1
|
Lin X, Wang T, Lu Y. Cell-free synthetic biology: Orchestrating the machinery for biomolecular engineering. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:97-101. [PMID: 39416440 PMCID: PMC11446345 DOI: 10.1016/j.biotno.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 10/19/2024]
Abstract
Due to inherent complexity, incompatibility, and variability in living cell systems, biomolecular engineering faces significant obstacles. To find novel solutions to these issues, researchers have turned to cell-free synthetic biology (CFSB), a relatively young field of study. Biochemical processes can be triggered in vitro through cell-free synthesis, providing a wider range of options for biomolecular engineering. Here, we provide a survey of recent advances in cell-free synthesis. These have sparked innovative studies in areas including the synthesis of complex proteins, incorporation of unnatural amino acids, precise post-translational modifications, high-throughput workflow, and synthetic biomolecular network regulation. CFSB has transformed the studies of biological machinery in a profound and practical way for versatile biomolecular engineering applications.
Collapse
Affiliation(s)
- Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Veminsyn Biotech Co., Ltd, Beijing, 102200, China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Liu D, Liu Y, Duan HZ, Chen X, Wang Y, Wang T, Yu Q, Chen YX, Lu Y. Customized synthesis of phosphoprotein bearing phosphoserine or its nonhydrolyzable analog. Synth Syst Biotechnol 2022; 8:69-78. [PMID: 36514487 PMCID: PMC9719085 DOI: 10.1016/j.synbio.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Studies on the mechanism of protein phosphorylation and therapeutic interventions of its related molecular processes are limited by the difficulty in the production of purpose-built phosphoproteins harboring site-specific phosphorylated amino acids or their nonhydrolyzable analogs. Here we address this limitation by customizing the cell-free protein synthesis (CFPS) machinery via chassis strain selection and orthogonal translation system (OTS) reconfiguration screening. The suited chassis strains and reconfigured OTS combinations with high orthogonality were consequently picked out for individualized phosphoprotein synthesis. Specifically, we synthesized the sfGFP protein and MEK1 protein with site-specific phosphoserine (O-pSer) or its nonhydrolyzable analog, 2-amino-4-phosphonobutyric acid (C-pSer). This study successfully realized building cell-free systems for site-specific incorporation of phosphonate mimics into the target protein. Our work lays the foundation for developing a highly expansible CFPS platform and the streamlined production of user-defined phosphoproteins, which can facilitate research on the physiological mechanism and potential interference tools toward protein phosphorylation.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingying Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hua-Zhen Duan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xinjie Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanan Wang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qing Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Corresponding author.
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Corresponding author.
| |
Collapse
|
3
|
Hou J, Chen X, Jiang N, Wang Y, Cui Y, Ma L, Lin Y, Lu Y. Toward efficient multiple-site incorporation of unnatural amino acids using cell-free translation system. Synth Syst Biotechnol 2022; 7:522-532. [PMID: 35024479 PMCID: PMC8718814 DOI: 10.1016/j.synbio.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
Amber suppression has been widely used to incorporate unnatural amino acids (UNAAs) with unique structures or functional side-chain groups into specific sites of the target protein, which expands the scope of protein-coding chemistry. However, this traditional strategy does not allow multiple-site incorporation of different UNAAs into a single protein, which limits the development of unnatural proteins. To address this challenge, the suppression method using multiple termination codons (TAG, TAA or TGA) was proposed, and cell-free unnatural protein synthesis (CFUPS) system was employed. By the analysis of incorporating 3 different UNAAs (p-propargyloxy-l-phenylalanine, p-azyl-phenylalanine and L-4-Iodophenylalanine) and mass spectrometry, the simultaneous usage of the codons TAG and TAA were suggested for better multiple-site UNAA incorporation. The CFUPS conditions were further optimized for better UNAA incorporation efficiency, including the orthogonal translation system (OTS) components, magnesium ions, and the redox environment. This study established a CFUPS approach based on multiple termination codon suppression to achieve efficient and precise incorporation of different types of UNAAs, thereby synthesizing unnatural proteins with novel physicochemical functions.
Collapse
Affiliation(s)
- Jiaqi Hou
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Nan Jiang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanan Wang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi Cui
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China.,Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lianju Ma
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|