1
|
Gagliano T, Kerschbamer E, Baccarani U, Minisini M, Di Giorgio E, Dalla E, Weichenberger CX, Cherchi V, Terrosu G, Brancolini C. Changes in chromatin accessibility and transcriptional landscape induced by HDAC inhibitors in TP53 mutated patient-derived colon cancer organoids. Biomed Pharmacother 2024; 173:116374. [PMID: 38447451 DOI: 10.1016/j.biopha.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Here we present the generation and characterization of patient-derived organoids (PDOs) from colorectal cancer patients. PDOs derived from two patients with TP53 mutations were tested with two different HDAC inhibitors (SAHA and NKL54). Cell death induction, transcriptome, and chromatin accessibility changes were analyzed. HDACIs promote the upregulation of low expressed genes and the downregulation of highly expressed genes. A similar differential effect is observed at the level of chromatin accessibility. Only SAHA is a potent inducer of cell death, which is characterized by the upregulation of BH3-only genes BIK and BMF. Up-regulation of BIK is associated with increased accessibility in an intronic region that has enhancer properties. SAHA, but not NKL54, also causes downregulation of BCL2L1 and decreases chromatin accessibility in three distinct regions of the BCL2L1 locus. Both inhibitors upregulate the expression of innate immunity genes and members of the MHC family. In summary, our exploratory study indicates a mechanism of action for SAHA and demonstrate the low efficacy of NKL54 as a single agent for apoptosis induction, using two PDOs. These observations need to be validated in a larger cohort of PDOs.
Collapse
Affiliation(s)
- Teresa Gagliano
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emanuela Kerschbamer
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Umberto Baccarani
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | | | - Vittorio Cherchi
- General Surgery Clinic and Liver Transplant Center, University-Hospital of Udine, Udine, Italy
| | - Giovanni Terrosu
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, Institute for Biomedicine, P.le Kolbe 4, Udine 33100, Italy.
| |
Collapse
|
2
|
Jackson BL, Shafique S, Natale BV, Natale DRC, Winn LM. Investigating the effects of valproic acid on placental epigenetic modifications and development in the CD-1 mouse model. Reprod Toxicol 2024; 124:108551. [PMID: 38280688 DOI: 10.1016/j.reprotox.2024.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Gestational exposure to the anticonvulsant drug valproic acid (VPA) is associated with congenital malformations and neurodevelopmental disorders through its action as a histone deacetylase inhibitor. VPA can elicit placental toxicity and affect placental growth and development. The objective of this study was to evaluate the impact of maternal exposure to VPA on the mouse placenta following exposure on gestational day (GD) 13 since previous studies have shown that mice exposed at this time during gestation give birth to offspring with an autism spectrum disorder-like phenotype. We exposed CD-1 dams to a teratogenic dose (600 mg/kg) of VPA or saline on GD13 and assessed fetoplacental growth and development on GD18. We evaluated epigenetic modifications, including acetylated histone H4 (H4ac), methylated H3K4 (H3K4me2) using immunohistochemistry, and global DNA methylation in the placenta at 1, 3, and 24 h following maternal exposure on GD13. In utero exposure to VPA on GD13 significantly decreased placental weight and increased fetal resorptions. Moreover, VPA significantly increased the staining intensity of histone H4 acetylation and H3K4 di-methylation across the placenta at 1 and 3 h post maternal dose. Our results also demonstrate that VPA significantly decreased global DNA methylation levels in placental tissue. These results show that gestational exposure to VPA interferes with placental growth and elicits epigenetic modifications, which may play a vital role in VPA-induced developmental toxicity.
Collapse
Affiliation(s)
- Brianna L Jackson
- Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Kingston, Ontario K7L 3N6, Canada
| | - Sidra Shafique
- Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Kingston, Ontario K7L 3N6, Canada
| | - Bryony V Natale
- Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Kingston, Ontario K7L 3N6, Canada
| | - David R C Natale
- Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Kingston, Ontario K7L 3N6, Canada
| | - Louise M Winn
- Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
3
|
Minisini M, Di Giorgio E, Kerschbamer E, Dalla E, Faggiani M, Franforte E, Meyer-Almes FJ, Ragno R, Antonini L, Mai A, Fiorentino F, Rotili D, Chinellato M, Perin S, Cendron L, Weichenberger CX, Angelini A, Brancolini C. Transcriptomic and genomic studies classify NKL54 as a histone deacetylase inhibitor with indirect influence on MEF2-dependent transcription. Nucleic Acids Res 2022; 50:2566-2586. [PMID: 35150567 PMCID: PMC8934631 DOI: 10.1093/nar/gkac081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
In leiomyosarcoma class IIa HDACs (histone deacetylases) bind MEF2 and convert these transcription factors into repressors to sustain proliferation. Disruption of this complex with small molecules should antagonize cancer growth. NKL54, a PAOA (pimeloylanilide o-aminoanilide) derivative, binds a hydrophobic groove of MEF2, which is used as a docking site by class IIa HDACs. However, NKL54 could also act as HDAC inhibitor (HDACI). Therefore, it is unclear which activity is predominant. Here, we show that NKL54 and similar derivatives are unable to release MEF2 from binding to class IIa HDACs. Comparative transcriptomic analysis classifies these molecules as HDACIs strongly related to SAHA/vorinostat. Low expressed genes are upregulated by HDACIs, while abundant genes are repressed. This transcriptional resetting correlates with a reorganization of H3K27 acetylation around the transcription start site (TSS). Among the upregulated genes there are several BH3-only family members, thus explaining the induction of apoptosis. Moreover, NKL54 triggers the upregulation of MEF2 and the downregulation of class IIa HDACs. NKL54 also increases the binding of MEF2D to promoters of genes that are upregulated after treatment. In summary, although NKL54 cannot outcompete MEF2 from binding to class IIa HDACs, it supports MEF2-dependent transcription through several actions, including potentiation of chromatin binding.
Collapse
Affiliation(s)
- Martina Minisini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Emanuela Kerschbamer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck. Via Galvani 31, 39100 Bolzano, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Massimo Faggiani
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Elisa Franforte
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Haardtring 100, 64295 Darmstadt, Germany
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Francesco Fiorentino
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Dante Rotili
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Monica Chinellato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121 Padova, Italy
| | - Stefano Perin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy.,European Centre for Living Technology (ECLT), Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121 Padova, Italy
| | - Christian X Weichenberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck. Via Galvani 31, 39100 Bolzano, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy.,European Centre for Living Technology (ECLT), Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100 Udine Italy
| |
Collapse
|
4
|
NRF2 activation protects against valproic acid-induced disruption of neurogenesis in P19 cells. Differentiation 2021; 123:18-29. [PMID: 34902770 DOI: 10.1016/j.diff.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Valproic acid (VPA) is a commonly prescribed antiepileptic drug that causes fetal valproate syndrome (FVS) in developing embryos exposed to it. Symptoms of FVS include neural tube defects (NTDs), musculoskeletal abnormalities, and neurodevelopmental difficulties. One proposed mechanism of VPA-induced developmental toxicity is via oxidative stress, defined as the disruption of redox-sensitive cell signaling. We propose that redox imbalances caused by VPA exposure result in improper cellular differentiation that may contribute to FVS. In undifferentiated P19 mouse embryonal carcinoma cells treated with VPA, glutathione disulfide (GSSG) concentrations were higher and the glutathione (GSH)/GSSG redox potential (Eh) was more oxidizing compared to vehicle-treated control cells, both of which are indications of potential intracellular oxidative stress. Interestingly, VPA had no effect on GSH or GSSG levels in differentiated P19 neurons. Undifferentiated cells pretreated with 3H-1,2-dithiole-3-thione (D3T), an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant response that combats cellular redox disruption, were protected from VPA-induced alterations to the GSH/GSSG system. To assess differential periods of susceptibility, P19 cells were exposed to VPA at various time points during their neuronal differentiation. Cells exposed to VPA early in the differentiation process did not undergo normal neurogenesis as measured by POU domain, class 5, transcription factor 1 (OCT4) and tubulin beta-3 chain (βIII-tubulin), markers of cell stemness and neuronal differentiation, respectively. Neurogenesis was improved with D3T pretreatments prior to VPA exposure. Furthermore, differentiating P19 cells treated with VPA exhibited increased protein oxidation that was diminished with D3T pretreatment. These findings demonstrate that VPA inhibits neurogenesis and propose NRF2-mediated redox homeostasis as a means to promote normal neuronal differentiation, thereby potentially decreasing the prevalence of FVS outcomes.
Collapse
|
5
|
Shafique S, Winn LM. Role of Cbp, p300 and Akt in valproic acid induced neural tube defects in CD-1 mouse embryos. Reprod Toxicol 2020; 95:86-94. [PMID: 32445665 DOI: 10.1016/j.reprotox.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
Valproic acid (VPA), an antiepileptic and mood-stabilizing drug, is prescribed to women of reproductive age. VPA is associated with a 1-2% increase in neural tube defects in offspring following gestational exposure and results in epigenetic modifications induced by perturbations in transcription cofactors. Cbp and p300, two transcription cofactors, play key roles in embryonic neural development. p300 is a downstream target of Akt, a protein kinase B associated with cell survival and anti-apoptotic mechanisms, as part of the Akt-p300 axis. We examined the effects of in utero VPA exposure on Cbp, p300, and Akt in gestational day (GD)9, GD10 and GD13 CD-1 mouse embryos following a teratogenic maternal dose of 400 mg/kg. Embryos were collected at 0, 1, 3 and 6 h post-dosing on GD9, 24 h post-dosing on GD10 and on GD13. GD10 embryos were grouped according to the status of neural tube closure in control, closed and open groups. GD13 heads were grouped as control, exposed but non-exencephalic and exencephalic. Our data indicate that Cbp, p300 and Akt mRNA levels were downregulated at 1 and 3 h post-exposure in GD9 embryos while Cbp and p300 protein levels remained stable. Akt protein levels were significantly increased 1 h post-exposure. No significant changes were observed in either mRNA or protein expression in embryos with closed or open neural tubes compared to the control group at GD10. Downregulated expression of Cbp, p300, and Akt may play a key role in VPA-induced neural tube defects considering their vitally important role in embryonic development.
Collapse
Affiliation(s)
- Sidra Shafique
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
6
|
Understanding Failure and Improving Treatment Using HDAC Inhibitors for Prostate Cancer. Biomedicines 2020; 8:biomedicines8020022. [PMID: 32019149 PMCID: PMC7168248 DOI: 10.3390/biomedicines8020022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Novel treatment regimens are required for castration-resistant prostate cancers (CRPCs) that become unresponsive to standard treatments, such as docetaxel and enzalutamide. Histone deacetylase (HDAC) inhibitors showed promising results in hematological malignancies, but they failed in solid tumors such as prostate cancer, despite the overexpression of HDACs in CRPC. Four HDAC inhibitors, vorinostat, pracinostat, panobinostat and romidepsin, underwent phase II clinical trials for prostate cancers; however, phase III trials were not recommended due to a majority of patients exhibiting either toxicity or disease progression. In this review, the pharmacodynamic reasons for the failure of HDAC inhibitors were assessed and placed in the context of the advancements in the understanding of CRPCs, HDACs and resistance mechanisms. The review focuses on three themes: evolution of androgen receptor-negative prostate cancers, development of resistance mechanisms and differential effects of HDACs. In conclusion, advancements can be made in this field by characterizing HDACs in prostate tumors more extensively, as this will allow more specific drugs catering to the specific HDAC subtypes to be designed.
Collapse
|
7
|
Lin WH, He M, Fan YN, Baines RA. An RNAi-mediated screen identifies novel targets for next-generation antiepileptic drugs based on increased expression of the homeostatic regulator pumilio. J Neurogenet 2018; 32:106-117. [PMID: 29718742 PMCID: PMC5989157 DOI: 10.1080/01677063.2018.1465570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite availability of a diverse range of anti-epileptic drugs (AEDs), only about two-thirds of epilepsy patients respond well to drug treatment. Thus, novel targets are required to catalyse the design of next-generation AEDs. Manipulation of neuron firing-rate homoeostasis, through enhancing Pumilio (Pum) activity, has been shown to be potently anticonvulsant in Drosophila. In this study, we performed a genome-wide RNAi screen in S2R + cells, using a luciferase-based dPum activity reporter and identified 1166 genes involved in dPum regulation. Of these genes, we focused on 699 genes that, on knock-down, potentiate dPum activity/expression. Of this subgroup, 101 genes are activity-dependent based on comparison with genes previously identified as activity-dependent by RNA-sequencing. Functional cluster analysis shows these genes are enriched in pathways involved in DNA damage, regulation of cell cycle and proteasomal protein catabolism. To test for anticonvulsant activity, we utilised an RNA-interference approach in vivo. RNAi-mediated knockdown showed that 57/101 genes (61%) are sufficient to significantly reduce seizure duration in the characterized seizure mutant, parabss. We further show that chemical inhibitors of protein products of some of the genes targeted are similarly anticonvulsant. Finally, to establish whether the anticonvulsant activity of identified compounds results from increased dpum transcription, we performed a luciferase-based assay to monitor dpum promoter activity. Third instar larvae exposed to sodium fluoride, gemcitabine, metformin, bestatin, WP1066 or valproic acid all showed increased dpum promoter activity. Thus, this study validates Pum as a favourable target for AED design and, moreover, identifies a number of lead compounds capable of increasing the expression of this homeostatic regulator.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Miaomiao He
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Yuen Ngan Fan
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| | - Richard A Baines
- a Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester, Manchester Academic Health Science Centre , Manchester , UK
| |
Collapse
|
8
|
Wolters JEJ, van Breda SGJ, Caiment F, Claessen SM, de Kok TMCM, Kleinjans JCS. Nuclear and Mitochondrial DNA Methylation Patterns Induced by Valproic Acid in Human Hepatocytes. Chem Res Toxicol 2017; 30:1847-1854. [PMID: 28853863 PMCID: PMC5645762 DOI: 10.1021/acs.chemrestox.7b00171] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Valproic
acid (VPA) is one of the most widely prescribed antiepileptic
drugs in the world. Despite its pharmacological importance, it may
cause liver toxicity and steatosis through mitochondrial dysfunction.
The aim of this study is to further investigate VPA-induced mechanisms
of steatosis by analyzing changes in patterns of methylation in nuclear
DNA (nDNA) and mitochondrial DNA (mtDNA). Therefore, primary human
hepatocytes (PHHs) were exposed to an incubation concentration of
VPA that was shown to cause steatosis without inducing overt cytotoxicity.
VPA was administered daily for 5 days, and this was followed by a
3 day washout (WO). Methylated DNA regions (DMRs) were identified
by using the methylated DNA immunoprecipitation–sequencing
(MeDIP-seq) method. The nDNA DMRs after VPA treatment could indeed
be classified into oxidative stress- and steatosis-related pathways.
In particular, networks of the steatosis-related gene EP300 provided novel insight into the mechanisms of toxicity induced by
VPA treatment. Furthermore, we suggest that VPA induces a crosstalk
between nDNA hypermethylation and mtDNA hypomethylation that plays
a role in oxidative stress and steatosis development. Although most
VPA-induced methylation patterns appeared reversible upon terminating
VPA treatment, 31 nDNA DMRs (including 5 zinc finger protein genes)
remained persistent after the WO period. Overall, we have shown that
MeDIP-seq analysis is highly informative in disclosing novel mechanisms
of VPA-induced toxicity in PHHs. Our results thus provide a prototype
for the novel generation of interesting methylation biomarkers for
repeated dose liver toxicity in vitro.
Collapse
Affiliation(s)
- Jarno E J Wolters
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University , P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Simone G J van Breda
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University , P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University , P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Sandra M Claessen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University , P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Theo M C M de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University , P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University , P.O. Box 616, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
9
|
Valproic acid increases NF-κB transcriptional activation despite decreasing DNA binding ability in P19 cells, which may play a role in VPA-initiated teratogenesis. Reprod Toxicol 2017; 74:32-39. [PMID: 28865949 DOI: 10.1016/j.reprotox.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
The nuclear factor-kappa B (NF-κB) family of transcription factors regulate gene expression in response to diverse stimuli. We previously demonstrated that valproic acid (VPA) exposure in utero decreases total cellular protein expression of the NF-κB subunit p65 in CD-1 mouse embryos with a neural tube defect but not in phenotypically normal littermates. This study evaluated p65 mRNA and protein expression in P19 cells and determined the impact on DNA binding ability and activity. Exposure to 5mM VPA decreased p65 mRNA and total cellular protein expression however, nuclear p65 protein expression was unchanged. VPA reduced NF-κB DNA binding and nuclear protein of the p65 DNA-binding partner, p50. NF-κB transcriptional activity was increased with VPA alone, despite decreased phosphorylation of p65 at Ser276, and when combined with tissue necrosis factor α. These results demonstrate that VPA increases NF-κB transcriptional activity despite decreasing DNA binding, which may play a role in VPA-initiated teratogenesis.
Collapse
|