1
|
Hameed MS, Cao H, Guo L, Ren Y. Functional characterization of GAPDH2 through overexpression and dsRNA-mediated RNA interference in Synechocystis. Int J Biol Macromol 2025; 298:139967. [PMID: 39826747 DOI: 10.1016/j.ijbiomac.2025.139967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase 2 (GAPDH2) plays a vital role in cell growth, stress responses, and various cellular processes in organisms. However, its functional characterization in cyanobacteria, particularly in Synechocystis sp. PCC 6803, remains largely unexplored, especially concerning its overexpression and RNA interference (RNAi) via double-stranded RNA (dsRNA). This study aimed to investigate the biological role of GAPDH2 in Synechocystis sp. PCC 6803 by cloning its complete coding sequence (SyGAPDH2). The SyGAPDH2 protein comprises 350 amino acids with a molecular weight of 86.480 kDa and an isoelectric point of 5.03. The sequence alignment analysis revealed two conserved domains: NADH (Nicotinamide Adenine Dinucleotide)-quinone oxidoreductase subunit NuoI and NADH-ubiquinone/plastoquinone oxidoreductase chain 6. Similarly, Phylogenetic analysis demonstrated high sequence similarity of 96 % and 94 % with Coliform (Gammaproteobacteria bacterium), respectively. We further explored the functional significance of SyGAPDH2 through overexpression using the PpsbAII+SyGAPDH2 vector and double stranded RNA (dsRNA)-mediated silencing with dsGAPDH2. Overexpression significantly enhanced cell growth, while dsRNA-mediated suppression resulted in reduced cell proliferation, with effects observed 12 h post-treatment and persisting up to 36 h. These findings emphasize the essential regulatory role of SyGAPDH2 in cellular development and stress response. This study contributes to our understanding of GAPDH2 functional importance in cyanobacteria, providing a foundation for future investigations into its subcellular localization, additional functional roles, and broader regulatory mechanisms within cyanobacterial cellular processes.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| | - Hongxuan Cao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, PR China
| | - Yanliang Ren
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Moreno IJ, Brahamsha B, Donia MS, Palenik B. Diverse Microbial Hot Spring Mat Communities at Black Canyon of the Colorado River. MICROBIAL ECOLOGY 2023; 86:1534-1551. [PMID: 36757423 PMCID: PMC10497668 DOI: 10.1007/s00248-023-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The thermophilic microbial mat communities at hot springs in the Black Canyon of the Colorado River, thought to harbor the protistan human pathogen Naegleria fowleri, were surveyed using both culture-independent and -dependent methods to further understand the ecology of these hot spring microbiomes. Originating from Lake Mead source water, seven spring sites were sampled, varying in temperature from 25 to 55 °C. Amplicon-based high-throughput sequencing of twelve samples using 16S rRNA primers (hypervariable V4 region) revealed that most mats are dominated by cyanobacterial taxa, some but not all similar to those dominating the mats at other studied hot spring systems. 18S rRNA amplicon sequencing (V9 region) demonstrated a diverse community of protists and other eukaryotes including a highly abundant amoebal sequence related to Echinamoeba thermarum. Additional taxonomic and diversity metric analyses using near full-length 16S and 18S rRNA gene sequencing allowed a higher sequence-based resolution of the community. The mat sequence data suggest a major diversification of the cyanobacterial orders Leptolyngbyales, as well as microdiversity among several cyanobacterial taxa. Cyanobacterial isolates included some representatives of ecologically abundant taxa. A Spearman correlation analysis of short-read amplicon sequencing data supported the co-occurrences of populations of cyanobacteria, chloroflexi, and bacteroidetes providing evidence of common microbial co-occurrences across the Black Canyon hot springs.
Collapse
Affiliation(s)
- Ivan J Moreno
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Bianca Brahamsha
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brian Palenik
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Barbosa C, Tamayo-Leiva J, Alcorta J, Salgado O, Daniele L, Morata D, Díez B. Effects of hydrogeochemistry on the microbial ecology of terrestrial hot springs. Microbiol Spectr 2023; 11:e0024923. [PMID: 37754764 PMCID: PMC10581198 DOI: 10.1128/spectrum.00249-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 09/28/2023] Open
Abstract
Temperature, pH, and hydrochemistry of terrestrial hot springs play a critical role in shaping thermal microbial communities. However, the interactions of biotic and abiotic factors at this terrestrial-aquatic interface are still not well understood on a global scale, and the question of how underground events influence microbial communities remains open. To answer this, 11 new samples obtained from the El Tatio geothermal field were analyzed by 16S rRNA amplicon sequencing (V4 region), along with 191 samples from previous publications obtained from the Taupo Volcanic Zone, the Yellowstone Plateau Volcanic Field, and the Eastern Tibetan Plateau, with their temperature, pH, and major ion concentration. Microbial alpha diversity was lower in acid-sulfate waters, and no significant correlations were found with temperature. However, moderate correlations were observed between chemical parameters such as pH (mostly constrained to temperatures below 70°C), SO4 2- and abundances of members of the phyla Armatimonadota, Deinococcota, Chloroflexota, Campilobacterota, and Thermoplasmatota. pH and SO4 2- gradients were explained by phase separation of sulfur-rich hydrothermal fluids and oxidation of reduced sulfur in the steam phase, which were identified as key processes shaping these communities. Ordination and permutational analysis of variance showed that temperature, pH, and major element hydrochemistry explain only 24% of the microbial community structure. Therefore, most of the variance remained unexplained, suggesting that other environmental or biotic factors are also involved and highlighting the environmental complexity of the ecosystem and its great potential to test niche theory ecological associated questions. IMPORTANCE This is the first approach to investigate whether geothermal processes could have an influence on the ecology of thermal microbial communities on a global scale. In addition to temperature and pH, microbial communities are structured by sulfate concentrations, which depends on the tectono-magmatic settings (such as the depth of magmatic chambers) and the local settings (such as the availability of a confining layer separating NaCl waters from steam after phase separation) and the possibility of mixing with more diluted fluids. Comparison of microbial communities from different geothermal areas by homogeneous sequence processing showed that no significant geographic distance decay was detected on the microbial communities according to Bray-Curtis, Jaccard, unweighted, and weighted Unifrac similarity/dissimilarity indices. Instead, an ancient potential divergence in the same taxonomic groups is suggested between globally distant thermal zones.
Collapse
Affiliation(s)
- Carla Barbosa
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Javier Tamayo-Leiva
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Bioinformática, Facultad de Educación, Universidad Adventista de Chile, Chillán, Chile
| | - Linda Daniele
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Diego Morata
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Beatríz Díez
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| |
Collapse
|
4
|
George C, Lim CXQ, Tong Y, Pointing SB. Community structure of thermophilic photosynthetic microbial mats and flocs at Sembawang Hot Spring, Singapore. Front Microbiol 2023; 14:1189468. [PMID: 37396374 PMCID: PMC10313338 DOI: 10.3389/fmicb.2023.1189468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
The Sembawang Hot Spring in Singapore lies at the foot of a major regional geological feature called the Bentong-Raub Suture Zone. Amid an extensively managed surface geothermal park, an undisturbed hot spring emerges with source water at 61°C, pH 6.8, and 1 mg/L dissolved sulfide. A small main pool at the source supported orange-green benthic flocs, whereas the outflow channel with gradually less extreme environmental stress supported extensive vivid green microbial mats. Microscopy revealed that cyanobacterial morphotypes were distinct in flocs and mats at several intervals along the environmental gradient, and we describe a spiraling pattern in the oscillatorian cyanobacteria that may reflect response to poly-extreme stress. Estimation of diversity using 16S rRNA gene sequencing revealed assemblages that were dominated by phototrophic bacteria. The most abundant taxa in flocs at 61°C/1 mg/L sulfide were Roseiflexus sp. and Thermosynechococcus elongatus, whilst the mats at 45.7-55.3°C/0-0.5 mg/L sulfide were dominated by Oscillatoriales cyanobacterium MTP1 and Chloroflexus sp. Occurrence of diverse chemoautotrophs and heterotrophs reflected known thermal ranges for taxa, and of note was the high abundance of thermophilic cellulolytic bacteria that likely reflected the large allochthonous leaf input. A clear shift in ASV-defined putative ecotypes occurred along the environmental stress gradient of the hot spring and overall diversity was inversely correlated to environmental stress. Significant correlations for abiotic variables with observed biotic diversity were identified for temperature, sulfide, and carbonate. A network analysis revealed three putative modules of biotic interactions that also reflected the taxonomic composition at intervals along the environmental gradient. Overall, the data indicated that three distinct microbial communities were supported within a small spatial scale along the poly-extreme environmental gradient. The findings add to the growing inventory of hot spring microbiomes and address an important biogeographic knowledge gap for the region.
Collapse
Affiliation(s)
- Christaline George
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Chloe Xue Qi Lim
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Yan Tong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Stephen Brian Pointing
- Yale-NUS College, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Salgado O, Guajardo-Leiva S, Moya-Beltrán A, Barbosa C, Ridley C, Tamayo-Leiva J, Quatrini R, Mojica FJM, Díez B. Global phylogenomic novelty of the Cas1 gene from hot spring microbial communities. Front Microbiol 2022; 13:1069452. [PMID: 36532491 PMCID: PMC9755687 DOI: 10.3389/fmicb.2022.1069452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 03/29/2025] Open
Abstract
The Cas1 protein is essential for the functioning of CRISPR-Cas adaptive systems. However, despite the high prevalence of CRISPR-Cas systems in thermophilic microorganisms, few studies have investigated the occurrence and diversity of Cas1 across hot spring microbial communities. Phylogenomic analysis of 2,150 Cas1 sequences recovered from 48 metagenomes representing hot springs (42-80°C, pH 6-9) from three continents, revealed similar ecological diversity of Cas1 and 16S rRNA associated with geographic location. Furthermore, phylogenetic analysis of the Cas1 sequences exposed a broad taxonomic distribution in thermophilic bacteria, with new clades of Cas1 homologs branching at the root of the tree or at the root of known clades harboring reference Cas1 types. Additionally, a new family of casposases was identified from hot springs, which further completes the evolutionary landscape of the Cas1 superfamily. This ecological study contributes new Cas1 sequences from known and novel locations worldwide, mainly focusing on under-sampled hot spring microbial mat taxa. Results herein show that circumneutral hot springs are environments harboring high diversity and novelty related to adaptive immunity systems.
Collapse
Affiliation(s)
- Oscar Salgado
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Núcleo de Ciencias Naturales y Exactas, Universidad Adventista de Chile, Chillán, Chile
| | - Sergio Guajardo-Leiva
- Departamento de Microbiología, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Ana Moya-Beltrán
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Carla Barbosa
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
- Centro de Excelencia en Geotermia de Los Andes (CEGA-Fondap), Santiago, Chile
| | - Christina Ridley
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
| | - Javier Tamayo-Leiva
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisco J. M. Mojica
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR), Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
| |
Collapse
|
6
|
Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea. World J Microbiol Biotechnol 2022; 38:135. [PMID: 35695998 DOI: 10.1007/s11274-022-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.
Collapse
|
7
|
Unveiling Ecological and Genetic Novelty within Lytic and Lysogenic Viral Communities of Hot Spring Phototrophic Microbial Mats. Microbiol Spectr 2021; 9:e0069421. [PMID: 34787442 PMCID: PMC8597652 DOI: 10.1128/spectrum.00694-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses exert diverse ecosystem impacts by controlling their host community through lytic predator-prey dynamics. However, the mechanisms by which lysogenic viruses influence their host-microbial community are less clear. In hot springs, lysogeny is considered an active lifestyle, yet it has not been systematically studied in all habitats, with phototrophic microbial mats (PMMs) being particularly not studied. We carried out viral metagenomics following in situ mitomycin C induction experiments in PMMs from Porcelana hot spring (Northern Patagonia, Chile). The compositional changes of viral communities at two different sites were analyzed at the genomic and gene levels. Furthermore, the presence of integrated prophage sequences in environmental metagenome-assembled genomes from published Porcelana PMM metagenomes was analyzed. Our results suggest that virus-specific replicative cycles (lytic and lysogenic) were associated with specific host taxa with different metabolic capacities. One of the most abundant lytic viral groups corresponded to cyanophages, which would infect the cyanobacteria Fischerella, the most active and dominant primary producer in thermophilic PMMs. Likewise, lysogenic viruses were related exclusively to chemoheterotrophic bacteria from the phyla Proteobacteria, Firmicutes, and Actinobacteria. These temperate viruses possess accessory genes to sense or control stress-related processes in their hosts, such as sporulation and biofilm formation. Taken together, these observations suggest a nexus between the ecological role of the host (metabolism) and the type of viral lifestyle in thermophilic PMMs. This has direct implications in viral ecology, where the lysogenic-lytic switch is determined by nutrient abundance and microbial density but also by the metabolism type that prevails in the host community. IMPORTANCE Hot springs harbor microbial communities dominated by a limited variety of microorganisms and, as such, have become a model for studying community ecology and understanding how biotic and abiotic interactions shape their structure. Viruses in hot springs are shown to be ubiquitous, numerous, and active components of these communities. However, lytic and lysogenic viral communities of thermophilic phototrophic microbial mats (PMMs) remain largely unexplored. In this work, we use the power of viral metagenomics to reveal changes in the viral community following a mitomycin C induction experiment in PMMs. The importance of our research is that it will improve our understanding of viral lifestyles in PMMs via exploring the differences in the composition of natural and induced viral communities at the genome and gene levels. This novel information will contribute to deciphering which biotic and abiotic factors may control the transitions between lytic and lysogenic cycles in these extreme environments.
Collapse
|
8
|
Brenes-Guillén L, Vidaurre-Barahona D, Morales S, Mora-López M, Sittenfeld A, Uribe-Lorío L. Novel Cyanobacterial Diversity Found in Costa Rican Thermal Springs Associated with Rincon de la Vieja and Miravalles Volcanoes: A Polyphasic Approach. JOURNAL OF PHYCOLOGY 2021; 57:183-198. [PMID: 33000870 DOI: 10.1111/jpy.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Central America is one of the most important biodiversity hot spots in the world, and Costa Rican microbial communities from thermal springs are the best characterized in the isthmus. Miravalles is an inactive quaternary stratovolcano, and the Rincón de la Vieja is a unique active volcano, in whose slopes diverse hydrothermal springs, such as Las Lilas, are located. These springs harbor extensive microbial mats, whose diversity has been studied. Based on their importance as primary producers, in this study we focused on cultured cyanobacterial diversity from two geothermal environments of northern Costa Rica. Several cultural, molecular and taxonomic techniques were employed to maximize the results of a polyphasic approach. Sample collection sites were physicochemically described, and strains were isolated and characterized by light and electron microscopy. Phylogenetic analysis was performed using 16S rRNA gene sequences and amplified ribosomal DNA restriction analysis (ARDRA). Fifty-six phylotypes were isolated and classified into 21 morphotypes and identified in 14 genera, some of them might be new species within these genera. Furthermore, according to phylogenetic analysis, there are three possible new genera in our collection. Miravalles and Las Lilas thermal springs are reservoirs of novel phylogeographic lineages of phototrophic microorganisms. This study is the first report of strains that belong to the genera Gloeocapsa, Stanieria, Microseira, Klisinema and Oculatella isolated from thermal springs and growing at temperatures above 50°C. We also obtained isolates assigned to Synechococcus, Leptolyngbya spp., and Fischerella, which are considered typical strains in these environments.
Collapse
Affiliation(s)
- Laura Brenes-Guillén
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| | | | - Saylen Morales
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Marielos Mora-López
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Ana Sittenfeld
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Lorena Uribe-Lorío
- Molecular and Biology Research Center, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
9
|
Sonthiphand P, Rattanaroongrot P, Mek-Yong K, Kusonmano K, Rangsiwutisak C, Uthaipaisanwong P, Chotpantarat S, Termsaithong T. Microbial community structure in aquifers associated with arsenic: analysis of 16S rRNA and arsenite oxidase genes. PeerJ 2021; 9:e10653. [PMID: 33510973 PMCID: PMC7798605 DOI: 10.7717/peerj.10653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022] Open
Abstract
The microbiomes of deep and shallow aquifers located in an agricultural area, impacted by an old tin mine, were explored to understand spatial variation in microbial community structures and identify environmental factors influencing microbial distribution patterns through the analysis of 16S rRNA and aioA genes. Although Proteobacteria, Cyanobacteria, Actinobacteria, Patescibacteria, Bacteroidetes, and Epsilonbacteraeota were widespread across the analyzed aquifers, the dominant taxa found in each aquifer were unique. The co-dominance of Burkholderiaceae and Gallionellaceae potentially controlled arsenic immobilization in the aquifers. Analysis of the aioA gene suggested that arsenite-oxidizing bacteria phylogenetically associated with Alpha-, Beta-, and Gamma proteobacteria were present at low abundance (0.85 to 37.13%) and were more prevalent in shallow aquifers and surface water. The concentrations of dissolved oxygen and total phosphorus significantly governed the microbiomes analyzed in this study, while the combination of NO3 --N concentration and oxidation-reduction potential significantly influenced the diversity and abundance of arsenite-oxidizing bacteria in the aquifers. The knowledge of microbial community structures and functions in relation to deep and shallow aquifers is required for further development of sustainable aquifer management.
Collapse
Affiliation(s)
- Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Kasarnchon Mek-Yong
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kanthida Kusonmano
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Systems Biology and Bioinformatics Research Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Chalida Rangsiwutisak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.,Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand
| | - Teerasit Termsaithong
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Theoretical and Computational Science Center (TaCS), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
10
|
Alcorta J, Alarcón-Schumacher T, Salgado O, Díez B. Taxonomic Novelty and Distinctive Genomic Features of Hot Spring Cyanobacteria. Front Genet 2020; 11:568223. [PMID: 33250920 PMCID: PMC7674949 DOI: 10.3389/fgene.2020.568223] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Several cyanobacterial species are dominant primary producers in hot spring microbial mats. To date, hot spring cyanobacterial taxonomy, as well as the evolution of their genomic adaptations to high temperatures, are poorly understood, with genomic information currently available for only a few dominant genera, including Fischerella and Synechococcus. To address this knowledge gap, the present study expands the genomic landscape of hot spring cyanobacteria and traces the phylum-wide genomic consequences of evolution in high temperature environments. From 21 globally distributed hot spring metagenomes, with temperatures between 32 and 75°C, 57 medium- and high-quality cyanobacterial metagenome-assembled genomes were recovered, representing taxonomic novelty for 1 order, 3 families, 15 genera and 36 species. Comparative genomics of 93 hot spring genomes (including the 57 metagenome-assembled genomes) and 66 non-thermal genomes, showed that the former have smaller genomes and a higher GC content, as well as shorter proteins that are more hydrophilic and basic, when compared to the non-thermal genomes. Additionally, the core accessory orthogroups from the hot spring genomes of some genera had a greater abundance of functional categories, such as inorganic ion metabolism, translation and post-translational modifications. Moreover, hot spring genomes showed increased abundances of inorganic ion transport and amino acid metabolism, as well as less replication and transcription functions in the protein coding sequences. Furthermore, they showed a higher dependence on the CRISPR-Cas defense system against exogenous nucleic acids, and a reduction in secondary metabolism biosynthetic gene clusters. This suggests differences in the cyanobacterial response to environment-specific microbial communities. This phylum-wide study provides new insights into cyanobacterial genomic adaptations to a specific niche where they are dominant, which could be essential to trace bacterial evolution pathways in a warmer world, such as the current global warming scenario.
Collapse
Affiliation(s)
- Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
| | - Tomás Alarcón-Schumacher
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Laboratorio de Bioinformática, Facultad de Educación, Universidad Adventista de Chile, Chillán, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
| |
Collapse
|
11
|
Podar PT, Yang Z, Björnsdóttir SH, Podar M. Comparative Analysis of Microbial Diversity Across Temperature Gradients in Hot Springs From Yellowstone and Iceland. Front Microbiol 2020; 11:1625. [PMID: 32760379 PMCID: PMC7372906 DOI: 10.3389/fmicb.2020.01625] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
Geothermal hot springs are a natural setting to study microbial adaptation to a wide range of temperatures reaching up to boiling. Temperature gradients lead to distinct microbial communities that inhabit their optimum niches. We sampled three alkaline, high temperature (80-100°C) hot springs in Yellowstone and Iceland that had cooling outflows and whose microbial communities had not been studied previously. The microbial composition in sediments and mats was determined by DNA sequencing of rRNA gene amplicons. Over three dozen phyla of Archaea and Bacteria were identified, representing over 1700 distinct organisms. We observed a significant non-linear reduction in the number of microbial taxa as the temperature increased from warm (38°C) to boiling. At high taxonomic levels, the community structure was similar between the Yellowstone and Iceland hot springs. We identified potential endemism at the genus level, especially in thermophilic phototrophs, which may have been potentially driven by distinct environmental conditions and dispersal limitations.
Collapse
Affiliation(s)
- Peter T. Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Zamin Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
12
|
Puzorjov A, McCormick AJ. Phycobiliproteins from extreme environments and their potential applications. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3827-3842. [PMID: 32188986 DOI: 10.1093/jxb/eraa139] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/18/2023]
Abstract
The light-harvesting phycobilisome complex is an important component of photosynthesis in cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including the blue phycobiliprotein phycocyanin, that are considered high-value products with applications in several industries. Remarkably, several cyanobacteria and red algal species retain the capacity to harvest light and photosynthesise under highly selective environments such as hot springs, and flourish in extremes of pH and elevated temperatures. These thermophilic organisms produce thermostable phycobiliproteins, which have superior qualities much needed for wider adoption of these natural pigment-proteins in the food, textile, and other industries. Here we review the available literature on the thermostability of phycobilisome components from thermophilic species and discuss how a better appreciation of phycobiliproteins from extreme environments will benefit our fundamental understanding of photosynthetic adaptation and could provide a sustainable resource for several industrial processes.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
13
|
Goh KM, Shahar S, Chan KG, Chong CS, Amran SI, Sani MH, Zakaria II, Kahar UM. Current Status and Potential Applications of Underexplored Prokaryotes. Microorganisms 2019; 7:E468. [PMID: 31635256 PMCID: PMC6843859 DOI: 10.3390/microorganisms7100468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications. In addition, we hope that this review will prompt the scientific community to reconsider these untapped pragmatic resources.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Saleha Shahar
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, ZhenJiang 212013, China.
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Syazwani Itri Amran
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Mohd Helmi Sani
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| | - Ummirul Mukminin Kahar
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
14
|
Alcorta J, Vergara-Barros P, Antonaru LA, Alcamán-Arias ME, Nürnberg DJ, Díez B. Fischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria. Extremophiles 2019; 23:635-647. [PMID: 31512055 DOI: 10.1007/s00792-019-01125-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
Abstract
The true-branching cyanobacterium Fischerella thermalis (also known as Mastigocladus laminosus) is widely distributed in hot springs around the world. Morphologically, it has been described as early as 1837. However, its taxonomic placement remains controversial. F. thermalis belongs to the same genus as mesophilic Fischerella species but forms a monophyletic clade of thermophilic Fischerella strains and sequences from hot springs. Their recent divergence from freshwater or soil true-branching species and the ongoing process of specialization inside the thermal gradient make them an interesting evolutionary model to study. F. thermalis is one of the most complex prokaryotes. It forms a cellular network in which the main trichome and branches exchange metabolites and regulators via septal junctions. This species can adapt to a variety of environmental conditions, with its photosynthetic apparatus remaining active in a temperature range from 15 to 58 °C. Together with its nitrogen-fixing ability, this allows it to dominate in hot spring microbial mats and contribute significantly to the de novo carbon and nitrogen input. Here, we review the current knowledge on the taxonomy and distribution of F. thermalis, its morphological complexity, and its physiological adaptations to an extreme environment.
Collapse
Affiliation(s)
- Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile
| | - Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile
| | - Laura A Antonaru
- Department of Life Science, Imperial College, London, SW7 2AZ, UK
| | - María E Alcamán-Arias
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile.,Department of Oceanography, University of Concepcion, Concepción, Chile.,Center for Climate and Resilience Research (CR)2, Santiago, Chile
| | - Dennis J Nürnberg
- Department of Life Science, Imperial College, London, SW7 2AZ, UK.,Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile. .,Center for Climate and Resilience Research (CR)2, Santiago, Chile.
| |
Collapse
|