1
|
Kumar G, Kallscheuer N, Kashif M, Ahamad S, Jagadeeshwari U, Pannikurungottu S, Haufschild T, Kabuu M, Sasikala C, Jogler C, Ramana CV. Gemmata algarum, a Novel Planctomycete Isolated from an Algal Mat, Displays Antimicrobial Activity. Mar Drugs 2023; 22:10. [PMID: 38276648 PMCID: PMC10817699 DOI: 10.3390/md22010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Axenic cultures of two strains, JC673T and JC717, both belonging to the phylum Planctomycetota, were isolated from distinct geographical locations in India. Strain JC673T was obtained from algal mats of a wetland situated in the state of Kerala, India, while strain JC717 originated from the Central Marine Fisheries Research Institute (CMFRI), state of Tamil Nadu, India. The two strains share 99.9% 16S rRNA gene sequence similarity and are most closely related to Gemmata obscuriglobus UQM 2246T (99.3% 16S rRNA gene sequence identity). The newly isolated strains are Gram-negative, grow aerobically and tolerate up to 4% (w/v) NaCl and a pH of up to 9.0. Cells are spherical and form pink-pigmented colonies. The respiratory quinone is MK-6. Major fatty acids are C18:0, C16:1ω5c and C16:0. Polar lipids include phosphatidylcholine, phosphatidylethanolamine, several unidentified amino lipids, unidentified phospholipids, additional unidentified lipids, and an unidentified choline lipid. The polyamine spermidine is produced by the two strains. The strains have a genome size of about 8.2 Mb with a DNA G+C content of 67.6%. Solvent-based culture extracts of the isolates showed antimicrobial activity against three bacterial test strains. Their phylogenetic position along with differences in morphological, physiological, and genomic features support the classification as a new species of the genus Gemmata, for which we propose the name Gemmata algarum sp. nov. Strain JC673T (=KCTC 72851T = NBRC 114340T) and JC717 are the type and non-type strain of the new species, respectively.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743 Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Mohammad Kashif
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| | - Shabbir Ahamad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| | - Uppada Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | - Sreya Pannikurungottu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| | - Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743 Jena, Germany
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| |
Collapse
|
2
|
Zhang W, Li Q, Yang Y, Yu Y, Li S, Liu J, Xiao Y, Wen Y, Wang Q, Lei N, Gu P. Joint toxicity mechanisms of perfluorooctanoic acid and sulfadiazine on submerged macrophytes and periphytic biofilms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131910. [PMID: 37390681 DOI: 10.1016/j.jhazmat.2023.131910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Hazardous chemicals, such as perfluoroalkyl substances (PFASs) and antibiotics, coexist in aquatic environments and pose a severe threat to aquatic organisms. However, research into the toxicity of these pollutants on submerged macrophytes and their periphyton is still limited. To assess their combined toxicity, Vallisneria natans (V. natans) was exposed to perfluorooctanoic acid (PFOA) and sulfadiazine (SD) at environmental concentrations. Photosynthetic parameters such as chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids were lower in the SD exposure group, indicating that SD had a significant effect on the photosynthesis of aquatic plants. Single and combined exposures effectively induced antioxidant responses, with increases in superoxide dismutase, peroxidase activities, and ribulose-1,5-bisphosphate carboxylase concentrations, as well as malondialdehyde content. Accordingly, antagonistic toxicity was assessed between PFOA and SD. Furthermore, metabolomics revealed that V. natans improved stress tolerance through changes in enoic acid, palmitic acid, and palmitoleoyloxymyristic acid related to the fatty acid metabolism pathway responding to the coexisting pollutants. Additionally, PFOA and SD in combination induced more effects on the microbial community of biofilm. The alternation of α- and β-D-glucopyranose polysaccharides and the increased content of autoinducer peptides and N-acylated homoserine lactones indicated that PFOA and SD changed the structure and function of biofilm. These investigations provide a broader perspective and comprehensive analysis of the responses of aquatic plants and periphyton biofilms to PFAS and antibiotics in the environment.
Collapse
Affiliation(s)
- Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yangjinzhi Yu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shuang Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jing Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yunxing Xiao
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yuelin Wen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | | | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
3
|
Blastopirellula sediminis sp. nov. a new member of Pirellulaceae isolated from the Andaman and Nicobar Islands. Antonie Van Leeuwenhoek 2023; 116:463-475. [PMID: 36867270 DOI: 10.1007/s10482-023-01818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Two cream-coloured strains (JC732T, JC733) of Gram-stain negative, mesophilic, catalase and oxidase positive, aerobic bacteria which divide by budding, form crateriform structures, and cell aggregates were isolated from marine habitats of Andaman and Nicobar Islands, India. Both strains had genome size of 7.1 Mb and G + C content of 58.9%. Both strains showed highest 16S rRNA gene-based similarity with Blastopirellula retiformator Enr8T (98.7%). Strains JC732T and JC733 shared 100% identity of 16S rRNA gene and genome sequences. The coherence of both strains with the genus Blastopirellula was supported by the 16S rRNA gene based and the phylogenomic trees. Further, the chemo-taxonomic characters and the genome relatedness indices [ANI (82.4%), AAI (80.4%) and dDDH (25.2%)] also support the delineation at the species level. Both strains have the capability to degrade chitin and genome analysis shows the ability to fix N2. Based on the phylogenetic, phylogenomic, comparative genomic, morphological, physiological, and biochemical characteristics, strain JC732T is described as a new species of the genus Blastopirellula for which the name Blastopirellula sediminis sp. nov. is proposed, with strain JC733 as an additional strain.
Collapse
|
4
|
Podosokorskaya OA, Elcheninov AG, Novikov AA, Kublanov IV. Fontivita pretiosa gen. nov., sp. nov., a thermophilic planctomycete of the order Tepidisphaerales from a hot spring of Baikal lake region. Syst Appl Microbiol 2022; 45:126375. [DOI: 10.1016/j.syapm.2022.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
|
5
|
The Prokaryotic Complex of Modern and Buried Soils on the Kamchatka Peninsula. FORESTS 2022. [DOI: 10.3390/f13071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A prokaryotic heterotrophic mesophilic community was studied in volcanic soil samples from Kamchatka. A phylogenetic and physiological characterization of the prokaryotic complex of modern and buried soils of the Kamchatka Peninsula is given. Volcanic Paleolithic soils (2500 and 11,300 years old) and their modern equivalents were investigated. It was found that the biomass of metabolically active prokaryotes in modern volcanic and Paleolithic soils reached 50 and 40 µg/g, respectively. The proportion of archaea in the metabolically active prokaryotic complex varied from 20% to 30% and increased in variants with the application of the nitrogen-containing biopolymer chitin. The application of the additional resource to paleovolcanic soils led to an incremental increase in the proportion of metabolically active prokaryotes, which reached 50% of the total prokaryotic biomass detected, indicating the high metabolic potential of the considered soils. Phylogenetic structure characteristics of the prokaryotic metabolically active component of modern and buried volcanic soil were established by molecular biology methods (metagenomic analysis, FISH method). The phylum Proteobacteria (74%), Acidobacteria, and Actinobacteria (14% combined) were dominant in modern soils; phylum Acidobacteria (51.8%) was dominant in paleosoils, whereas Chloroflexi (21%) and Proteobacteria (9%) were subdominant. It was determined that the potential activity of the microbial hydrolytic community, as measured by the relative response to the added resource (chitin), was found to increase in a series from modern to paleovolcanic soil. It was demonstrated that several key genes of the nitrogen cycle responsible for the processes of molecular nitrogen fixation, nitrification, and denitrification (nifH, amoA, nirK) were present in both modern and buried horizons.
Collapse
|
6
|
Kochetkova TV, Podosokorskaya OA, Elcheninov AG, Kublanov IV. Diversity of Thermophilic Prokaryotes Inhabiting Russian Natural Hot Springs. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
8
|
Rakitin AL, Naumoff DG, Beletsky AV, Kulichevskaya IS, Mardanov AV, Ravin NV, Dedysh SN. Complete genome sequence of the cellulolytic planctomycete Telmatocola sphagniphila SP2 T and characterization of the first cellulolytic enzyme from planctomycetes. Syst Appl Microbiol 2021; 44:126276. [PMID: 34735803 DOI: 10.1016/j.syapm.2021.126276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/05/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
Planctomycetes of the family Gemmataceae are strictly aerobic chemo-organotrophs that display a number of hydrolytic capabilities. A member of this family, Telmatocola sphagniphila SP2T, is the first described planctomycete with experimentally proven ability for growth on cellulose. In this study, the complete genome sequence of strain SP2T was obtained and the genome-encoded determinants of its cellulolytic potential were analyzed. The T. sphagniphila SP2T genome was 6.59 Mb in size and contained over 5200 potential protein-coding genes. The search for enzymes that could be potentially involved in cellulose degradation identified a putative cellulase that contained a domain from the GH44 family of glycoside hydrolases. Homologous enzymes were also revealed in the genomes of two other Gemmataceae planctomycetes, Zavarzinella formosa A10T and Tuwongella immobilis MBLW1T. The gene encoding this predicted cellulase in strain SP2T was expressed in E. coli and the hydrolytic activity of the recombinant enzyme was confirmed in tests with carboxymethyl cellulose but not with crystalline cellulose, xylan, mannan or laminarin. This is the first experimentally characterized cellulolytic enzyme from planctomycetes.
Collapse
Affiliation(s)
- Andrey L Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Daniil G Naumoff
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Irina S Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
9
|
Ivanova AA, Kulichevskaya IS, Dedysh SN. Gemmata palustris sp. nov., a Novel Planctomycete from a Fen in Northwestern Russia. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Vitorino I, Santos JDN, Godinho O, Vicente F, Vasconcelos V, Lage OM. Novel and Conventional Isolation Techniques to Obtain Planctomycetes from Marine Environments. Microorganisms 2021; 9:2078. [PMID: 34683399 PMCID: PMC8541047 DOI: 10.3390/microorganisms9102078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.
Collapse
Affiliation(s)
- Inês Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - José Diogo Neves Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain;
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
11
|
Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2019; 71. [PMID: 33787483 DOI: 10.1099/ijsem.0.004688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|