1
|
Domenzain I, Lu Y, Wang H, Shi J, Lu H, Nielsen J. Computational biology predicts metabolic engineering targets for increased production of 103 valuable chemicals in yeast. Proc Natl Acad Sci U S A 2025; 122:e2417322122. [PMID: 39999169 PMCID: PMC11892653 DOI: 10.1073/pnas.2417322122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Development of efficient cell factories that can compete with traditional chemical production processes is complex and generally driven by case-specific strategies, based on the product and microbial host of interest. Despite major advancements in the field of metabolic modeling in recent years, prediction of genetic modifications for increased production remains challenging. Here, we present a computational pipeline that leverages the concept of protein limitations in metabolism for prediction of optimal combinations of gene engineering targets for enhanced chemical bioproduction. We used our pipeline for prediction of engineering targets for 103 different chemicals using Saccharomyces cerevisiae as a host. Furthermore, we identified sets of gene targets predicted for groups of multiple chemicals, suggesting the possibility of rational model-driven design of platform strains for diversified chemical production.
Collapse
Affiliation(s)
- Iván Domenzain
- Department of Life Sciences, Chalmers University of Technology, GothenburgSE41296, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, GothenburgSE41296, Sweden
| | - Yao Lu
- College of Enology, Northwest A&F University, Yangling, Shannxi712100, China
| | - Haoyu Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwstern Polytechnical University, Xi’an, Shaanxi710072, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, GothenburgSE41296, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, GothenburgSE41296, Sweden
- BioInnovation Institute, CopenhagenDK2200, Denmark
| |
Collapse
|
2
|
Yook G, Nam J, Jo Y, Yoon H, Yang D. Metabolic engineering approaches for the biosynthesis of antibiotics. Microb Cell Fact 2025; 24:35. [PMID: 39891166 PMCID: PMC11786382 DOI: 10.1186/s12934-024-02628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/18/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Antibiotics have been saving countless lives from deadly infectious diseases, which we now often take for granted. However, we are currently witnessing a significant rise in the emergence of multidrug-resistant (MDR) bacteria, making these infections increasingly difficult to treat in hospitals. MAIN TEXT The discovery and development of new antibiotic has slowed, largely due to reduced profitability, as antibiotics often lose effectiveness quickly as pathogenic bacteria evolve into MDR strains. To address this challenge, metabolic engineering has recently become crucial in developing efficient enzymes and cell factories capable of producing both existing antibiotics and a wide range of new derivatives and analogs. In this paper, we review recent tools and strategies in metabolic engineering and synthetic biology for antibiotic discovery and the efficient production of antibiotics, their derivatives, and analogs, along with representative examples. CONCLUSION These metabolic engineering and synthetic biology strategies offer promising potential to revitalize the discovery and development of new antibiotics, providing renewed hope in humanity's fight against MDR pathogenic bacteria.
Collapse
Affiliation(s)
- Geunsoo Yook
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwoo Nam
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonseo Jo
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunji Yoon
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dongsoo Yang
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Yook S, Alper HS. Recent advances in genetic engineering and chemical production in yeast species. FEMS Yeast Res 2025; 25:foaf009. [PMID: 40082732 PMCID: PMC11963765 DOI: 10.1093/femsyr/foaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Yeasts have emerged as well-suited microbial cell factory for the sustainable production of biofuels, organic acids, terpenoids, and specialty chemicals. This ability is bolstered by advances in genetic engineering tools, including CRISPR-Cas systems and modular cloning in both conventional (Saccharomyces cerevisiae) and non-conventional (Yarrowia lipolytica, Rhodotorula toruloides, Candida krusei) yeasts. Additionally, genome-scale metabolic models and machine learning approaches have accelerated efforts to create a broad range of compounds that help reduce dependency on fossil fuels, mitigate climate change, and offer sustainable alternatives to petrochemical-derived counterparts. In this review, we highlight the cutting-edge genetic tools driving yeast metabolic engineering and then explore the diverse applications of yeast-based platforms for producing value-added products. Collectively, this review underscores the pivotal role of yeast biotechnology in efforts to build a sustainable bioeconomy.
Collapse
Affiliation(s)
- Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
4
|
Ushasree MV, Jia Q, Do SG, Lee EY. New opportunities and perspectives on biosynthesis and bioactivities of secondary metabolites from Aloe vera. Biotechnol Adv 2024; 72:108325. [PMID: 38395206 DOI: 10.1016/j.biotechadv.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Historically, the genus Aloe has been an indispensable part of both traditional and modern medicine. Decades of intensive research have unveiled the major bioactive secondary metabolites of this plant. Recent pandemic outbreaks have revitalized curiosity in aloe metabolites, as they have proven pharmacokinetic profiles and repurposable chemical space. However, the structural complexity of these metabolites has hindered scientific advances in the chemical synthesis of these compounds. Multi-omics research interventions have transformed aloe research by providing insights into the biosynthesis of many of these compounds, for example, aloesone, aloenin, noreugenin, aloin, saponins, and carotenoids. Here, we summarize the biological activities of major aloe secondary metabolites with a focus on their mechanism of action. We also highlight the recent advances in decoding the aloe metabolite biosynthetic pathways and enzymatic machinery linked with these pathways. Proof-of-concept studies on in vitro, whole-cell, and microbial synthesis of aloe compounds have also been briefed. Research initiatives on the structural modification of various aloe metabolites to expand their chemical space and activity are detailed. Further, the technological limitations, patent status, and prospects of aloe secondary metabolites in biomedicine have been discussed.
Collapse
Affiliation(s)
- Mrudulakumari Vasudevan Ushasree
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Qi Jia
- Unigen, Inc., 2121 South street suite 400 Tacoma, Washington 98405, USA
| | - Seon Gil Do
- Naturetech, Inc., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungcheongbuk-do 27858, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
5
|
Yang D, Eun H, Prabowo CPS. Metabolic Engineering and Synthetic Biology Approaches for the Heterologous Production of Aromatic Polyketides. Int J Mol Sci 2023; 24:8923. [PMID: 37240269 PMCID: PMC10219323 DOI: 10.3390/ijms24108923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Polyketides are a diverse set of natural products with versatile applications as pharmaceuticals, nutraceuticals, and cosmetics, to name a few. Of several types of polyketides, aromatic polyketides comprising type II and III polyketides contain many chemicals important for human health such as antibiotics and anticancer agents. Most aromatic polyketides are produced from soil bacteria or plants, which are difficult to engineer and grow slowly in industrial settings. To this end, metabolic engineering and synthetic biology have been employed to efficiently engineer heterologous model microorganisms for enhanced production of important aromatic polyketides. In this review, we discuss the recent advancement in metabolic engineering and synthetic biology strategies for the production of type II and type III polyketides in model microorganisms. Future challenges and prospects of aromatic polyketide biosynthesis by synthetic biology and enzyme engineering approaches are also discussed.
Collapse
Affiliation(s)
- Dongsoo Yang
- Synthetic Biology and Enzyme Engineering Laboratory, Department of Chemical and Biological Engineering (BK21 Four), Korea University, Seoul 02481, Republic of Korea
| | - Hyunmin Eun
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Cindy Pricilia Surya Prabowo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Mund NK, Čellárová E. Recent advances in the identification of biosynthetic genes and gene clusters of the polyketide-derived pathways for anthraquinone biosynthesis and biotechnological applications. Biotechnol Adv 2023; 63:108104. [PMID: 36716800 DOI: 10.1016/j.biotechadv.2023.108104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Natural anthraquinones are represented by a large group of compounds. Some of them are widespread across the kingdoms, especially in bacteria, fungi and plants, while the others are restricted to certain groups of organisms. Despite the significant pharmacological potential of several anthraquinones (hypericin, skyrin and emodin), their biosynthetic pathways and candidate genes coding for key enzymes have not been experimentally validated. Understanding the genetic and epigenetic regulation of the anthraquinone biosynthetic gene clusters in fungal endophytes would help not only understand their pathways in plants, which ensure their commercial availability, but also favor them as promising systems for prospective biotechnological production.
Collapse
Affiliation(s)
- Nitesh Kumar Mund
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia
| | - Eva Čellárová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia.
| |
Collapse
|
7
|
Fordjour E, Mensah EO, Hao Y, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. BIORESOUR BIOPROCESS 2022; 9:6. [PMID: 38647812 PMCID: PMC10992668 DOI: 10.1186/s40643-022-00493-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Emmanuel Osei Mensah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
8
|
Mains K, Peoples J, Fox JM. Kinetically guided, ratiometric tuning of fatty acid biosynthesis. Metab Eng 2021; 69:209-220. [PMID: 34826644 DOI: 10.1016/j.ymben.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
Cellular metabolism is a nonlinear reaction network in which dynamic shifts in enzyme concentration help regulate the flux of carbon to different products. Despite the apparent simplicity of these biochemical adjustments, their influence on metabolite biosynthesis tends to be context-dependent, difficult to predict, and challenging to exploit in metabolic engineering. This study combines a detailed kinetic model with a systematic set of in vitro and in vivo analyses to explore the use of enzyme concentration as a control parameter in fatty acid synthesis, an essential metabolic process with important applications in oleochemical production. Compositional analyses of a modeled and experimentally reconstituted fatty acid synthase (FAS) from Escherichia coli indicate that the concentration ratio of two native enzymes-a promiscuous thioesterase and a ketoacyl synthase-can tune the average length of fatty acids, an important design objective of engineered pathways. The influence of this ratio is sensitive to the concentrations of other FAS components, which can narrow or expand the range of accessible chain lengths. Inside the cell, simple changes in enzyme concentration can enhance product-specific titers by as much as 125-fold and elicit shifts in overall product profiles that rival those of thioesterase mutants. This work develops a kinetically guided approach for using ratiometric adjustments in enzyme concentration to control the product profiles of FAS systems and, broadly, provides a detailed framework for understanding how coordinated shifts in enzyme concentration can afford tight control over the outputs of nonlinear metabolic pathways.
Collapse
Affiliation(s)
- Kathryn Mains
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jackson Peoples
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| |
Collapse
|
9
|
Tippelt A, Nett M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb Cell Fact 2021; 20:161. [PMID: 34412657 PMCID: PMC8374128 DOI: 10.1186/s12934-021-01650-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.
Collapse
Affiliation(s)
- Anna Tippelt
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
10
|
Yang D, Jang WD, Lee SY. Production of Carminic Acid by Metabolically Engineered Escherichia coli. J Am Chem Soc 2021; 143:5364-5377. [PMID: 33797895 DOI: 10.1021/jacs.0c12406] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carminic acid is an aromatic polyketide found in scale insects (i.e., Dactylopius coccus) and is a widely used natural red colorant. It has long been produced by the cumbersome farming of insects followed by multistep purification processes. Thus, there has been much interest in producing carminic acid by the fermentation of engineered bacteria. Here we report the complete biosynthesis of carminic acid from glucose in engineered Escherichia coli. We first optimized the type II polyketide synthase machinery from Photorhabdus luminescens, enabling a high-level production of flavokermesic acid upon coexpression of the cyclases ZhuI and ZhuJ from Streptomyces sp. R1128. To discover the enzymes responsible for the remaining two reactions (hydroxylation and C-glucosylation), biochemical reaction analyses were performed by testing enzyme candidates reported to perform similar reactions. The two identified enzymes, aklavinone 12-hydroxylase (DnrF) from Streptomyces peucetius and C-glucosyltransferase (GtCGT) from Gentiana triflora, could successfully perform hydroxylation and C-glucosylation of flavokermesic acid, respectively. Then, homology modeling and docking simulations were performed to enhance the activities of these two enzymes, leading to the generation of beneficial mutants with 2-5-fold enhanced conversion efficiencies. In addition, the GtCGT mutant was found to be a generally applicable C-glucosyltransferase in E. coli, as was showcased by the successful production of aloesin found in Aloe vera. Simple metabolic engineering followed by fed-batch fermentation resulted in 0.63 ± 0.02 mg/L of carminic acid production from glucose. The strategies described here will be useful for the design and construction of biosynthetic pathways involving unknown enzymes and consequently the production of diverse industrially important natural products.
Collapse
Affiliation(s)
- Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
11
|
David F, Davis AM, Gossing M, Hayes MA, Romero E, Scott LH, Wigglesworth MJ. A Perspective on Synthetic Biology in Drug Discovery and Development-Current Impact and Future Opportunities. SLAS DISCOVERY 2021; 26:581-603. [PMID: 33834873 DOI: 10.1177/24725552211000669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global impact of synthetic biology has been accelerating, because of the plummeting cost of DNA synthesis, advances in genetic engineering, growing understanding of genome organization, and explosion in data science. However, much of the discipline's application in the pharmaceutical industry remains enigmatic. In this review, we highlight recent examples of the impact of synthetic biology on target validation, assay development, hit finding, lead optimization, and chemical synthesis, through to the development of cellular therapeutics. We also highlight the availability of tools and technologies driving the discipline. Synthetic biology is certainly impacting all stages of drug discovery and development, and the recognition of the discipline's contribution can further enhance the opportunities for the drug discovery and development value chain.
Collapse
Affiliation(s)
- Florian David
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew M Davis
- Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Michael Gossing
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A Hayes
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elvira Romero
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louis H Scott
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
12
|
Amer B, Baidoo EEK. Omics-Driven Biotechnology for Industrial Applications. Front Bioeng Biotechnol 2021; 9:613307. [PMID: 33708762 PMCID: PMC7940536 DOI: 10.3389/fbioe.2021.613307] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Biomanufacturing is a key component of biotechnology that uses biological systems to produce bioproducts of commercial relevance, which are of great interest to the energy, material, pharmaceutical, food, and agriculture industries. Biotechnology-based approaches, such as synthetic biology and metabolic engineering are heavily reliant on "omics" driven systems biology to characterize and understand metabolic networks. Knowledge gained from systems biology experiments aid the development of synthetic biology tools and the advancement of metabolic engineering studies toward establishing robust industrial biomanufacturing platforms. In this review, we discuss recent advances in "omics" technologies, compare the pros and cons of the different "omics" technologies, and discuss the necessary requirements for carrying out multi-omics experiments. We highlight the influence of "omics" technologies on the production of biofuels and bioproducts by metabolic engineering. Finally, we discuss the application of "omics" technologies to agricultural and food biotechnology, and review the impact of "omics" on current COVID-19 research.
Collapse
Affiliation(s)
- Bashar Amer
- Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Edward E. K. Baidoo
- Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- U.S. Department of Energy, Agile BioFoundry, Emeryville, CA, United States
| |
Collapse
|
13
|
Gao Y, Zhao Y, He X, Deng Z, Jiang M. Challenges of functional expression of complex polyketide biosynthetic gene clusters. Curr Opin Biotechnol 2021; 69:103-111. [PMID: 33422913 DOI: 10.1016/j.copbio.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022]
Abstract
Polyketide natural products are valuable sources of bioactive molecules such as nutraceuticals and pharmaceuticals. The tremendous development of the genome sequence database revealed that the majority of the biosynthetic gene clusters (BGCs) are cryptic. Activation of these cryptic BGCs and identification of the related products is essential for finding more lead compounds for pharmaceuticals. On the other hand, 99% of microbes in nature cannot be cultured in regular conditions, which greatly hinders the efforts to explore their biosynthetic potentials. Expression of polyketide BGCs in heterologous hosts with better growth, good genetic characteristics, and amenable molecular tools is a robust approach to identify new polyketides and characterize their biosynthesis. This review outlines the challenges in the heterologous production of polyketide BGCs of bacterial origins.
Collapse
Affiliation(s)
- Yaojie Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yuchun Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
14
|
Kim J, Hoang Nguyen Tran P, Lee SM. Current Challenges and Opportunities in Non-native Chemical Production by Engineered Yeasts. Front Bioeng Biotechnol 2021; 8:594061. [PMID: 33381497 PMCID: PMC7767886 DOI: 10.3389/fbioe.2020.594061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Yeasts are promising industrial hosts for sustainable production of fuels and chemicals. Apart from efficient bioethanol production, yeasts have recently demonstrated their potential for biodiesel production from renewable resources. The fuel-oriented product profiles of yeasts are now expanding to include non-native chemicals with the advances in synthetic biology. In this review, current challenges and opportunities in yeast engineering for sustainable production of non-native chemicals will be discussed, with a focus on the comparative evaluation of a bioethanol-producing Saccharomyces cerevisiae strain and a biodiesel-producing Yarrowia lipolytica strain. Synthetic pathways diverging from the distinctive cellular metabolism of these yeasts guide future directions for product-specific engineering strategies for the sustainable production of non-native chemicals on an industrial scale.
Collapse
Affiliation(s)
- Jiwon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Biotechnology, Korea University, Seoul, South Korea
| | - Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea.,Green School, Korea University, Seoul, South Korea
| |
Collapse
|
15
|
Tong Y. Natural products research in the modern age. Synth Syst Biotechnol 2020; 5:314-315. [PMID: 32935063 PMCID: PMC7483083 DOI: 10.1016/j.synbio.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
16
|
Klein JG, Wu Y, Kokona B, Charkoudian LK. Widening the bottleneck: Heterologous expression, purification, and characterization of the Ktedonobacter racemifer minimal type II polyketide synthase in Escherichia coli. Bioorg Med Chem 2020; 28:115686. [PMID: 33069071 DOI: 10.1016/j.bmc.2020.115686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Enzyme assemblies such as type II polyketide synthases (PKSs) produce a wide array of bioactive secondary metabolites. While the molecules produced by type II PKSs have found remarkable clinical success, the biosynthetic prowess of these enzymes has been stymied by 1) the inability to reconstitute the bioactivity of the minimal PKS enzymes in vitro and 2) limited exploration of type II PKSs from diverse phyla. To begin filling this unmet need, we expressed, purified, and characterized the ketosynthase chain length factor (KS-CLF) and acyl carrier protein (ACP) from Ktedonobacter racemifer (Kr). Using E. coli as a heterologous host, we obtained soluble proteins in titers signifying improvements over previous KS-CLF heterologous expression efforts. Characterization of these enzymes reveals that KrACP has self-malonylating activity. Sedimentation velocity analytical ultracentrifugation (SV-AUC) analysis of holo-KrACP and KrKS-CLF indicates that these enzymes do not interact in vitro, suggesting that the acylated state of these proteins might play an important role in facilitating biosynthetically relevant interactions. These results lay important groundwork for optimizing the interaction between KrKS-CLF and KrACP and exploring the biosynthetic potential of other non-actinomycete type II PKSs.
Collapse
Affiliation(s)
- Joshua G Klein
- Haverford College, Department of Chemistry, Haverford, PA 19041, United States
| | - Yang Wu
- Haverford College, Department of Chemistry, Haverford, PA 19041, United States
| | - Bashkim Kokona
- Haverford College, Department of Chemistry, Haverford, PA 19041, United States.
| | | |
Collapse
|