1
|
Gu Y, Bi X, Liu X, Qian Q, Wen Y, Hua S, Fu Q, Zheng Y, Sun S. Roles of ABCA1 in Chronic Obstructive Pulmonary Disease. COPD 2025; 22:2493701. [PMID: 40302380 DOI: 10.1080/15412555.2025.2493701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the common chronic respiratory diseases, which causes a heavy burden to patients and society. Increasing studies suggest that ABCA1 plays an important role in COPD. ABCA1 belongs to a large class of ATP-binding (ABC) transporters. It is not only involved in the reverse transport of cholesterol, but also in the regulation of apoptosis, pyroptosis, cellular inflammation and cellular immunity. Meanwhile, ABCA1 is involved in several signaling pathways, such as SREBP pathway, LXR pathway, MAPK pathway, p62/mTOR pathway, CTRP1 pathway and so on. In addition, the ABCA1 participates in the disorder of lipid metabolism in COPD by regulating the formation of RCT and HDL, regulates the inflammation of COPD by removing excess cholesterol in macrophages, and promotes the differentiation of COPD phenotype into emphysema type. Accordingly, the ABCA1 may be a therapeutic target for COPD.
Collapse
Affiliation(s)
- Ying Gu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qingqing Qian
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiaoli Fu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Yuan HH, Yin H, Marincas M, Xie LL, Bu LL, Guo MH, Zheng XL. From DNA Repair to Redox Signaling: The Multifaceted Role of APEX1 (Apurinic/Apyrimidinic Endonuclease 1) in Cardiovascular Health and Disease. Int J Mol Sci 2025; 26:3034. [PMID: 40243693 PMCID: PMC11988304 DOI: 10.3390/ijms26073034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APEX1) serves as a potent regulatory factor in innate immunity, exhibiting both redox and endonuclease activities. Its redox function enables the regulation of transcription factors such as NF-κB or STAT3, whereas its endonuclease activity recognizes apurinic/apyrimidinic (AP) sites in damaged DNA lesions during base excision repair (BER) and double-stranded DNA repair, thereby I confirm.anti-inflammatory, antioxidative stress and antiapoptotic effects. APEX1 is expressed in a variety of cell types that constitute the cardiovascular system, including cardiomyocytes, endothelial cells, smooth muscle cells, and immune cells. Emerging genetic and experimental evidence points towards the functional roles of APEX1 in the pathophysiology of cardiovascular diseases, including neointimal formation and atherosclerosis. This review aims to present comprehensive coverage of the up-to-date literature concerning the molecular and cellular functions of APEX1, with a particular focus on how APEX1 contributes to the (dys)functions of different cell types during the pathogenesis of cardiovascular diseases. Furthermore, we underscore the potential of APEX1 as a therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huan-Huan Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Mara Marincas
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Ling-Li Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Lan-Lan Bu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Min-Hua Guo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
3
|
Phan F, Bourron O, Foufelle F, Le Stunff H, Hajduch E. Sphingosine-1-phosphate signalling in the heart: exploring emerging perspectives in cardiopathology. FEBS Lett 2024; 598:2641-2655. [PMID: 38965662 DOI: 10.1002/1873-3468.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.
Collapse
Affiliation(s)
- Franck Phan
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, France
| | - Eric Hajduch
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
4
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Zou X, Liao Y, Liu Z, Xu X, Sun W, Qin H, Wang H, Liu J, Jing T. Exosomes Derived from AT2R-Overexpressing BMSC Prevent Restenosis After Carotid Artery Injury by Attenuating the Injury-Induced Neointimal Hyperplasia. J Cardiovasc Transl Res 2023; 16:112-126. [PMID: 35900670 PMCID: PMC9944384 DOI: 10.1007/s12265-022-10293-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Restenosis is a severe complication after percutaneous transluminal coronary angioplasty which limits the long-term efficacy of the intervention. In this study, we investigated the efficiency of exosomes derived from AT2R-overexpressing bone mesenchymal stem cells on the prevention of restenosis after carotid artery injury. Our data showed that AT2R-EXO promoted the proliferation and migration of vascular endothelial cells and maintained the ratio of eNOS/iNOS. On the contrary, AT2R-EXO inhibited the proliferation and migration of vascular smooth muscle cells. In vivo study proved that AT2R-Exo were more effectively accumulated in the injured carotid artery than EXO and Vehicle-EXO controls. AT2R-EXO treatment could improve blood flow of the injured carotid artery site more effectively. Further analysis revealed that AT2REXO prevents restenosis after carotid artery injury by attenuating the injury-induced neointimal hyperplasia. Our study provides a novel and more efficient exosome for the treatment of restenosis diseases after intervention.
Collapse
Affiliation(s)
- Xinliang Zou
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Zhihui Liu
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Xiang Xu
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Weiwei Sun
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Haoran Qin
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Haidong Wang
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Jianping Liu
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Tao Jing
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
6
|
Mechanism of Hypoxia-Mediated Smooth Muscle Cell Proliferation Leading to Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3959845. [PMID: 36593773 PMCID: PMC9805398 DOI: 10.1155/2022/3959845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
Vascular remodeling refers to changes in the size, contraction, distribution, and flow rate of blood vessels and even changes in vascular function. Vascular remodeling can cause cardiovascular and cerebrovascular diseases. It can also lead to other systemic diseases, such as pulmonary hypertension, pulmonary atherosclerosis, chronic obstructive pulmonary disease, stroke, and ascites of broilers. Hypoxia is one of the main causes of vascular remodeling. Prolonged hypoxia or intermittent hypoxia can lead to loss of lung ventilation, causing respiratory depression, irregular respiratory rhythms, and central respiratory failure. Animals that are unable to adapt to the highland environment are also prone to sustained constriction of the small pulmonary arteries, increased resistance to pulmonary circulation, and impaired blood circulation, leading to pulmonary hypertension and right heart failure if they live in a highland environment for long periods of time. However, limited studies have been found on the relationship between hypoxia and vascular remodeling. Therefore, this review will explore the relationship between hypoxia and vascular remodeling from the aspects of endoplasmic reticulum stress, mitochondrial dysfunction, abnormal calcium channel, disordered cellular metabolism, abnormal expression of miRNA, and other factors. This will help to understand the detailed mechanism of hypoxia-mediated smooth muscle cell proliferation and vascular remodeling for the better treatment and management of diseases due to vascular remodeling.
Collapse
|
7
|
Kitsiranuwat S, Suratanee A, Plaimas K. Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug-disease association prediction. Sci Prog 2022; 105:368504221109215. [PMID: 35801312 PMCID: PMC10358641 DOI: 10.1177/00368504221109215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Identifying new therapeutic indications for existing drugs is a major challenge in drug repositioning. Most computational drug repositioning methods focus on known targets. Analyzing multiple aspects of various protein associations provides an opportunity to discover underlying drug-associated proteins that can be used to improve the performance of the drug repositioning approaches. In this study, machine learning models were developed based on the similarities of diversified biological features, including protein interaction, topological network, sequence alignment, and biological function to predict protein pairs associating with the same drugs. The crucial set of features was identified, and the high performances of protein pair predictions were achieved with an area under the curve (AUC) value of more than 93%. Based on drug chemical structures, the drug similarity levels of the promising protein pairs were used to quantify the inferred drug-associated proteins. Furthermore, these proteins were employed to establish an augmented drug-protein matrix to enhance the efficiency of three existing drug repositioning techniques: a similarity constrained matrix factorization for the drug-disease associations (SCMFDD), an ensemble meta-paths and singular value decomposition (EMP-SVD) model, and a topology similarity and singular value decomposition (TS-SVD) technique. The results showed that the augmented matrix helped to improve the performance up to 4% more in comparison to the original matrix for SCMFDD and EMP-SVD, and about 1% more for TS-SVD. In summary, inferring new protein pairs related to the same drugs increase the opportunity to reveal missing drug-associated proteins that are important for drug development via the drug repositioning technique.
Collapse
Affiliation(s)
- Satanat Kitsiranuwat
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
- Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
He Y, Huang Y, Wang S, Zhang L, Gao H, Zhao Y, E G. Hereditary Basis of Coat Color and Excellent Feed Conversion Rate of Red Angus Cattle by Next-Generation Sequencing Data. Animals (Basel) 2022; 12:1509. [PMID: 35739846 PMCID: PMC9219544 DOI: 10.3390/ani12121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Angus cattle have made remarkable contributions to the livestock industry worldwide as a commercial meat-type breed. Some evidence supported that Angus cattle with different coat colors have different feed-to-meat ratios, and the genetic basis of their coat color is inconclusive. Here, genome-wide association study was performed to investigate the genetic divergence of black and red Angus cattle with 63 public genome sequencing data. General linear model analysis was used to identify genomic regions with potential candidate variant/genes that contribute to coat color and feed conversion rate. Results showed that six single nucleotide polymorphisms (SNPs) and two insertion−deletions, which were annotated in five genes (ZCCHC14, ANKRD11, FANCA, MC1R, and LOC532875 [AFG3-like protein 1]), considerably diverged between black and red Angus cattle. The strongest associated loci, namely, missense mutation CHIR18_14705671 (c.296T > C) and frameshift mutation CHIR18_12999497 (c.310G>-), were located in MC1R. Three consecutive strongly associated SNPs were also identified and located in FANCA, which is widely involved in the Fanconi anemia pathway. Several SNPs of highly associated SNPs was notably enriched in ZCCHC14 and ANKRD11, which are related to myofiber growth and muscle development. This study provides a basis for the use of potential genetic markers to be used in future breeding programs to improve cattle selection in terms of coat color and meat phenotype. This study is also helpful to understand the hereditary basis of different coat colors and meat phenotypes. However, the putative candidate genes or markers identified in this study require further investigation to confirm their phenotypic causality and potential effective genetic relationships.
Collapse
Affiliation(s)
- Yongmeng He
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| | - Shizhi Wang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (L.Z.); (H.G.)
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (L.Z.); (H.G.)
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (Y.H.); (Y.H.); (S.W.); (Y.Z.)
| |
Collapse
|
9
|
Cho JY, Kook H, Anvarov J, Makhkamov N, Cho SA, Yu CW. Comparison of neoatherosclerosis and a clinical outcomes between bioabsorbable versus durable polymer drug-eluting stent: Verification by optical coherence tomography analysis. Cardiol J 2022; 30:VM/OJS/J/71808. [PMID: 35470415 PMCID: PMC10713205 DOI: 10.5603/cj.a2022.0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neoatherosclerosis after drug-eluting stent (DES) implantation is known to be related with increased risk of late restenosis and stent thrombosis. Neoatherosclerosis and relevant clinical outcomes between bioabsorbable polymer DES (BP-DES) and second-generation durable polymer DES (DP-DES) were evaluated by optical coherence tomography (OCT) analysis. METHODS A total of 311 patients (319 lesions) undergoing OCT analysis after DES implantation were enrolled and divided into two groups according to stent type (BP-DES [150 patients, 153 lesions] and DP-DES [161 patients, 166 lesions]). Follow-up OCT analysis was performed at least 9 months after index stent implantation. Neoatherosclerosis was defined as presence of thin-cap fibroatheroma, calcified plaque, and lipid plaque. Primary endpoint was the incidence of neoatherosclerosis, and the secondary endpoints were the occurrence of major adverse cardiac events (MACE), defined as a composite of death, myocardial infarction, target lesion revascularization, or stent thrombosis and to find independent predictors of neoatherosclerosis. RESULTS The incidence of neoatherosclerosis was lower in the BP-DES group than the DP-DES group (5.2% vs. 14.5%, p = 0.008), which was driven by lipid plaque. However, the incidence of MACE did not show statistical difference between the two groups in median 4-year follow-up (3.3% vs. 7.8%, hazard ratio 1.964, 95% confidence interval 0.688-5.611, p = 0.207). Less use of angiotensin converting enzyme inhibitors/angiotensin II receptor blockade and higher degree of neointimal hyperplasia remained independent predictors of neoatherosclerosis on Cox regression analysis. CONCLUSIONS Patients undergoing BP-DES implantation had lower incidence of neoatherosclerosis than DP-DES, which did not reach statistically better clinical outcomes.
Collapse
Affiliation(s)
- Jae Young Cho
- Division of Cardiology, Department of Internal Medicine, Regional Cardiocerebrovascular Center, Wonkwang University Hospital, Iksan, Korea
| | - Hyungdon Kook
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, Korea
| | - Javoxir Anvarov
- Department of Endovascular Surgery and Cardiac Arrhythmias, Republican Specialized Center of Surgery named after academician V. Vakhidov, Tashkent, Uzbekistan
| | - Najmiddin Makhkamov
- Department of Endovascular Surgery and Cardiac Arrhythmias, Republican Specialized Center of Surgery named after academician V. Vakhidov, Tashkent, Uzbekistan
| | - Sang-A Cho
- Health Insurance Review and Assessment Service, Wonju, Korea
| | - Cheol Woong Yu
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea.
| |
Collapse
|
10
|
Chen W, Wang S, Xing D. New Horizons for the Roles and Association of APE1/Ref-1 and ABCA1 in Atherosclerosis. J Inflamm Res 2021; 14:5251-5271. [PMID: 34703267 PMCID: PMC8526300 DOI: 10.2147/jir.s330147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide. APE1/Ref-1 and ABCA1 play key roles in the progression of atherosclerosis. APE1/Ref-1 suppresses atherosclerosis via multiple mechanisms, including reducing the IL-6-, TNF-α-, and IL-1β-mediated proinflammatory responses, suppressing ROS-mediated oxidant activity and Bax/Bcl-2-mediated vascular calcification and apoptosis, and reducing LOX-1-mediated cholesterol uptake. However, APE1/Ref-1 also promotes atherosclerosis by increasing the activity of the NK-κB and S1PR1 pathways. APE1/Ref-1 localizes to the nucleus, cytoplasm, and mitochondria and can be secreted from the cell. APE1/Ref-1 localization is dynamically regulated by the disease state and may be responsible for its proatherogenic and antiatherogenic effects. ABCA1 promotes cholesterol efflux and anti-inflammatory responses by binding to apoA-I and regulates apoptotic cell clearance and HSPC proliferation to protect against inflammatory responses. Interestingly, in addition to mediating these functions, ABCA1 promotes the secretion of acetylated APE1/Ref-1 (AcAPE1/Ref-1), a therapeutic target, which protects against atherosclerosis development. The APE1/Ref-1 inhibitor APX3330 is being evaluated in a phase II clinical trial. The LXR agonist LXR-623 (WAY-252623) is an agonist of ABCA1 and the first LXR-targeting compound to be evaluated in clinical trials. In this article, we review the roles of ABCA1 and APE1/Ref-1 in atherosclerosis and focus on new insights into the ABCA1-APE1/Ref-1 axis and its potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266071, People's Republic of China.,School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
11
|
Lu S, She M, Zeng Q, Yi G, Zhang J. Sphingosine 1-phosphate and its receptors in ischemia. Clin Chim Acta 2021; 521:25-33. [PMID: 34153277 DOI: 10.1016/j.cca.2021.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolite of sphingolipids, is mainly derived from red blood cells (RBCs), platelets and endothelial cells (ECs). It plays important roles in regulating cell survival, vascular integrity and inflammatory responses through its receptors. S1P receptors (S1PRs), including 5 subtypes (S1PR1-5), are G protein-coupled receptors and have been proved to mediate various and complex roles of S1P in atherosclerosis, myocardial infarction (MI) and ischemic stroke by regulating endothelial function and inflammatory response as well as immune cell behavior. This review emphasizes the functions of S1PRs in atherosclerosis and ischemic diseases such as MI and ischemic stroke, enabling mechanistic studies and new S1PRs targeted therapies in atherosclerosis and ischemia in the future.
Collapse
Affiliation(s)
- Shishu Lu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Meihua She
- Hengyang Medical College, University of South China, Hengyang, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China.
| | - Qun Zeng
- Hengyang Medical College, University of South China, Hengyang, China
| | - Guanghui Yi
- Hengyang Medical College, University of South China, Hengyang, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Jiawei Zhang
- Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
12
|
Hu Y, Chen M, Wang M, Li X. Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc Med 2021; 32:61-70. [PMID: 33406458 DOI: 10.1016/j.tcm.2020.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Currently, endothelium-dependent vasodilatation involves three main mechanisms: production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS), synthesis of prostanoids by cyclooxygenase, and/or opening of calcium-sensitive potassium channels. Researchers have proposed multiple mechanosensors that may be involved in flow-mediated vasodilation (FMD), including G protein-coupled receptors (GPCRs), ion channels, and intercellular junction proteins, among others. However, GPCRs are considered the major mechanosensors that play a pivotal role in shear stress signal transduction. Among mechanosensitive GPCRs, G protein-coupled receptor 68, histamine H1 receptors, sphingosine-1-phosphate receptor 1, and bradykinin B2 receptors have been identified as endothelial sensors of flow shear stress regulating flow-mediated vasodilation. Thus, this review aims to expound on the mechanism whereby flow shear stress promotes vasodilation through the proposed mechanosensitive GPCRs in ECs.
Collapse
Affiliation(s)
- Yong Hu
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China.
| | - Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun, Jilin Province, 130021, China.
| | - Meili Wang
- Department of Obstetrics, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, NO.238, Jingshi East Road, Jinan, Shandong, 250012, China.
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China; Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, NO.44, Wenhua West Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
13
|
Ji Y, Chen H, Gow W, Ma L, Jin Y, Hui B, Yang Z, Wang Z. Potential biomarkers Ang II/AT1R and S1P/S1PR1 predict the prognosis of hepatocellular carcinoma. Oncol Lett 2020; 20:208. [PMID: 32963614 PMCID: PMC7491028 DOI: 10.3892/ol.2020.12071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of cancer-associated morbidity and mortality worldwide. Sphingosine-1-phosphate (S1P) and S1P receptor 1 (S1PR1) have been associated with the development and progression of HCC. Angiotensin II (Ang II) and Ang II receptor type 1 (AT1R) serve key roles in the progression and metastasis of HCC. However, the association and roles of Ang II/AT1R and S1P/S1PR1 in HCC have remained elusive. Therefore, the aim of the present study was to investigate the potential association between Ang II/AT1R and S1P/S1PR1 in HCC, as well as the association of AT1R and S1PR1 protein expression levels with the progression and prognosis of HCC. The results found that the serum levels of Ang II and S1P were significantly higher in patients with HCC compared with those in healthy donors. Furthermore, mRNA and protein levels of AT1R and S1PR1 were highly expressed in human HCC tissues. In addition, a positive correlation between Ang II/S1P and AT1R/S1PR1 in HCC was noted. Upregulation of AT1R and S1PR1 was associated with the progression of HCC. Patients with high AT1R and S1PR1 protein expression levels had unfavorable outcomes with respect to overall survival and recurrence-free survival compared with patients with low AT1R and S1PR1 expression levels. The present results demonstrated an association between AT1R and S1PR1 overexpression and the progression of HCC, indicating that Ang II/AT1R and S1P/S1PR may serve as valuable prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haiyan Chen
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Gow
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li Ma
- Department of Pathology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bo Hui
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhengan Yang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhidong Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
14
|
Ouyang J, Shu Z, Chen S, Xiang H, Lu H. The role of sphingosine 1-phosphate and its receptors in cardiovascular diseases. J Cell Mol Med 2020; 24:10290-10301. [PMID: 32803879 PMCID: PMC7521328 DOI: 10.1111/jcmm.15744] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
There are many different types of cardiovascular diseases, which impose a huge economic burden due to their extremely high mortality rates, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine 1‐phosphate (S1P) is a bioactive lipid mediator with paracrine and autocrine activities that acts through its cell surface S1P receptors (S1PRs) and intracellular signals. In the circulatory system, S1P is indispensable for both normal and disease conditions; however, there are very different views on its diverse roles, and its specific relevance to cardiovascular pathogenesis remains elusive. Here, we review the synthesis, release and functions of S1P, specifically detail the roles of S1P and S1PRs in some common cardiovascular diseases, and then address several controversial points, finally, we focus on the development of S1P‐based therapeutic approaches in cardiovascular diseases, such as the selective S1PR1 modulator amiselimod (MT‐1303) and the non‐selective S1PR1 and S1PR3 agonist fingolimod, which may provide valuable insights into potential therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ouyang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihao Shu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
Liu Y, Zhang Z, Zhang L, Zhong Z. Cytoplasmic APE1 promotes resistance response in osteosarcoma patients with cisplatin treatment. Cell Biochem Funct 2020; 38:195-203. [PMID: 31930546 DOI: 10.1002/cbf.3461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022]
Abstract
Chemotherapy resistance has become a hold back and major clinical challenge in osteosarcoma cancer. The alteration and subcellular distribution of apurinic/apyrimidinic endonuclease 1 (APE1) has been reported to be involved in chemotherapy resistance in many cancers. Here, we report that the cytoplasmic distribution of APE1 plays a key role in the sensitivity of combination platinum chemotherapy in osteosarcoma. Interestingly, the prevalence of cisplatin-induced DNA damage and apoptosis in low cytoplasmic APE1 osteosarcoma cell lines was higher than in high expression of cytoplasmic APE1 cell lines. Overexpression of cytoplasmic APE1 protected the osteosarcoma cells from CDDP-induced apoptosis. In addition, clinical data also show that the level of cytoplasmic APE1 was negatively associated with sensitivity to combination chemotherapy of cisplatin in osteosarcoma patients. Our findings suggest that cytoplasmic APE1 plays a significant role in chemotherapy resistance. This role is a supplement to the extranuclear function of APE1, and cytoplasmic APE1 expression level could be a promising predictor of platinum treatment prognosis for osteosarcoma patients.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhimin Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Liang Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhaoyang Zhong
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
16
|
Jung SH, Lee GB, Ryu Y, Cui L, Lee HM, Kim J, Kim B, Won KJ. Inhibitory effects of scoparone from chestnut inner shell on platelet-derived growth factor-BB-induced vascular smooth muscle cell migration and vascular neointima hyperplasia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4397-4406. [PMID: 30861122 DOI: 10.1002/jsfa.9674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/03/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Compounds of the inner shell of chestnut (Castanea crenata) have diverse biological activities, including anti-cancer and anti-oxidant activities. Here we explored the effects of an extract of chestnut inner shells and of its bioactive component scoparone on vascular smooth muscle cell migration and vessel damage. RESULTS The ethanol extract of chestnut inner shells, containing 11 major compounds, inhibited platelet-derived growth factor (PDGF)-BB-induced migration of rat aortic smooth muscle cells (RASMCs). Among these compounds, scoparone (6,7-dimethoxycoumarin) suppressed RASMC migration and wound healing in response to PDGF-BB but did not affect RASMC proliferation. In RASMCs, scoparone inhibited the PDGF-BB-induced rat aortic sprout outgrowth and attenuated the PDGF-BB-mediated increase in phosphorylation of mitogen-activated protein kinases (MAPKs), p38 MAPK and extracellular signal-regulated kinase 1/2. The in vivo administration of scoparone resulted in the attenuation of neointima formation in balloon-injured carotid arteries of rats. CONCLUSION These findings demonstrate that scoparone, found in chestnut inner shells, may inhibit cell migration through suppression of the phosphorylation of MAPKs in PDGF-BB-treated RASMCs, probably contributing to the reduction of neointimal hyperplasia induced after vascular injury. Therefore, scoparone and chestnut inner shell may be a potential agent or functional food, respectively, for the prevention of vascular disorders such as vascular restenosis or atherosclerosis. © 2019 Society of Chemical Industry.
Collapse
MESH Headings
- Animals
- Becaplermin/metabolism
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Coumarins/administration & dosage
- Coumarins/chemistry
- Fagaceae/chemistry
- Humans
- Hyperplasia/drug therapy
- Hyperplasia/physiopathology
- Male
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neointima/drug therapy
- Neointima/metabolism
- Neointima/physiopathology
- Nuts/chemistry
- Plant Extracts/administration & dosage
- Plant Extracts/chemistry
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Seung Hyo Jung
- Department of Physiology, School of Medicine, Konkuk University, Seoul, South Korea
| | - Gyoung Beom Lee
- Department of Physiology, School of Medicine, Konkuk University, Seoul, South Korea
| | - Yunkyoung Ryu
- Department of Physiology, School of Medicine, Konkuk University, Seoul, South Korea
| | - Long Cui
- Department of Physiology, School of Medicine, Konkuk University, Seoul, South Korea
| | - Hwan Myung Lee
- Department of Cosmetic Science, College of Natural Science, Hoseo University, Asan, South Korea
| | - Junghwan Kim
- Department of Physical Therapy, College of Public Health & Welfare, Yongin University, Yongin, South Korea
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Konkuk University, Seoul, South Korea
| | - Kyung Jong Won
- Department of Physiology, School of Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|