1
|
Wen W, Zha S, Cheng H, Qi J, Chen Q, Gu Y. As3MT is related to relative RNAs and base modifications of p53 in workers exposed to arsenic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62094-62103. [PMID: 36940027 DOI: 10.1007/s11356-023-26457-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 05/10/2023]
Abstract
As3MT is the key enzyme involved in the methylation metabolism of arsenic. It is associated with DNA methylation closely also. This study is to explore the relationships between As3MT and epigenetic changes, and how p53 and relative ncRNAs and mRNAs play roles in the process. In this study, workers from four arsenic plants and individuals who resided in villages far away from the four plants were recruited. Arsenic compounds, relative indices, 28 relative RNAs, and base modifications of exons 5-8 of p53 were detected separately. Several methods were used to analyze the associations between them. Results shown that As3MT RNA was closely associated with all selected lncRNAs, miRNAs, and mRNAs related to miRNA production and maturation, tumorigenesis, and base modifications of p53. There probably exists causal relationship. Base modifications of exons 7 and 8 of p53 had significant synergistic effects on the expression of As3MT RNA and a series of genetic indices. But miR-190, miR-548, and base modifications of exon 5 of p53 had substantial inhibitory effects. Arsenic compounds and relative indices of metabolic transformation may have limited roles. The main novel finding in the present study is that As3MT play special and significant roles in the genotoxicity and carcinogenesis which could be coordinated operation with p53, and influenced by epigenetic factors largely, such as lncRNAs and miRNAs. P53 and relative ncRNAs and mRNAs may regulate the process by interacting with As3MT. The changes may initiate by arsenic, but probability through indirect relationship.
Collapse
Affiliation(s)
- Weihua Wen
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China.
| | - Shun Zha
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Huirong Cheng
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Jun Qi
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Qian Chen
- Public Health College, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yun Gu
- Public Health College, Kunming Medical University, Kunming, 650500, Yunnan, China
| |
Collapse
|
2
|
Sun M, Cheng H, Yu T, Tan J, Li M, Chen Q, Gu Y, Jiang C, Li S, He Y, Wen W. Involvement of a AS3MT/c-Fos/p53 signaling axis in arsenic-induced tumor in human lung cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:615-627. [PMID: 36399430 DOI: 10.1002/tox.23708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Arsenite methyltransferase (AS3MT) is an enzyme that catalyzes the dimethylation of arsenite (+3 oxidation state). At present, the studies on arsenic carcinogenicity mainly focus on studying the polymorphisms of AS3MT and measuring their catalytic activities. We recently showed that AS3MT was overexpressed in lung cancer patients who had not been exposed to arsenic. However, little is known about the molecular mechanisms of AS3MT in arsenite-induced tumorigenesis. In this study, we showed that AS3MT protein expression was higher in the arsenic-exposed population compared to the unexposed population. AS3MT was also overexpressed in human lung adenocarcinoma (A549) and human bronchial epithelial (16HBE) cells exposed to arsenic (A549: 20-60 μmol/L; 16HBE: 2-6 μmol/L) for 48 h. Furthermore, we investigated the effects of AS3MT on cell proliferation and apoptosis using siRNA. The downregulation of AS3MT inhibited the proliferation and promoted the apoptosis of cells. Mechanistically, AS3MT was found to specifically bind to c-Fos, thereby inhibiting the binding of c-Fos to c-Jun. Additionally, the siRNA-mediated knockdown of AS3MT enhanced the phosphorylation of Ser392 in p53 by upregulating p38 MAPK expression. This led to the activation of p53 signaling and the upregulated expression of downstream targets, such as p21, Fas, PUMA, and Bax. Together, these studies revealed that the inorganic arsenic-mediated upregulation of AS3MT expression directly affected the proliferation and apoptosis of cells, leading to arsenic-induced toxicity or carcinogenicity.
Collapse
Affiliation(s)
- Mingjun Sun
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Huirong Cheng
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Tianle Yu
- Cardiovascular medicine, Weihai Central Hospital, Weihai, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ming Li
- Elderly Health Management Center, Haida Hospital, Weihai, China
| | - Qian Chen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Yun Gu
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Chenglan Jiang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weihua Wen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
3
|
Lee SG, Kang I, Seo MN, Lee JE, Eom SY, Hwang MS, Park KS, Choi BS, Kwon HJ, Hong YS, Kim H, Park JD. Exposure Levels and Contributing Factors of Various Arsenic Species and Their Health Effects on Korean Adults. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:391-402. [PMID: 35132447 DOI: 10.1007/s00244-022-00913-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Arsenic is a human carcinogen. Data on urinary arsenic species analyses of Koreans are limited. This study evaluated the arsenic exposure level, contributing factors, and health effects in Korean adults. Dietary intake information and urine samples were obtained from 2044 participants. Arsenic exposure was assessed based on urinary concentrations of arsenic species, such as inorganic arsenic, As(III) and As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and arsenobetaine (AsB), using high-performance liquid chromatography with inductively coupled plasma mass spectrometry, followed by determination of biomarkers, malondialdehyde and c-peptide. The geometric mean concentrations were 30.9 μg/L for the sum of inorganic arsenic and their metabolites, and 84.7 μg/L for the total sum of arsenic measured. Urinary concentrations of arsenic species were influenced by age, inhabitant area (inland or coastal), and seafood intake, which was positively correlated with inorganic arsenic, DMA, and AsB. Rice intake was positively correlated with inorganic arsenic and its metabolites but not with AsB. Additionally, malondialdehyde and c-peptide levels were significantly associated with urinary concentrations of various arsenic species. Seafood and rice are major sources of organic/inorganic arsenic exposure in Korean adults; however, it is necessary to evaluate whether their overconsumption could have a potentially detrimental effect on human health.
Collapse
Affiliation(s)
- Seul-Gi Lee
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Ingu Kang
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Mi-Na Seo
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Jung-Eum Lee
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Sang-Yong Eom
- College of Medicine, Chungbuk National University, Cheongju, 28644, Korea
| | - Myung-Sil Hwang
- Food Risk Analysis Division, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Korea
| | - Kyung Su Park
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Byung-Sun Choi
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Ho-Jang Kwon
- College of Medicine, Dankook University, Cheonan, 16890, Korea
| | | | - Heon Kim
- College of Medicine, Chungbuk National University, Cheongju, 28644, Korea
| | - Jung-Duck Park
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea.
| |
Collapse
|
4
|
Ni G, Tan J, Wang M, Ping N, Liu M, He Y. Polymorphisms of the AS3MT gene are associated with arsenic methylation capacity and damage to the P21 gene in arsenic trioxide plant workers. Toxicol Ind Health 2021; 37:727-736. [PMID: 34730462 DOI: 10.1177/07482337211013321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidemiological evidence suggests that the metabolic profiles of each individual exposed to arsenic (As) are related to the risk of cancer, coronary heart disease, and diabetes. The arsenite methyltransferase (AS3MT) gene plays a key role in As metabolism. Several single nucleotide polymorphisms in the AS3MT gene may affect both enzyme activity and gene transcription. AS3MT polymorphisms are associated with the proportions of monomethylarsenic acid (MMA) and dimethylarsenic acid (DMA) in urine as well as the incidence of cancer. P21 protein is a cyclin-dependent kinase inhibitor. Mutations of the P21 gene have been found in cancer patients. In our study, we investigate whether polymorphisms of the AS3MT gene alter As methylation capacity and adversely affect the P21 gene in arsenic trioxide plant workers. The DNA damage was examined by the quantitative polymerase chain reaction. Restriction fragment length polymorphism was used to analyze the genotype of the AS3MT gene. The results showed that DNA damage in P21 gene fragments was greater in those individuals exposed to high levels of As. There was a strong positive correlation between the DNA damage to P21 gene fragments and the percentage of MMA in urine. However, DNA damage in P21 gene fragments was negatively associated with the percentage of DMA in urine (%uDMA), primary methylation index (PMI), and secondary methylation index. We found that subjects with the rs7085104 GG or GA allele were associated with higher %uDMA and PMI and less DNA damage. The subjects with the rs11191454 GG+GA or GA allele were also associated with higher %uDMA and PMI and less DNA damage. Our results suggest that rs1191454 and rs7085104 in the AS3MT gene affect the As-induced DNA damage by altering individual metabolic efficiency.
Collapse
Affiliation(s)
- Guanghui Ni
- School of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Mengjie Wang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Nina Ping
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Min Liu
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Fu Y, Wang L, Peng W, Fan Q, Li Q, Dong Y, Liu Y, Boczkaj G, Wang Z. Enabling simultaneous redox transformation of toxic chromium(VI) and arsenic(III) in aqueous media-A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126041. [PMID: 34229381 DOI: 10.1016/j.jhazmat.2021.126041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/20/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous conversion of most harmful As(III) and Cr(VI) to their less toxic counterparts is environmentally desirable and cost-effective. It has been confirmed that simultaneous oxidation of As(III) to As(V) and reduction of Cr(VI) to Cr(III) can occur via free radical or mediated electron transfer processes. While Cr(VI) is reduced by reacting with H•, eaq-, photoelectron directly or undergoing ligand exchange with H2O2 and SO32-, As(III) is oxidized by HO•, SO4•-, O2•-, and holes (h+) in free radical process. The ability to concentrate Cr and As species on heterogeneous interface and conductivity determining the co-conversion efficiency in mediated electron transfer process. Acidity has positive effect on these co-conversion, while mediated electron transfer process is not much affected by dissolved oxygen (O2). Organic compounds (e.g., oxalate, citrate and phenol) commonly favor Cr(VI) reduction and inhibit As(III) oxidation. To better understand the trends in the existing data and to identify the knowledge gaps, this review elaborates the complicated mechanisms for co-conversion of As(III) and Cr(VI) by various methods. Some challenges and prospects in this active field are also briefly discussed.
Collapse
Affiliation(s)
- Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenya Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingya Fan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yongxia Dong
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yunjiao Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Chemical and Process Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-Restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
6
|
Qian S, Tan J, Zhou Q, Yin J, Li H, He Y. The Relationship Between GSTT1, GSTM1, GSTO1, GSTP1 and MTHFR Gene Polymorphisms and DNA Damage of BRCA1 and BRCA2 Genes in Arsenic-Exposed Workers. J Occup Environ Med 2021; 63:e177-e183. [PMID: 33443393 DOI: 10.1097/jom.0000000000002142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the associations between genetic polymorphisms of GSTT1, GSTM1, GSTO1, GSTP1 and MTHFR genes and the DNA damage levels of BRCA1 and BRCA2 genes. METHODS Peripheral blood samples were used to measure DNA damage levels and genetic polymorphisms, and urine samples were collected to analyze arsenic metabolites in 79 arsenic-exposed workers and 24 non-arsenic-exposed workers. RESULTS The BRCA1 and BRCA2 damage levels in exposure group were significantly higher than that in control group. Significant associations were detected between GSTT1 and GSTO1 polymorphisms and DNA damage levels of BRCA1 and BRCA2 genes in subjects (P < 0.05). CONCLUSIONS Our findings suggest that the DNA damage levels of BRCA1 and BRCA2 genes may modulate by genetic variations of GSTT1 and GSTO1 when individuals are exposed to carcinogens, such as arsenic.
Collapse
Affiliation(s)
- Shuran Qian
- Department of Infectious Diseases, The Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan), Kumming City, Yunnan, China (Dr Qian, Dr Li); Kunming Medical University, Kumming City, Yunnan, China (Dr Qian, Dr Tan, Dr Zhou, Dr Yin, Dr He)
| | | | | | | | | | | |
Collapse
|
7
|
Wang Z, Fu Y, Wang L. Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999-2020). JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125488. [PMID: 33676246 DOI: 10.1016/j.jhazmat.2021.125488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Abiotic oxidation of toxic As(III) to As(V) is being deemed as a necessary step for the overall arsenic decontamination in both natural and engineered systems. Direct oxidation of As(III) by chemical oxidants, such as ozone, permanganate, ferrate, chlorine and chloramine, or naturally occurring minerals like Mn, Fe oxides, seems straightforward. Both O2 and H2O2 are ineffective for arsenite oxidation, but they can be activated by reducing substances like Fe2+, Fe0 to increase the oxidation rates. Photo-induced oxidation of As(III) has been demonstrated effective in Fe complexes or minerals, NO3-/NO2-, dissolved organic matter (DOM), peroxygens and TiO2 systems. Although a variety of oxidation methods have been developed over the past two decades, there remain many scientific and technical challenges that must be overcome before the rapid progress in basic knowledge can be translated into environmental benefits. To better understand the trends in the existing data and to identify the knowledge gaps, this review describes in detail the complicated mechanisms for As(III) oxidation by various methods and emphasizes on the conflicting data and explanation. Some prevailing concerns and challenges in the sphere of As(III) oxidation are also pointed out so as to appeal to researchers for further investigations.
Collapse
Affiliation(s)
- Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Das A, Sanyal T, Bhattacharjee P, Bhattacharjee P. Depletion of S-adenosylmethionine pool and promoter hypermethylation of Arsenite methyltransferase in arsenic-induced skin lesion individuals: A case-control study from West Bengal, India. ENVIRONMENTAL RESEARCH 2021; 198:111184. [PMID: 33894237 DOI: 10.1016/j.envres.2021.111184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Methylation of arsenic compounds in the human body occurs following a series of biochemical reactions in the presence of methyl donor S-adenosylmethionine (SAM) and catalyzed by arsenite methyltransferase (AS3MT). However, the extent and pattern of methylation differs among the arsenic exposed individuals leading to differential susceptibility. The mechanism for such inter-individual difference is enigmatic. In the present case-control study we recruited exposed individuals with and without arsenic induced skin lesion (WSL and WOSL), and an unexposed cohort, each having 120 individuals. Using ELISA, we observed a reduction in SAM levels (p < 0.05) in WSL compared to WOSL. Linear regression analysis revealed a negative correlation between urinary arsenic concentration and SAM concentration between the study groups. qRT-PCR revealed a significant down-regulation (p < 0.01) of key regulatory genes like MTHFR, MTR, MAT2A and MAT2B of SAM biogenesis pathway in WSL cohort. Methylation-specific PCR revealed significant promoter hypermethylation of AS3MT (WSL vs. WOSL: p < 0.01) which resulted in its subsequent transcriptional repression (WSL vs. WOSL: p < 0.001). Linear regression analysis also showed a negative correlation between SAM concentration and percentage of promoter methylation. Taken together, these results indicate that reduction in SAM biogenesis along with a higher utilization of SAM results in a decreased availability of methyl donor. These along with epigenetic down-regulation of AS3MT may be responsible for higher susceptibility in arsenic exposed individuals.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tamalika Sanyal
- Department of Environmental Science, University of Calcutta and Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta and Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
9
|
Jiang C, Sun M, Li S, Tan J, Wang M, He Y. Long non-coding RNA DICER1-AS1-low expression in arsenic-treated A549 cells inhibits cell proliferation by regulating the cell cycle pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103617. [PMID: 33609750 DOI: 10.1016/j.etap.2021.103617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Arsenic, an environmental pollution with diverse toxicities, incurs public health problems. Arsenic trioxide could inhibit cell proliferation in vitro experiments, but the underlying mechanisms are not fully known. LncRNAs are also involved in the arsenic-induced toxicological responses. In our study, we found that the expression of lncRNA DICER1-AS1 was significantly inhibited by sodium arsenite in a dose-dependent manner. DICER1-AS1 silencing decreased the A549 cell proliferation and inhibited cell cycle progression. Importantly, DICER1-AS1 silencing induced upregulation of p21 and downregulation of Cyclin A2, Cyclin E2, CDK1 and PCNA. In conclusion, our study provided a new lncRNA-dictated regulatory mechanism participating in arsenic-induced inhibition of cell proliferation.
Collapse
Affiliation(s)
- Chenglan Jiang
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Mingjun Sun
- School of Public Health, Dali University, Dali, 650022, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Mengjie Wang
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
10
|
Uddin MJ, Jeong YK. Review: Efficiently performing periodic elements with modern adsorption technologies for arsenic removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39888-39912. [PMID: 32772289 DOI: 10.1007/s11356-020-10323-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) toxicity is a global phenomenon, and it is continuously threatening human life. Arsenic remains in the Earth's crust in the forms of rocks and minerals, which can be released into water. In addition, anthropogenic activity also contributes to increase of As concentration in water. Arsenic-contaminated water is used as a raw water for drinking water treatment plants in many parts of the world especially Bangladesh and India. Based on extensive literature study, adsorption is the superior method of arsenic removal from water and Fe is the most researched periodic element in different adsorbent. Oxides and hydroxides of Fe-based adsorbents have been reported to have excellent adsorptive capacity to reduce As concentration to below recommended level. In addition, Fe-based adsorbents were found less expensive and not to have any toxicity after treatment. Most of the available commercial adsorbents were also found to be Fe based. Nanoparticles of Fe-, Ti-, Cu-, and Zr-based adsorbents have been found superior As removal capacity. Mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.) removed As efficiently from water. Oxidation of AsO33- to AsO43-and adsorption of oxidized As on the mixed element-based adsorbent occurred by different adsorbents. Metal organic frameworks have also been confirmed as good performance adsorbents for As but had a limited application due to nano-crystallinity. However, using porous materials having extended surface area as carrier for nano-sized adsorbents could alleviate the separation problem of the used adsorbent after treatment and displayed outstanding removal performances.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.
| | - Yeon-Koo Jeong
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| |
Collapse
|
11
|
He Y, Zhang R, Chen J, Tan J, Wang M, Wu X. The ability of arsenic metabolism affected the expression of lncRNA PANDAR, DNA damage, or DNA methylation in peripheral blood lymphocytes of laborers. Hum Exp Toxicol 2020; 39:605-613. [PMID: 31885278 DOI: 10.1177/0960327119897101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Arsenic has been associated with significant effects on human health. Exposure to inorganic arsenic has been associated with the changes in gene expression. Promoter of CDKN1A antisense DNA damage activated RNA (PANDAR) expression is induced by p53 protein and DNA damage response. Here, we investigated whether the ability of arsenic metabolism in individuals affected the expression of PANDAR, DNA damage, and DNA methylation. Levels of gene expression and DNA damage were examined by the quantitative polymerase chain reaction and DNA methylation was measured by the methylation-sensitive high-resolution melting curve. In our study, we demonstrated that arsenic exposure increased PANDAR expression and DNA damage among arsenic smelting plant laborers. The PANDAR expression and DNA damage were positively linked to monomethylarsonic acid % (R = 0.25, p < 0.05 and R = 0.32, p < 0.01) and negatively linked to dimethylarsinic acid % (R = -0.21, p < 0.05 and R = -0.31, p < 0.01). Subjects with low primary methylation index had increased levels of DNA damage (51.62 ± 2.96 vs. 60.93 ± 3.10, p < 0.05) and methylation (17.14 (15.88-18.51) vs. 15.83 (14.82-18.00), p < 0.05). Subjects with low secondary methylation index had increased levels of PANDAR expression (4.88 ± 0.29 vs. 4.07 ± 0.23, p < 0.01) and DNA damage (17.38 (15.88-19.29) vs. 15.83 (14.82-17.26), p < 0.01). DNA methylation of PANDAR gene was linked to the regulation of its expression in peripheral blood lymphocytes among laborers (Y = -2.08 × X + 5.64, p < 0.05). These findings suggested arsenic metabolism ability and exposure affected the expression of PANDAR, DNA damage, and DNA methylation.
Collapse
Affiliation(s)
- Y He
- School of Public Health, Kunming Medical University, Kunming, China
| | - R Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - J Chen
- School of Public Health, Kunming Medical University, Kunming, China
| | - J Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - M Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - X Wu
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Wang KZ, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhang YA, Zhou XQ. Dietary gossypol reduced intestinal immunity and aggravated inflammation in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 86:814-831. [PMID: 30543935 DOI: 10.1016/j.fsi.2018.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
The present study explored the effects of dietary gossypol on the gut health of on-growing grass carp. The fish were fed six diets containing different levels of free gossypol (0, 121.38, 243.94, 363.89, 759.93 and 1162.06 mg/kg diet) from gossypol-acetic acid for 60 days and then challenged with Aeromonas hydrophila for 14 days. The results showed that dietary gossypol (1) could aggravate enteritis and damage the structure of intestinal epithelial cells, (2) decreased the lysozyme (LZ) and Acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents, and it down-regulated the Hepcidin (rather than distal intestine (DI)), immunoglobulin Z (IgZ), liver-expressed antimicrobial peptide (LEAP)-2B, Mucin2 and β-defensin-1 mRNA levels in the proximal intestine (PI), mid intestine (MI) and DI, (3) up-regulated intestinal pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), interleukin 1β (IL-1β), IL-6 (only in PI), IL-8 and IL-12p35 mRNA levels partly related to nuclear factor kappa B (NF-κB) signalling, and (4) down-regulated the mRNA levels of anti-inflammatory cytokines such as transforming growth factor (TGF)-β1, TGF-β2, interleukin 4/13A (IL-4/13A) (except IL-4/13B), IL-10 and IL-11 partly relating to target of rapamycin (TOR) signalling in the intestines of on-growing grass carp. Moreover, the dietary gossypol had no impact on the LEAP-2A, IL-12P40, IL-17D, IL-10, NF-κBp52, IKKα and eIF4E-binding proteins 2 (4E-BP2) mRNA levels in the intestines. Finally, based on the intestinal histopathological results, enteritis morbidity, LZ activity and IgM content, the safe dose of gossypol in the diets for on-growing grass carp should be less than 103.42 mg/kg diet.
Collapse
Affiliation(s)
- Kai-Zhuo Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
13
|
Cheng H, Hu P, Wen W, Liu L. Relative miRNA and mRNA expression involved in arsenic methylation. PLoS One 2018; 13:e0209014. [PMID: 30543710 PMCID: PMC6292570 DOI: 10.1371/journal.pone.0209014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Three arsenic species in urine are measured using an atomic absorption spectrophotometer. RT-PCR is performed to detect the expression levels of AS3MT, 3 miRNAs, and 17 relative mRNAs in 43 workers producing arsenic trioxide, 36 workers who stopped exposure to arsenic for 85 days, and 24 individuals as the control group. The concentrations of urinary arsenic are very high in workers. A negative correlation between AS3MT and MiR-548c-3p is found. There exist significant changes for most selected miRNAs and mRNAs in workers. There are no significant differences between workers who stopped exposure to arsenic and the control group for most miRNAs and mRNAs, but the MiR-548c-3p levels show significant changes. Similar positive correlations between the expression of AS3MT and all selected mRNAs are found. Negative correlations between the expression of MiR-548c-3p and many relative mRNAs are found as well. AS3MT and MiR-548c-3p may regulate arsenic methylation jointly, which when involved in a group of relative mRNAs may play roles in arsenic metabolism and epigenetic changes caused by this metabolism.
Collapse
Affiliation(s)
- Huirong Cheng
- Department of Occupational Health, Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan, China
| | - Pei Hu
- Department of Occupational Health, Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan, China
| | - Weihua Wen
- Department of Occupational Health, Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan, China
- * E-mail: (LL); (WW)
| | - Ling Liu
- First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- * E-mail: (LL); (WW)
| |
Collapse
|
14
|
Inorganic arsenic exposure increased expression of Fas and Bax gene in vivo and vitro. Gene 2018; 671:135-141. [DOI: 10.1016/j.gene.2018.05.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022]
|
15
|
Bae HS, Kang IG, Lee SG, Eom SY, Kim YD, Oh SY, Kwon HJ, Park KS, Kim H, Choi BS, Yu IJ, Park JD. Arsenic exposure and seafood intake in Korean adults. Hum Exp Toxicol 2016; 36:451-460. [DOI: 10.1177/0960327116665673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arsenic (As) is widely distributed in the environment, and humans can be exposed to As from various sources such as air, water, soil, and food. This study was performed to evaluate the As exposure levels in Korean adults by measuring total As in urine and its relation with the consumption of seafood, a favorite food in Korea. A total of 2077 adults were the study subjects; they ranged in age from 19 to 83, and they were recruited by probability sampling stratified by area, sex, and age. None of the subjects had been exposed to As occupationally. We collected information about the demographic characteristics, lifestyles, and food consumption of study subjects using a questionnaire and followed urine sampling. Diet was assessed in individual interviews using the 24-h recall method. Total As in urine was analyzed using inductively coupled plasma mass spectrometry (PerkinElmer NEXION 300S; Concord, Ontario, Canada). The geometric mean concentration of total As in urine was observed to be 97.6 µg/L and was higher in males (103.9 µg/L) than in females (93.0 µg/L). Total As levels in urine were affected by sex, age, seafood intake, and geographic location. In this study, total As in urine was positively correlated with fish and shellfish consumption, and was mainly determined by As intake through fish and shellfish/grains/flavors. These findings suggest that seafood consumption might be a major contributor to urinary As levels in Korean adults.
Collapse
Affiliation(s)
- H-S Bae
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - I-G Kang
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - S-G Lee
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - S-Y Eom
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Y-D Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - S-Y Oh
- Department of Food and Nutrition, College of Human Ecology, Kyung-Hee University, Seoul, Korea
| | - H-J Kwon
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Korea
| | - K-S Park
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Korea
| | - H Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - B-S Choi
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - I-J Yu
- Department of Food and Nutrition, College of Life and Health Sciences, Hoseo University, Asan, Korea
| | - JD Park
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
16
|
Marschner K, Musil S, Dědina J. Demethylation of Methylated Arsenic Species during Generation of Arsanes with Tetrahydridoborate(1−) in Acidic Media. Anal Chem 2016; 88:6366-73. [DOI: 10.1021/acs.analchem.6b00735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karel Marschner
- Institute
of Analytical
Chemistry of the CAS, v. v. i., Veveří
97, 602 00 Brno, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Charles University in Prague, Albertov 8, 128 43 Prague, Czech Republic
| | - Stanislav Musil
- Institute
of Analytical
Chemistry of the CAS, v. v. i., Veveří
97, 602 00 Brno, Czech Republic
| | - Jiří Dědina
- Institute
of Analytical
Chemistry of the CAS, v. v. i., Veveří
97, 602 00 Brno, Czech Republic
| |
Collapse
|
17
|
Kim YD, Eom SY, Yim DH, Kim IS, Won HK, Park CH, Kim GB, Yu SD, Choi BS, Park JD, Kim H. Environmental Exposure to Arsenic, Lead, and Cadmium in People Living near Janghang Copper Smelter in Korea. J Korean Med Sci 2016; 31:489-96. [PMID: 27051230 PMCID: PMC4810329 DOI: 10.3346/jkms.2016.31.4.489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/23/2015] [Indexed: 12/02/2022] Open
Abstract
Concentrations of heavy metals exceed safety thresholds in the soil near Janghang Copper Refinery, a smelter in Korea that operated from 1936 to 1989. This study was conducted to evaluate the level of exposure to toxic metals and the potential effect on health in people living near the smelter. The study included 572 adults living within 4 km of the smelter and compared them with 413 controls group of people living similar lifestyles in a rural area approximately 15 km from the smelter. Urinary arsenic (As) level did not decrease according to the distance from the smelter, regardless of gender and working history in smelters and mines. However, in subjects who had no occupational exposure to toxic metals, blood lead (Pb) and cadmium (Cd) and urinary Cd decreased according to the distance from the smelter, both in men and women. Additionally, the distance from the smelter was a determinant factor for a decrease of As, Pb, and Cd in multiple regression models, respectively. On the other hands, urinary Cd was a risk factor for renal tubular dysfunction in populations living near the smelter. These results suggest that Janghang copper smelter was a main contamination source of As, Pb, and Cd, and populations living near the smelter suffered some adverse health effects as a consequence. The local population should be advised to make efforts to reduce exposure to environmental contaminants, in order to minimize potential health effects, and to pay close attention to any health problems possibly related to toxic metal exposure.
Collapse
Affiliation(s)
- Yong-Dae Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Yong Eom
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Dong-Hyuk Yim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - In-Soo Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hee-Kwan Won
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Konyang University, Daejeon, Korea
| | - Choong-Hee Park
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Korea
| | - Guen-Bae Kim
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Korea
| | - Seung-Do Yu
- Environmental Health Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Korea
| | - Byung-Sun Choi
- Department of Preventive Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung-Duck Park
- Department of Preventive Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Heon Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
18
|
LincRNAs and base modifications of p53 induced by arsenic methylation in workers. Chem Biol Interact 2016; 246:1-10. [DOI: 10.1016/j.cbi.2016.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/30/2015] [Accepted: 01/02/2016] [Indexed: 11/30/2022]
|
19
|
Singh R, Singh S, Parihar P, Singh VP, Prasad SM. Arsenic contamination, consequences and remediation techniques: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 112:247-70. [PMID: 25463877 DOI: 10.1016/j.ecoenv.2014.10.009] [Citation(s) in RCA: 500] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 05/18/2023]
Abstract
The exposure to low or high concentrations of arsenic (As), either due to the direct consumption of As contaminated drinking water, or indirectly through daily intake of As contaminated food may be fatal to the human health. Arsenic contamination in drinking water threatens more than 150 millions peoples all over the world. Around 110 millions of those peoples live in 10 countries in South and South-East Asia: Bangladesh, Cambodia, China, India, Laos, Myanmar, Nepal, Pakistan, Taiwan and Vietnam. Therefore, treatment of As contaminated water and soil could be the only effective option to minimize the health hazard. Therefore, keeping in view the above facts, an attempt has been made in this paper to review As contamination, its effect on human health and various conventional and advance technologies which are being used for the removal of As from soil and water.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Samiksha Singh
- Department of Environmental Science, University of Lucknow, Lucknow 226025, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Vijay Pratap Singh
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, Korea 497335, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
20
|
Hong YS, Song KH, Chung JY. Health effects of chronic arsenic exposure. J Prev Med Public Health 2014; 47:245-52. [PMID: 25284195 PMCID: PMC4186552 DOI: 10.3961/jpmph.14.035] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/03/2014] [Indexed: 12/18/2022] Open
Abstract
Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments.
Collapse
Affiliation(s)
- Young-Seoub Hong
- Heavy Metal Exposure Environmental Health Center, Dong-A University, Busan, Korea
- Department of Preventive Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Ki-Hoon Song
- Department of Dermatology, Dong-A University College of Medicine, Busan, Korea
| | - Jin-Yong Chung
- Heavy Metal Exposure Environmental Health Center, Dong-A University, Busan, Korea
| |
Collapse
|
21
|
Bae HS, Ryu DY, Choi BS, Park JD. Urinary Arsenic Concentrations and their Associated Factors in Korean Adults. Toxicol Res 2013; 29:137-42. [PMID: 24278640 PMCID: PMC3834445 DOI: 10.5487/tr.2013.29.2.137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/22/2022] Open
Abstract
Arsenic (As) is a well-known human carcinogen and its dietary exposure has been found to be the major route of entry into general population. This study was performed to assess the body levels of As and their associated factors in Korean adults by analyzing total As in urine. Urine and blood samples were collected from 580 adults aged 20 years and older, who had not been exposed to As occupationally. Demographic information was collected with the help of a standard questionnaire, including age, smoking, alcohol intake, job profiles, and diet consumed in the last 24 hrs of the study. Total As, sum of As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), in urine was determined using atomic absorption spectrometer involving hydride generation method. The geometric mean concentration of total As in urine was 7.10 μg/L. Urine As was significantly higher in men (7.63 μg/L) than in women (6.75 μg/ L). Age, smoking, alcohol consumption, and job profiles of study subjects did not significantly affect the concentration of As in urine. No significant relationship was observed between body mass index (BMI), Fe, and total cholesterol in serum and urinary As. Urine As level was positively correlated with seaweeds, fishes & shellfishes, and grain intake. A negative correlation between urinary As level and HDL-cholesterol in serum and meat intake was observed. Overall, these results suggest that urinary As concentration could be affected by seafood consumption. Therefore, people who frequently consume seafood and grain need to be monitored for chronic dietary As exposure.
Collapse
Affiliation(s)
- Hye-Sun Bae
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | | | | |
Collapse
|
22
|
Wen J, Wen W, Li L, Liu H. Methylation capacity of arsenic and skin lesions in smelter plant workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:624-630. [PMID: 22885843 DOI: 10.1016/j.etap.2012.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 06/01/2023]
Abstract
Potential occupational arsenic exposure is a significant problem in smelting plants. The metabolites containing arsenic with an oxidation of +3 have been considered more cytotoxic and genotoxic than their parent inorganic species. The current study examined the capacity of arsenic methylation and its risk on skin lesions. The primary aim of this study is to determine if methylation capacity, as measured by urinary arsenic metabolites, differed in workers with skin lesions compared to workers without skin lesions. Hydride generation-atomic absorption spectrometry was used to determine three arsenic species in urine of workers who had been working in arsenic plants, and primary and secondary methylation indexes were calculated. Skin lesions were examined at the same time. Many workers had obvious skin lesions (36/91). The mean concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in urine of workers are obviously higher than those of the control group. There are more iAs, MMA, and DMA in urine, higher MMA%, lower iAs% for workers with skin lesions compared with those without skin lesions. Workers with skin lesions have the lowest SMI (3.50±1.21), and they may be in danger. Our results support the viewpoint that individuals who metabolize inorganic arsenic to MMA easily, but metabolize MMA to DMA difficulty have more risk of skin lesions.
Collapse
Affiliation(s)
- Jinghua Wen
- Guizhou University of Finance and Economics, No. 276, Chongguan Road, Guiyang, Guizhou 550004, People's Republic of China
| | - Weihua Wen
- Department of Occupational Health, Yunnan Provincial Center for Disease Control and Prevention, No. 158, Dongsi Street, Kunming, Yunnan 650022, People's Republic of China.
| | - Liang Li
- Honghe Zhou Center for Disease Control and Prevention, No. 1, Guannan Road, Mengzi City, Yunnan 661100, People's Republic of China
| | - Hua Liu
- The First Affiliated Hospital of Kunming Medical College, No. 295, Xichang Road, Kunming, Yunnan 650032, People's Republic of China
| |
Collapse
|
23
|
Huang CY, Su CT, Chung CJ, Pu YS, Chu JS, Yang HY, Wu CC, Hsueh YM. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure. Toxicol Appl Pharmacol 2012; 262:349-54. [DOI: 10.1016/j.taap.2012.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
|