1
|
Bibha K, Akhigbe TM, Hamed MA, Akhigbe RE. Metabolic Derangement by Arsenic: a Review of the Mechanisms. Biol Trace Elem Res 2024; 202:1972-1982. [PMID: 37670201 DOI: 10.1007/s12011-023-03828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Studies have implicated arsenic exposure in various pathological conditions, including metabolic disorders, which have become a global phenomenon, affecting developed, developing, and under-developed nations. Despite the huge risks associated with arsenic exposure, humans remain constantly exposed to it, especially through the consumption of contaminated water and food. This present study provides an in-depth insight into the mechanistic pathways involved in the metabolic derangement by arsenic. Compelling pieces of evidence demonstrate that arsenic induces metabolic disorders via multiple pathways. Apart from the initiation of oxidative stress and inflammation, arsenic prevents the phosphorylation of Akt at Ser473 and Thr308, leading to the inhibition of PDK-1/Akt insulin signaling, thereby reducing GLUT4 translocation through the activation of Nrf2. Also, arsenic downregulates mitochondrial deacetylase Sirt3, decreasing the ability of its associated transcription factor, FOXO3a, to bind to the agents that support the genes for manganese superoxide dismutase and PPARg co-activator (PGC)-1a. In addition, arsenic activates MAPKs, modulates p53/ Bcl-2 signaling, suppresses Mdm-2 and PARP, activates NLRP3 inflammasome and caspase-mediated apoptosis, and induces ER stress, and ox-mtDNA-dependent mitophagy and autophagy. More so, arsenic alters lipid metabolism by decreasing the presence of 3-hydroxy-e-methylglutaryl-CoA synthase 1 and carnitine O-octanoyl transferase (Crot) and increasing the presence of fatty acid-binding protein-3 mRNA. Furthermore, arsenic promotes atherosclerosis by inducing endothelial damage. This cascade of pathophysiological events promotes metabolic derangement. Although the pieces of evidence provided by this study are convincing, future studies evaluating the involvement of other likely mechanisms are important. Also, epidemiological studies might be necessary for the translation of most of the findings in animal models to humans.
Collapse
Affiliation(s)
- K Bibha
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
2
|
Abo El Gheit R, Emam MN. Targeting heme oxygenase-1 in early diabetic nephropathy in streptozotocin-induced diabetic rats. Physiol Int 2017; 103:413-427. [PMID: 28229631 DOI: 10.1556/2060.103.2016.4.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular diabetic complications. This study was designed to evaluate the possible protective effect and underlying mechanisms of HO-1 induction in streptozotocin (STZ)-induced early DN in rats. The diabetic rats were divided into three groups: STZ-diabetic, cobalt protoporphyrin (CoPP)-treated diabetic, and zinc protoporphyrin IX (ZnPP)-treated diabetic groups. Compared to the STZ-diabetic group, CoPP-induced HO-1 upregulation improved the diabetic state and renal functional parameters, suppressed the renal proinflammatory marker, NF-κB, abrogated the elevated renal hydroxyprolin, and decreased the enhanced renal nicotinamide adenine dinucleotide phosphate oxidase activity with parallel reduction of urinary oxidative stress markers. On the contrary, treatment with ZnPP abrogated HO-1 levels, aggravated the diabetic condition with further increases in renal oxidative stress, fibrotic and inflammatory markers, and exacerbated renal dysfunction in diabetic animals. These findings suggest that the reduced diabetic renal injury upon HO-1 induction implicates the role of HO-1 induction as a potential treatment for DN.
Collapse
Affiliation(s)
- R Abo El Gheit
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - M N Emam
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
3
|
Wang Q, Wu L, Wang J. Reciprocal regulation of cyclooxygenase 2 and heme oxygenase 1 upon arsenic trioxide exposure in normal human lung fibroblast. J Biochem Mol Toxicol 2013; 27:323-9. [PMID: 23649692 DOI: 10.1002/jbt.21491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/29/2013] [Accepted: 04/14/2013] [Indexed: 12/21/2022]
Abstract
Detoxification enzyme heme oxygenase 1 (HO-1) and proinflammation enzyme cyclooxygenase 2 (Cox-2) are key response proteins that function to promote the survival of cells exposed to arsenic trioxide (ATO). However, whether there is a cross-regulation between them in ATO-treated cells remains poorly investigated. In this study, concomitant upregulation of Cox-2 and HO-1 induced by ATO was observed in normal human lung fibroblasts. Cox-2 inhibitor NS398 suppressed the upregulation of HO-1, whereas HO-1 inhibitor protoporphyrin IX zinc (II) stimulated the expression of Cox-2. Both proteins were regulated by p38, and the feedback regulation of HO-1 on Cox-2 was mediated through p38. Our results confirmed the reciprocal regulations between Cox-2 and HO-1 in ATO-treated normal cells and shed light on the understanding of protecting cells from injury caused by ATO while simultaneously decreasing the inflammation responses, which may be related to the carcinogenicity of ATO.
Collapse
Affiliation(s)
- Qisen Wang
- Key Laboratory of Ion Beam Bioengineering, Chinese Academy of Science, Hefei, 230031, People's Republic of China
| | | | | |
Collapse
|
4
|
Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-κB, and MAPK pathways. Arch Toxicol 2012; 86:879-96. [DOI: 10.1007/s00204-012-0845-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/14/2012] [Indexed: 12/19/2022]
|
5
|
Hanh HT, Kim KW, Bang S, Hoa NM. Community exposure to arsenic in the Mekong river delta, Southern Vietnam. ACTA ACUST UNITED AC 2011; 13:2025-32. [PMID: 21655616 DOI: 10.1039/c1em10037h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examined the daily inorganic arsenic (i-As) intake from drinking water and rice in 45 households (75 individuals) in the An Giang province, Southern Vietnam. The daily i-As intake ranged from 28-102 μg d(-1), equivalent to the daily dose of 0.6-1.9 μg d(-1) kg((body wt))(-1). Increased As concentrations were observed in human hair in the study location. Approximately 67% (n = 44), 42% (n = 28), and 15% (n = 10) of the hair samples had As levels exceeding 1, 3, and 10 μg g(-1), respectively. The total As concentrations in female and male hair correlated well with the total daily i-As intake. Measurement of As concentrations in the hair of people who were consuming or had previously consumed As from contaminated sources may help predict the onset of negative health effects. We suggested an application of the Bayes's theorem to calculate the probability that an individual in a population will acquire a negative health effect, given that the concentration of arsenic in the subject's hair has been determined.
Collapse
Affiliation(s)
- Hoang Thi Hanh
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheom-dan, Gwagiro, Bukgu, Gwangju, 500-712, Republic of Korea
| | | | | | | |
Collapse
|
6
|
Wang L, Weng CY, Wang YJ, Wu MJ. Lipoic acid ameliorates arsenic trioxide-induced HO-1 expression and oxidative stress in THP-1 monocytes and macrophages. Chem Biol Interact 2011; 190:129-38. [PMID: 21315065 DOI: 10.1016/j.cbi.2011.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 11/30/2022]
Abstract
Inorganic arsenic is a common environmental contaminant; chronic exposure to arsenic can alter the physiology of various key immune cells, particularly macrophages. The aim of this research is to elucidate the key parameters associated with arsenic-induced toxicity and investigate the potential and mechanism of α-lipoic acid (LA), a potent thioreducant, for reducing the toxicity in human promonocytic THP-1 cells. We found that a non-lethal concentration of arsenic trioxide (1 μM) significantly induced the expression of heme oxygenase-1 (HO-1), a response biomarker to arsenic, without stimulating measurable superoxide production. Co-treatment of cells with the HO-1 competitive inhibitor zinc protoporphyrin (Znpp) potentiated arsenic-induced cytotoxicity, indicating that HO-1 confers a cytoprotective effect against arsenic toxicity. In addition, low concentrations of arsenic trioxide (1 and 2.5 μM) markedly inhibited monocyte-to-macrophage differentiation and expression of macrophage markers. Treatment of cells with LA attenuated arsenic trioxide-induced cytotoxicity and HO-1 over-expression and restored the redox state. In addition, LA neutralized arsenic trioxide-inhibition of monocyte maturation into macrophages and reversed the expression and activity of scavenger receptors. In conclusion, the cytotoxicity of arsenic trioxide is associated with an imbalance of the cellular redox state, and LA can protect cells from arsenic-induced malfunctions either through its reducing activity, direct interacting with arsenic or stimulating other unidentified signaling pathways.
Collapse
Affiliation(s)
- Lisu Wang
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
7
|
Martin-Chouly C, Morzadec C, Bonvalet M, Galibert MD, Fardel O, Vernhet L. Inorganic arsenic alters expression of immune and stress response genes in activated primary human T lymphocytes. Mol Immunol 2011; 48:956-65. [PMID: 21281968 DOI: 10.1016/j.molimm.2011.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 11/25/2022]
Abstract
Inorganic arsenic, a carcinogenic environmental contaminant, exerts immunosuppressive effects on human T lymphocytes. In particular, interleukin-2 (IL2) secretion and T cell proliferation are reduced when peripheral blood mononuclear cells (PBMC) from individuals chronically exposed to arsenic are stimulated ex vivo with lectins such as phytohemaglutinin (PHA). However, it is not clear whether the metalloid directly acts on T cells or blocks monocyte-dependent accessory signals activated by PHA. We report that in vitro pre-treatment of PBMC with sodium arsenite (NaAs) reduces IL2 secretion and T cell proliferation induced by PHA, but does not prevent expression of monocyte-derived cytokines (IL1, IL6, TNFα) functioning as lymphocyte-activating factors. In addition, we found that NaAs delays induction of IL2 and IL2 receptor α chain (IL2RA) mRNA levels in human primary isolated T cells activated by PHA. Kinetic analysis showed that NaAs pre-treatment first inhibits, but thereafter markedly increases, induction of IL2 and IL2RA mRNA when T cells are stimulated with PHA for 8 h and 72 h, respectively. We conducted whole genome microarray-based analysis of gene expression in primary T cell cultures derived from independent donors. NaAs systematically and significantly up-regulated a set of 35 genes, including several immune and stress genes, such as IL13, granulocyte-macrophage colony stimulating factor, lymphotoxin α and heme oxygenase-1 (HO-1). Up-regulation of HO-1, a stress and immunosuppressive protein, was rapidly detectable, both in T cells and in PBMC treated with NaAs. Inhibition of the immunosuppressive activity of HO-1 in PBMC however failed to prevent NaAs-dependent inhibition of T cell proliferation induced by PHA. Our findings demonstrate that, at least in vitro, inorganic arsenic acts directly on human T cells and impairs their activity, probably independently of HO-1 expression and monocyte-related accessory signals.
Collapse
Affiliation(s)
- Corinne Martin-Chouly
- Institut de Recherche en Santé Environnement Travail, EA-4427 Signalisation et Réponses aux Agents Infectieux et Chimiques, Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | | | | | | | | | | |
Collapse
|
8
|
Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 14:137-67. [PMID: 20624029 PMCID: PMC2988629 DOI: 10.1089/ars.2010.3153] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic/pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010. [PMID: 20624029 DOI: 10.1089/ars.2010.31532988629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic/pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yu AL, Lu CY, Wang TS, Tsai CW, Liu KL, Cheng YP, Chang HC, Lii CK, Chen HW. Induction of heme oxygenase 1 and inhibition of tumor necrosis factor alpha-induced intercellular adhesion molecule expression by andrographolide in EA.hy926 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7641-7648. [PMID: 20536138 DOI: 10.1021/jf101353c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Andrographolide is the most abundant diterpene lactone in Andrographis paniculata, which is widely used as a traditional medicine in Southeast Asia. Heme oxygenase 1 (HO-1) is an antioxidant enzyme encoded by a stress-responsive gene. HO-1 has been reported to inhibit the expression of adhesion molecules in vascular endothelial cells (EC). Intercellular adhesion molecule (ICAM-1) is an inflammatory biomarker that is involved in the adhesion of monocytes to EC. In this study, we investigated the effect of andrographolide on the expression of ICAM-1 induced by tumor necrosis factor alpha (TNF-alpha) in EA.hy926 cells and the possible mechanisms involved. Andrographolide (2.5-7.5 microM) inhibited the TNF-alpha-induced expression of ICAM-1 in a dose-dependent manner and resulted in a decrease in HL-60 cell adhesion to EA.hy926 cells (p < 0.05). In parallel, andrographolide significantly induced the expression of HO-1 in a concentration-dependent fashion (p < 0.05). Andrographolide increased the rate of nuclear translocation of nuclear factor erythroid 2-related 2 (Nrf2) and induced antioxidant response element-luciferase reporter activity. Transfection with HO-1-specific small interfering RNA knocked down HO-1 expression, and the inhibition of expression of ICAM-1 by andrographolide was significantly reversed. These results suggest that stimulation of Nrf2-dependent HO-1 expression is involved in the suppression of TNF-alpha-induced ICAM-1 expression exerted by andrographolide.
Collapse
Affiliation(s)
- Ai-Lin Yu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fujiwara Y, Honda A, Satoh M. DNA microarray gene expression analysis of human vascular endothelial cells exposed to arsenite. J Toxicol Sci 2010; 35:275-8. [PMID: 20371982 DOI: 10.2131/jts.35.275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DNA microarray was used to monitor the transcriptional response of human brain microvascular endothelial cells (HBMEC) and human coronary artery endothelial cells (HCAEC) to sodium arsenite (iAs(III)). iAs(III) enhanced the expression of 10 and 6 genes, and reduced the expression of 45 and 20 genes in HBMEC and HCAEC, respectively. Among the 64 genes whose expression was changed in some way, HBMEC and HCAEC had 5 up-regulated and 12 down-regulated genes in common.
Collapse
Affiliation(s)
- Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, Japan
| | | | | |
Collapse
|
12
|
Lian KC, Chuang JJ, Hsieh CW, Wung BS, Huang GD, Jian TY, Sun YW. Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells. Toxicol Appl Pharmacol 2010; 245:21-35. [PMID: 20116392 DOI: 10.1016/j.taap.2010.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/24/2009] [Accepted: 01/09/2010] [Indexed: 12/22/2022]
Abstract
The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein IkappaBalpha in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-beta phosphorylation in pretreatments of less than 3 h. In TNFalpha-treated ECs, NF-kappaB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFalpha-induced singling pathways through the inhibition of IKK-beta activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.
Collapse
Affiliation(s)
- Kai-Cheng Lian
- Department of Microbiology and Immunology, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
|