhang YX. Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of Panax notoginseng. Int J Syst Evol Microbiol 2017; 67:2581-2585. [DOI: 10.1099/ijsem.0.001975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ying Cai
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Deene Manikprabhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
14
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2016; 66:1-3. [PMID: 26865469 DOI: 10.1099/ijsem.0.000737] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|