1
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
2
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Sun Q, Zou Y, Feng Q, Gong Z, Song M, Li M, Chen Z. The acetylation of pknH is linked to the ethambutol resistance of Mycobacterium tuberculosis. Arch Microbiol 2023; 205:337. [PMID: 37740776 DOI: 10.1007/s00203-023-03676-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023]
Abstract
EmbR, a substrate of pknH in Mycobacterium tuberculosis (Mtb), is related to the ethambutol (EMB) resistance. This study aimed to investigate the relationship between acetylation of pknH and the resistance of EMB mono-resistant Mtb. The EMB mono-resistant Mtb strain was constructed based on the MYCOTB and the Löwenstein-Jensen (LJ) proportion method. The growth kinetics was used to evaluate the bacterial growth. Escherichia coli, as the host of Mtb, was used for cloning and protein purification. Moreover, the immunoprecipitation was performed along with western blot to evaluate the EmbR phosphorylation and pknH acetylation. Each independent experiment was conducted in triplicate. EMB mono-resistant Mtb strain was successfully constructed according to the results of MIC values of 14 anti-Mtb drugs. The EMB resistant (ER) Mtb strain showed faster growth than the wild-type (WT) Mtb strain, and the difference was statistically significant. Moreover, pknH robustly phosphorylates EmbR, and pknH and acetylated pknH protein levels were downregulated in ER strain. The acetylation of pknH may reduce the phosphorylation of EmbR to inhibit the growth of Mtb strain. Enhancing the acetylation of pknH may be a promising method to inhibit the EMB resistance against Mtb.
Collapse
Affiliation(s)
- Qing Sun
- Department of Medicine, Hunan Traditional Chinese Medical College, No.136, Lusong Road, Lusong District, Zhuzhou, 412000, Hunan Province, China.
| | - Yan Zou
- Department of Medicine, Hunan Traditional Chinese Medical College, No.136, Lusong Road, Lusong District, Zhuzhou, 412000, Hunan Province, China
| | - Qian Feng
- Department of Medicine, Hunan Traditional Chinese Medical College, No.136, Lusong Road, Lusong District, Zhuzhou, 412000, Hunan Province, China
| | - Zongyue Gong
- Department of Medicine, Hunan Traditional Chinese Medical College, No.136, Lusong Road, Lusong District, Zhuzhou, 412000, Hunan Province, China
| | - Manlin Song
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Machao Li
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zhuang Chen
- Department of Medicine, Hunan Traditional Chinese Medical College, No.136, Lusong Road, Lusong District, Zhuzhou, 412000, Hunan Province, China
| |
Collapse
|