1
|
Cesário FRAS, de França JC, Pereira AF, Dias DBS, de Oliveira AR, Costa AS, Alves APNN, de Alencar NMN, de Oliveira HD, Vale ML. Analgesic and neuroprotective effect of a lipid transfer protein isolated from Morinda citrifolia L. (noni) seeds on oxaliplatin-induced peripheral sensory neuropathy in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04216-6. [PMID: 40304749 DOI: 10.1007/s00210-025-04216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Oxaliplatin, a 3rd-generation platinum compound, has a dose-limiting effect: neurotoxicity manifests as peripheral sensory neuropathy (PNS). Many studies have assessed the different pharmacological properties of a lipid transfer protein isolated from Morinda citrifolia L. (McLTP1) seeds. This study aimed to evaluate the analgesic and neuroprotective effects of McLTP1 on oxaliplatin-induced peripheral sensory neuropathy in mice and the mechanisms involved. Male Swiss mice received oxaliplatin twice a week for 28 days. McLTP1 (1 to 4 mg/kg, p.o.) was administered 60 min before oxaliplatin injection. Mechanical and cold allodynia were assessed once a week via electronic von Frey and acetone tests. TRPA1 and TRPM8 receptor agonists were applied intraplantarly to the hind paw to evaluate their involvement in the antiallodynic mechanism of McLTP1. ATF3 and c-Fos expression was assessed in the dorsal root ganglia (DRG) or spinal cord (SC) to investigate nociceptive pathway activation and neurotoxic injury. MDA and GSH assays were performed in the sciatic nerve and spinal cord, and histological analysis was performed in the sciatic nerve. Total and differential leukocyte counts were analyzed in the peripheral blood. McLTP1 prevented the mechanical and cold allodynia and increase in c-Fos and ATF3 expression induced by oxaliplatin in the DRG and SC, possibly involving TRPM8 receptors. McLTP1 prevented the oxidative stress caused by oxaliplatin in the sciatic nerve and spinal cord and the histological changes associated with oxaliplatin in the sciatic nerve. McLTP1 inhibited leukopenia, mainly lymphopenia caused by oxaliplatin. McLTP1 prevents oxaliplatin-induced peripheral sensory neuropathy through its antiallodynic, antioxidant and neuroprotective properties.
Collapse
Affiliation(s)
| | - Jonas Costa de França
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Diego Bernardo Souza Dias
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Rocha de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Andrea Santos Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará - UFC, R. Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Nylane Maria Nunes de Alencar
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará - UFC, R. Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Hermógenes David de Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, Brazil
| | - Mariana Lima Vale
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará - UFC, R. Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil.
| |
Collapse
|
2
|
Dos Santos Alves JM, Viana KF, Pereira AF, Lima Júnior RCP, Vale ML, Pereira KMA, Gondim DV. Oral carcinogenesis triggers a nociceptive behavior and c-Fos expression in rats' trigeminal pathway. Oral Dis 2022; 29:1531-1541. [PMID: 35244314 DOI: 10.1111/odi.14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To recognize changes that occur along the trigeminal pathway in oral cancer in order to establish an effective approach to pain control. METHODS Wistar rats were divided into control and 4-NQO-groups for 8, 12, 16, or 20 weeks. 4-NQO suspension was administered on the animals` tongues. Mechanical hyperalgesia, assessment of facial expressions and an open field test were performed. After euthanasia, the animals' tongues were removed for macro and microscopic analysis. c-Fos expression was analyzed in the trigeminal pathway structures. RESULTS 4-NQO induced time-dependent macroscopic lesions that were compatible with neoplastic tumors. Histopathological analysis confirmed oral squamous cell carcinoma in 50% of the animals on the 20th week. There was a significant nociceptive threshold reduction during the first two weeks, followed by a threshold return to the baseline levels, decreasing again from the 12th week. Facial nociceptive expression scores were observed on the 20th week, while increased grooming and exploratory activity were observed on the 8th week. Trigeminal ganglion showed an increased c-Fos immunoexpression on the 20th week and in the trigeminal subnucleus caudalis, it occurred on the 16th and 20th. The long-term carcinogenic exposure caused changes in the nociceptive behavior and c-Fos expression in the rats' trigeminal pathway.
Collapse
Affiliation(s)
- Joana Maria Dos Santos Alves
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
| | - Khalil Fernandes Viana
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
| | - Anamaria Falcão Pereira
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Roberto César Pereira Lima Júnior
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Mariana Lima Vale
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Karuza Maria Alves Pereira
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
| | - Delane Viana Gondim
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
| |
Collapse
|
3
|
Glare P, Aubrey K, Gulati A, Lee YC, Moryl N, Overton S. Pharmacologic Management of Persistent Pain in Cancer Survivors. Drugs 2022; 82:275-291. [PMID: 35175587 PMCID: PMC8888381 DOI: 10.1007/s40265-022-01675-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Improvements in screening, diagnosis and treatment of cancer has seen cancer mortality substantially diminish in the past three decades. It is estimated there are almost 20 million cancer survivors in the USA alone, but some 40% live with chronic pain after completing treatment. While a broad definition of survivorship that includes all people living with, through and beyond a cancer diagnosis—including those with active cancer—is often used, this narrative review primarily focuses on the management of pain in people who are disease-free after completing primary cancer treatment as adults. Chronic pain in this population needs a different approach to that used for people with a limited prognosis. After describing the common chronic pain syndromes caused by cancer treatment, and the pathophysiologic mechanisms involved, the pharmacologic management of entities such as post-surgical pain, chemotherapy-induced neuropathy, aromatase inhibitor musculoskeletal syndrome and checkpoint inhibitor-related pain are described. The challenges associated with opioid prescribing in this population are given special attention. Expert guidelines on pain management in cancer survivors now recommend a combination of pharmacologic and non-pharmacologic modalities, and these are also briefly covered.
Collapse
Affiliation(s)
- Paul Glare
- Pain Management Research Institute, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Karin Aubrey
- Pain Management Research Institute, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Amitabh Gulati
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yi Ching Lee
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Chris O'Brien Lifehouse, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Natalie Moryl
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sarah Overton
- Pain Management Research Centre, Royal North Shore Hospital, Sydney, NSW, Australia
| |
Collapse
|
4
|
Fernandes ARDS, de Brito GA, Baptista AL, Andrade LAS, Imanishe MH, Pereira BJ. The influence of acute kidney disease on the clinical outcomes of patients who received cisplatin, carboplatin, and oxaliplatin. Health Sci Rep 2022; 5:e479. [PMID: 35036578 PMCID: PMC8753493 DOI: 10.1002/hsr2.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Cisplatin (CDDP) is used as the first line of treatment for some tumors, but its use may be restricted due to its nephrotoxicity. Carboplatin (CARBO) and oxaliplatin (OXA) are less nephrotoxic alternatives to CDDP. This study has the objective to determine the incidence of acute kidney disease after chemotherapy with CDDP, CARBO, or OXA. Methods A clinical study of a retrospective cohort of patients who underwent treatment with CDDP, CARBO, or OXA from January‐December 2016. Acute kidney Disease (AKD) was defined as elevated serum creatinine (sCR) levels before and up to 3 months after chemotherapy. Morbidities, type of tumor, and treatment data were recorded. Results A total of 212 patients aged 55.5 ± 14.0 years were evaluated. Among the comorbidities, 30% had arterial hypertension (AH) and 11% had diabetes, and 18% were treated with CDDP, 41% with CARBO, and 41% with OXA. There was no difference in sCR levels before and after chemotherapy regardless of the chemotherapy used. The prevalence of eGFRs <60 mL/min after chemotherapy was higher in patients with AH and cardiovascular disease (CVD). The incidence of post‐chemotherapy AKD was 7.0% (n = 13) and the mortality rate was 38.2%. Survival was lower in patients with AKD (P = .012). Conclusions There was a low incidence of AKD among the patients regardless of the chemotherapy used, but the patients with AKD had shorter survival. In addition, the reduction in eGFR after chemotherapy was greater in patients with AH and CVD.
Collapse
|
5
|
Endocannabinoid System Attenuates Oxaliplatin-Induced Peripheral Sensory Neuropathy Through the Activation of CB1 Receptors. Neurotox Res 2021; 39:1782-1799. [PMID: 34792764 DOI: 10.1007/s12640-021-00442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Oxaliplatin-induced neurotoxicity is expressed as a dose-limiting peripheral sensory neuropathy (PSN). Cannabinoid substances have been investigated for the analgesic effect. This study aimed to investigate the role of cannabinoid receptors in oxaliplatin-associated PSN. Swiss male mice received nine oxaliplatin injections (2 mg/kg, i.v.). Mechanical and thermal nociceptive tests were performed for 56 days. CB1, CB2, and c-Fos expression were assessed in dorsal root ganglia (DRG), spinal cord (SC), trigeminal ganglia (TG), spinal trigeminal nucleus caudalis (Sp5C), and periaqueductal gray (PAG). Iba-1 expression was assessed in DRG and ATF3 in TG. Cannabidiol (10 mg/kg, p.o.) or a CB1/CB2 non-selective agonist (WIN 55,212-2; 0.5 mg/kg, s.c.) or AM251 (CB1 antagonist) or AM630 (CB2 antagonist) (3 mg/kg, i.p.) were injected before oxaliplatin. Oxaliplatin increased CB1 in DRG, SC, TG, Sp5C, and ventrolateral PAG, with no interference in CB2 expression. Cannabidiol increased CB1 in DRG, reduced mechanical hyperalgesia and c-Fos expression in DRG and SC. Additionally, WIN 55,212-2 increased CB1 in DRG, reduced mechanical hyperalgesia, cold allodynia and c-Fos expression in DRG and SC. CB1 blockage hastened the cold allodynia response, but the CB2 antagonist failed to modulate the oxaliplatin-induced nociceptive behavior. Oxaliplatin also increased Iba-1 in DRG, suggesting immune response modulation which was reduced by cannabidiol and enhanced by AM630. The modulation of the endocannabinoid system, through the CB1 receptor, attenuates the oxaliplatin-associated PNS. The activation of the endocannabinoid system could be considered as a therapeutic target for controlling oxaliplatin-associated neuropathy.
Collapse
|
6
|
Wei G, Gu Z, Gu J, Yu J, Huang X, Qin F, Li L, Ding R, Huo J. Platinum accumulation in oxaliplatin-induced peripheral neuropathy. J Peripher Nerv Syst 2021; 26:35-42. [PMID: 33462873 PMCID: PMC7986112 DOI: 10.1111/jns.12432] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is a common and dose-limiting toxic effect that markedly limits the use of oxaliplatin and affects the quality of life. Although it is common, the underlying mechanisms of OIPN remain ambiguous. Recent studies have shown that the platinum accumulation in peripheral nervous system, especially in dorsal root ganglion, is a significant mechanism of OIPN. Several specific transporters, including organic cation transporters, high-affinity copper uptake protein1 (CTR1), ATPase copper transporting alpha (ATP7A) and multidrug and toxin extrusion protein 1 (MATE1), could be associated with this mechanism. This review summarizes the current research progress about the relationship between platinum accumulation and OIPN, as well as suggests trend for the future research.
Collapse
Affiliation(s)
- Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Zhancheng Gu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
| | - Jialin Gu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
| | - Jialin Yu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Xiaofei Huang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Fengxia Qin
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Graduate schoolNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Rong Ding
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of OncologyJiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| |
Collapse
|
7
|
Laforgia M, Laface C, Calabrò C, Ferraiuolo S, Ungaro V, Tricarico D, Gadaleta CD, Nardulli P, Ranieri G. Peripheral Neuropathy under Oncologic Therapies: A Literature Review on Pathogenetic Mechanisms. Int J Mol Sci 2021; 22:1980. [PMID: 33671327 PMCID: PMC7922628 DOI: 10.3390/ijms22041980] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Peripheral neurologic complications are frequent adverse events during oncologic treatments and often lead to dose reduction, administration delays with time elongation of the therapeutic plan and, not least, worsening of patients' quality of life. Experience skills are required to recognize symptoms and clinical evidences and the collaboration between different health professionals, in particular oncologists and hospital pharmacists, grants a correct management of this undesirable occurrence. Some classes of drugs (platinates, vinca alkaloids, taxanes) typically develop this kind of side effect, but the genesis of chemotherapy-induced peripheral neuropathy is not linked to a single mechanism. This paper aims from one side at summarizing and explaining all the scattering mechanisms of chemotherapy-induced peripheral neuropathy through a detailed literature revision, on the other side at finding new approaches to possible treatments, in order to facilitate the collaboration between oncologists, hematologists and hospital pharmacists.
Collapse
Affiliation(s)
- Mariarita Laforgia
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Carmelo Laface
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy
| | - Concetta Calabrò
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Simona Ferraiuolo
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Valentina Ungaro
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Cosmo Damiano Gadaleta
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
| | - Patrizia Nardulli
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
| |
Collapse
|
8
|
Godinho PAR, Silva PGB, Lisboa MRP, Costa BA, Gifoni MAC, Rocha Filho DR, Lima-Júnior RCP, Vale ML. Electronic von Frey as an objective assessment tool for oxaliplatin-induced peripheral neuropathy: A prospective longitudinal study. Eur J Cancer Care (Engl) 2020; 30:e13360. [PMID: 33219575 DOI: 10.1111/ecc.13360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE There is wide discrepancy on how to perform clinical assessment of oxaliplatin-induced peripheral neuropathy. In this scenario, the Electronic von Frey (EVF), which evaluates pain objectively based upon mechanical pain thresholds (MPTs), may be a valuable tool. The present study aims to quantify hyperalgesia in the hands and feet of patients treated with oxaliplatin and to propose a novel method to classify the degree of neurotoxicity using EVF-derived measures as cut-off points. METHODS This is a prospective cohort study including 46 patients treated for colorectal cancer with the FLOX regimen. Before each oxaliplatin administration, patients were evaluated with the Acute and Chronic Neuropathy Questionnaire, Oxaliplatin-Specific Neurotoxicity Scale and National Cancer Institute Common Terminology Criteria for Adverse Events scale. Also, objective pain assessment with the EVF was performed. RESULTS For both upper and lower extremities, EVF was shown to correlate well with patients' symptoms and functional impairment, as assessed by subjective scales. Also, when cut-off MPT variations were determined for diagnosis of neurotoxicity grade 2 or 3, the method showed good sensitivity and specificity. CONCLUSION Electronic von Frey is a noninvasive and easy-to-perform objective method with potential to supplement the current assessment tools for oxaliplatin-induced peripheral neuropathy, which are mostly subjective.
Collapse
Affiliation(s)
- Priscilla A R Godinho
- Graduate Program in Pharmacology, School of Medicine, Federal University of Ceará (UFC, Fortaleza, Brazil
| | - Paulo G B Silva
- Centro Universitário Christus (UNICHRISTUS, Fortaleza, Brazil
| | - Mario R P Lisboa
- Centro Universitário Christus (UNICHRISTUS, Fortaleza, Brazil.,Department of Morphology, Faculty of Medicine, Universidade Federal do Ceará (UFC, Fortaleza, Brazil
| | - Bruno A Costa
- Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará (UFC, Fortaleza, Brazil
| | - Markus A C Gifoni
- Clinical Oncology Department, Instituto do Câncer do Ceará (ICC, Fortaleza, Brazil
| | - Duílio R Rocha Filho
- Clinical Oncology Department, Instituto do Câncer do Ceará (ICC, Fortaleza, Brazil
| | - Roberto C P Lima-Júnior
- Graduate Program in Pharmacology, School of Medicine, Federal University of Ceará (UFC, Fortaleza, Brazil.,Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará (UFC, Fortaleza, Brazil
| | - Mariana L Vale
- Graduate Program in Pharmacology, School of Medicine, Federal University of Ceará (UFC, Fortaleza, Brazil.,Department of Morphology, Faculty of Medicine, Universidade Federal do Ceará (UFC, Fortaleza, Brazil.,Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará (UFC, Fortaleza, Brazil
| |
Collapse
|
9
|
Furgała-Wojas A, Kowalska M, Nowaczyk A, Fijałkowski Ł, Sałat K. Comparison of Bromhexine and its Active Metabolite - Ambroxol as Potential Analgesics Reducing Oxaliplatin-induced Neuropathic Pain - Pharmacodynamic and Molecular Docking Studies. Curr Drug Metab 2020; 21:548-561. [PMID: 32651960 DOI: 10.2174/1389200221666200711155632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Painful peripheral neuropathy is a dose-limiting adverse effect of the antitumor drug oxaliplatin. The main symptoms of neuropathy: tactile allodynia and cold hyperalgesia, appear in more than 80% of patients on oxaliplatin therapy and are due to the overexpression of neuronal sodium channels (Navs) and neuroinflammation. OBJECTIVE This study assessed antiallodynic and antihyperalgesic properties of two repurposed drugs with antiinflammatory and Nav-blocking properties (bromhexine and its pharmacologically active metabolite - ambroxol) in a mouse model of neuropathic pain induced by oxaliplatin. Using molecular docking techniques, we predicted targets implicated in the observed in vivo activity of bromhexine. METHODS Oxaliplatin (a single intraperitoneal dose of 10 mg/kg) induced tactile allodynia and cold hyperalgesia in CD-1 mice and the effectiveness of single-dose or repeated-dose bromhexine and ambroxol to attenuate pain hypersensitivity was assessed in von Frey and cold plate tests. Additionally, Veber analysis and molecular docking experiments of bromhexine on mouse (m) and human (h) Nav1.6-1.9 were carried out. RESULTS At the corresponding doses, ambroxol was more effective than bromhexine as an antiallodynic agent. However, at the dose of 150 mg/kg, ambroxol induced motor impairments in mice. Repeated-dose bromhexine and ambroxol partially attenuated the development of late-phase tactile allodynia in oxaliplatin-treated mice. Only 7-day administration of bromhexine attenuated the development of late-phase cold hyperalgesia. Bromhexine was predicted to be a strong inhibitor of mNav1.6, mNav1.7, mNav1.9, and hNav1.7-hNav1.9. CONCLUSION The conversion of bromhexine to other than ambroxol active metabolites should be considered when interpreting some of its in vivo effects. Nav-blocking properties of bromhexine (and previously also predicted for ambroxol) might underlie its ability to attenuate pain caused by oxaliplatin.
Collapse
Affiliation(s)
- Anna Furgała-Wojas
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Magdalena Kowalska
- Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
10
|
Pereira AF, Lino JA, Alves BWF, Lisboa MRP, Pontes RB, Leite CAVG, Nogueira RB, Lima-Júnior RCP, Vale ML. Amifostine protects from the peripheral sensory neuropathy induced by oxaliplatin in mice. Braz J Med Biol Res 2020; 53:e10263. [PMID: 32965323 PMCID: PMC7510240 DOI: 10.1590/1414-431x202010263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Sensory neuropathy is a dose-limiting side effect of oxaliplatin-based cancer treatment. This study investigated the antinociceptive effect of amifostine and its potential neuroprotective mechanisms on the oxaliplatin-related peripheral sensory neuropathy in mice. Oxaliplatin (1 mg/kg) was injected intravenously in Swiss albino male mice twice a week (total of nine injections), while amifostine (1, 5, 25, 50, and 100 mg/kg) was administered subcutaneously 30 min before oxaliplatin. Mechanical and thermal nociceptive tests were performed once a week for 49 days. Additionally, c-Fos, nitrotyrosine, and activating transcription factor 3 (ATF3) immunoexpressions were assessed in the dorsal root ganglia. In all doses, amifostine prevented the development of mechanical hyperalgesia and thermal allodynia induced by oxaliplatin (P<0.05). Amifostine at the dose of 25 mg/kg provided the best protection (P<0.05). Moreover, amifostine protected against neuronal hyperactivation, nitrosative stress, and neuronal damage in the dorsal root ganglia, detected by the reduced expression of c-Fos, nitrotyrosine, and ATF3 (P<0.05 vs the oxaliplatin-treated group). In conclusion, amifostine reduced the nociception induced by oxaliplatin in mice, suggesting the possible use of amifostine for the management of oxaliplatin-induced peripheral sensory neuropathy.
Collapse
Affiliation(s)
- A F Pereira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - J A Lino
- Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - B W F Alves
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M R P Lisboa
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R B Pontes
- Departamento de Fisioterapia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - C A V G Leite
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R B Nogueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R C P Lima-Júnior
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M L Vale
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
11
|
FLOX (5-fluorouracil + leucovorin + oxaliplatin) chemotherapy for colorectal cancer leads to long-term orofacial neurotoxicity: a STROBE-guided longitudinal prospective study. Int J Clin Oncol 2020; 25:2066-2074. [PMID: 32761281 DOI: 10.1007/s10147-020-01757-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is widely treated by chemotherapy based on an intensely neurotoxic drug: oxaliplatin (OXL). We objective to evaluate prospectively the orofacial neurotoxicity during FLOX (fluorouracil + leucovorin + OXL) chemotherapy. METHODS So, 46 patients with CRC were prospectively evaluated during FLOX chemotherapy by 3 cycles (C) of 6 weeks (W) each. We weekly applied the orofacial section of the Acute and Chronic Neuropathy Questionnaire of Common Toxicity Criteria for Adverse Events of the National Cancer Institute of the United States of America (Oxaliplatin-specific neurotoxicity scale). Patients were asked the following concerning the severity (scores 0-5) of orofacial symptoms: jaw pain, eyelids drooping, throat discomfort, ear pain, tingling in mouth, difficulty with speech, burning or discomfort of the eyes, loss of any vision, feeling shock/pain down back and problems breathing. We summed the scores (0-50) and evaluated the clinicopathological data. Friedman/Dunn, Chi square and multinomial regression logistic tests were used (SPSS 20.0, p < 0.05). RESULTS There was a significant increase in sum of orofacial neurotoxicity from baseline to C1.W3, C2.W1 and C3.W5 (p < 0.001) due increase in scores of jaw pain (p < 0.001), eyelids drooping (p = 0.034), throat discomfort (p < 0.001), ear pain (p = 0.034), tingling in mouth (p = 0.015), burning/discomfort of your eyes (p < 0.001), loss of any vision (p < 0.001), feeling shock/pain down back (p < 0.001), problems with breathing (p = 0.045), but not difficulty with speech (p = 0.087). Women (p = 0.021) and young patients (p = 0.027) had significant higher prevalence of orofacial neurotoxicity. CONCLUSIONS FLOX-related orofacial neurotoxicity begins acutely and remains long term with increased incidence in women and younger patients.
Collapse
|
12
|
Acute Peripheral Motor Neuropathy Induced by Oxaliplatin-Correlated Hypokalaemia. Oncol Ther 2020; 8:161-169. [PMID: 32700068 PMCID: PMC7360012 DOI: 10.1007/s40487-019-00102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 11/05/2022] Open
Abstract
Neurotoxicity is one of the most common side effects of oxaliplatin-based therapy. Most patients who receive at least 3–4 months of treatment suffer from peripheral sensory neurotoxicity (PSN), characterised by the loss or impairment of tactile and proprioceptive sensory function. Motor impairment, such as muscle weakness or palsy, has been rarely described, and the physiopathology of PSN, as well as the motor symptoms due to oxaliplatin-based treatment, are not adequately understood. Here we report the case of a patient who experienced severe acute peripheral motor neuropathy as a side effect of oxaliplatin-based treatment. We also review other cases of PSN published in the literature and suggest a novel hypothesis on the physiopathology of this particular event. Take-away lessons: Not all of the neurological symptoms observed during oxaliplatin-based treatment can be traced back directly to the oxaliplatin itself, and other factors, such as electrolyte imbalances, may contribute to the symptoms. Patients with gastro-intestinal malignancies are the patients most affected by neurotoxicity due to the side effects of chemotherapy and the disease itself.
Collapse
|
13
|
Sałat K. Chemotherapy-induced peripheral neuropathy-part 2: focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol Rep 2020; 72:508-527. [PMID: 32347537 PMCID: PMC7329798 DOI: 10.1007/s43440-020-00106-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is regarded as one of the most common dose-limiting adverse effects of several chemotherapeutic agents, such as platinum derivatives (oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib. CIPN affects more than 60% of patients receiving anticancer therapy and although it is a nonfatal condition, it significantly worsens patients' quality of life. The number of analgesic drugs used to relieve pain symptoms in CIPN is very limited and their efficacy in CIPN is significantly lower than that observed in other neuropathic pain types. Importantly, there are currently no recommended options for effective prevention of CIPN, and strong evidence for the utility and clinical efficacy of some previously tested preventive therapies is still limited. METHODS The present article is the second one in the two-part series of review articles focused on CIPN. It summarizes the most recent advances in the field of studies on CIPN caused by oxaliplatin, the third-generation platinum-based antitumor drug used to treat colorectal cancer. Pharmacological properties of oxaliplatin, genetic, molecular and clinical features of oxaliplatin-induced neuropathy are discussed. RESULTS Available therapies, as well as results from clinical trials assessing drug candidates for the prevention of oxaliplatin-induced neuropathy are summarized. CONCLUSION Emerging novel chemical structures-potential future preventative pharmacotherapies for CIPN caused by oxaliplatin are reported.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Kraków, Poland.
| |
Collapse
|
14
|
Pereira AF, Pereira LMS, Silva CMP, Freitas Alves BW, Barbosa JS, Pinto FMM, Pereira AC, Silva KO, Pontes RB, Alencar NMN, Lima-Júnior RCP, Vale ML. Metformin reduces c-Fos and ATF3 expression in the dorsal root ganglia and protects against oxaliplatin-induced peripheral sensory neuropathy in mice. Neurosci Lett 2019; 709:134378. [PMID: 31325582 DOI: 10.1016/j.neulet.2019.134378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Oxaliplatin is a third-generation platinum drug commonly used as the first line treatment of metastatic colorectal cancer. Oxaliplatin-based anticancer regimens course with dose-limiting neurotoxicity. The pharmacological strategies used to manage such side effect are not totally effective. Metformin is an anti-diabetic drug that is described to negatively modulate painful diabetic neuropathy. Then, this study aimed to assess the effect of metformin in the oxaliplatin-induced peripheral sensory neuropathy in mice. For that purpose, Swiss male mice were injected with oxaliplatin (1, 2 or 4 mg/kg, i.v., twice a week with a total of nine injections) alone or in combination with daily administration of metformin (250 mg/kg, p.o.). Thermal and mechanical nociceptive tests were performed once a week for five weeks. Then, the animals were euthanized on day 35 post-first injection of oxaliplatin and the dorsal root ganglia were harvested for the assessment of c-Fos and ATF3 expressions. Oxaliplatin caused a nociceptive response accompanied by the increased expression of c-Fos and ATF3 in the dorsal root ganglia and spinal cord. In addition, the oxaliplatin-associated nociception was significantly attenuated by metformin (P < 0.05), which also reduced the expression of c-Fos and ATF3 (P < 0.05). Therefore, metformin protected from the peripheral sensory neuropathy induced by oxaliplatin, which was confirmed by the reduction of c-Fos and ATF3 expression, two known neuronal activation and damage markers, respectively.
Collapse
Affiliation(s)
- Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lus Mário Silva Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Bruno Wesley Freitas Alves
- Department of Morphology, Morpho-functional Sciences Post Graduation Program, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jéssica Sales Barbosa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Ana Carolina Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Karla Oliveira Silva
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renata Bessa Pontes
- Department of Physical Therapy, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Nylane Maria Nunes Alencar
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mariana Lima Vale
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Morphology, Morpho-functional Sciences Post Graduation Program, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
15
|
Pontes RB, Lisboa MRP, Pereira AF, Lino JA, de Oliveira FFB, de Mesquita AKV, de Freitas Alves BW, Lima-Júnior RCP, Vale ML. Involvement of Endothelin Receptors in Peripheral Sensory Neuropathy Induced by Oxaliplatin in Mice. Neurotox Res 2019; 36:688-699. [PMID: 31228092 DOI: 10.1007/s12640-019-00074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate the participation of the endothelin ETA and ETB receptors and the effects of bosentan in oxaliplatin-induced peripheral sensory neuropathy (OIN) in mice. Adult male Swiss mice received 1 mg/kg of oxaliplatin intravenously, twice a week for 5 weeks. Dorsal root ganglia (DRG) and spinal cords were removed for evaluation of the endothelin ETA and ETB receptor expression. Afterwards, selective (BQ-123 and BQ-788; 10 nmol in 30 μL, intraplantarly) and non-selective (bosentan, 100 mg/kg, orally) antagonists were administered in order to evaluate the involvement of the endothelin receptors in OIN. Mechanical and thermal nociception tests were performed once a week for 56 days. Oxaliplatin induced mechanical and thermal hypersensitivity and increased the endothelin ETA receptor expression in both the DRG and spinal cord (P < 0.05). Endothelin ETB receptor expression was increased in the DRG (P < 0.05) but not in the spinal cord. Both endothelin ETA and ETB receptor selective antagonists partially prevented mechanical hyperalgesia in mice with OIN (P < 0.05). Moreover, bosentan prevented mechanical and thermal hypersensitivity in oxaliplatin-treated mice (P < 0.05). In conclusion, both endothelin ETA and ETB receptors seem to be involved in the OIN in mice and they should be considered possible targets for the management of this clinical feature.
Collapse
Affiliation(s)
- Renata Bessa Pontes
- Department of Physical Therapy, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-160, Brazil
| | - Mario Roberto Pontes Lisboa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Juliana Arcanjo Lino
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-140, Brazil
| | - Francisco Fábio Bezerra de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | | | | | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Mariana Lima Vale
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil.
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil.
| |
Collapse
|
16
|
Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2019; 20:ijms20061451. [PMID: 30909387 PMCID: PMC6471666 DOI: 10.3390/ijms20061451] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by antineoplastic agents, with a prevalence from 19% to over 85%. Clinically, CIPN is a mostly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors as well as for their health care providers, especially because, at the moment, there is no single effective method of preventing CIPN; moreover, the possibilities of treating this syndrome are very limited. There are six main substance groups that cause damage to peripheral sensory, motor and autonomic neurons, which result in the development of CIPN: platinum-based antineoplastic agents, vinca alkaloids, epothilones (ixabepilone), taxanes, proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). Among them, the most neurotoxic are platinum-based agents, taxanes, ixabepilone and thalidomide; other less neurotoxic but also commonly used drugs are bortezomib and vinca alkaloids. This paper reviews the clinical picture of CIPN and the neurotoxicity mechanisms of the most common antineoplastic agents. A better understanding of the risk factors and underlying mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
|
17
|
Sałat K, Furgała A, Malikowska-Racia N. Searching for analgesic drug candidates alleviating oxaliplatin-induced cold hypersensitivity in mice. Chem Biol Drug Des 2019; 93:1061-1072. [PMID: 30900821 DOI: 10.1111/cbdd.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Oxaliplatin is a third-generation, platinum-based derivative used to treat advanced colorectal cancer. Within the patient population on oxaliplatin therapy, a lower incidence of hematological adverse effects and gastrointestinal toxicity is noted, but severe neuropathic pain episodes characterized by increased cold and tactile hypersensitivity are present in ~95% of patients. This drug is also used to induce a rodent model of chemotherapy-induced peripheral neuropathy (CIPN)-related neuropathic pain which is widely used in the search for novel therapies for CIPN prevention and treatment. This paper provides a step-by-step, detailed description of the prevention and intervention protocols used in our laboratory for the assessment of oxaliplatin-induced cold allodynia in mice. To establish cold sensitivity in mice, the cold plate test was used. Latencies to pain reaction in response to cold stimulus (2.5°C) for vehicle-treated non-neuropathic mice, vehicle-treated mice injected with oxaliplatin (neuropathic control), and oxaliplatin-treated mice treated additionally with duloxetine are compared. Duloxetine is a serotonin/noradrenaline reuptake inhibitor which was found to produce significant pain relief in patients with CIPN symptoms. In our present study, duloxetine administered intraperitoneally at the dose of 30 mg/kg served as a model antiallodynic drug which attenuated or partially prevented cold allodynia caused by oxaliplatin.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Furgała
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Natalia Malikowska-Racia
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
18
|
Abstract
The rates of ribosome production by a nucleolus and of protein biosynthesis by ribosomes are tightly correlated with the rate of cell growth and proliferation. All these processes must be matched and appropriately regulated to provide optimal cell functioning. Deregulation of certain factors, including oncogenes, controlling these processes, especially ribosome biosynthesis, can lead to cell transformation. Cancer cells are characterized by intense ribosome biosynthesis which is advantageous for their growth and proliferation. On the other hand, this feature can be engaged as an anticancer strategy. Numerous nucleolar factors such as nucleolar and ribosomal proteins as well as different RNAs, in addition to their role in ribosome biosynthesis, have other functions, including those associated with cancer biology. Some of them can contribute to cell transformation and cancer development. Others, under stress evoked by different factors which often hamper function of nucleoli and thus induce nucleolar/ribosomal stress, can participate in combating cancer cells. In this sense, intentional application of therapeutic agents affecting ribosome biosynthesis can cause either release of these molecules from nucleoli or their de novo biosynthesis to mediate the activation of pathways leading to elimination of harmful cells. This review underlines the role of a nucleolus not only as a ribosome constituting apparatus but also as a hub of both positive and negative control of cancer development. The article is mainly based on original papers concerning mechanisms in which the nucleolus is implicated directly or indirectly in processes associated with neoplasia.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|