1
|
Mori FK, Shimosawa T. The Fetal Environment and the Development of Hypertension-The Epigenetic Modification by Glucocorticoids. Int J Mol Sci 2025; 26:420. [PMID: 39796274 PMCID: PMC11720225 DOI: 10.3390/ijms26010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation. We have shown that the IUGR model induced DNA hypomethylation in the paraventricular nucleus (PVN) in the brain, which in turn activates sympathetic activities, the renin-angiotensin system (RAS), contributing to the development of salt-sensitive hypertension. Even in adulthood, strong stress and/or exogenous steroids have been shown to induce epigenetic changes in the brain. Furthermore, DNA hypomethylation in the PVN is also observed in other hypertensive rat models, which suggests that it contributes significantly to the origins of elevated blood pressure. These findings suggest that if we can alter epigenetic changes in the brain, we can treat or prevent hypertension.
Collapse
Affiliation(s)
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Otawara 324-8501, Japan;
| |
Collapse
|
2
|
Zeng X, Cai Y, Wu M, Chen H, Sun M, Yang H. An overview of current advances in perinatal alcohol exposure and pathogenesis of fetal alcohol spectrum disorders. J Neurodev Disord 2024; 16:20. [PMID: 38643092 PMCID: PMC11031898 DOI: 10.1186/s11689-024-09537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The adverse use of alcohol is a serious global public health problem. Maternal alcohol consumption during pregnancy usually causes prenatal alcohol exposure (PAE) in the developing fetus, leading to a spectrum of disorders known as fetal alcohol spectrum disorders (FASD) and even fetal alcohol syndrome (FAS) throughout the lifelong sufferers. The prevalence of FASD is approximately 7.7 per 1,000 worldwide, and is even higher in developed regions. Generally, Ethanol in alcoholic beverages can impair embryonic neurological development through multiple pathways leading to FASD. Among them, the leading mechanism of FASDs is attributed to ethanol-induced neuroinflammatory damage to the central nervous system (CNS). Although the underlying molecular mechanisms remain unclear, the remaining multiple pathological mechanisms is likely due to the neurotoxic damage of ethanol and the resultant neuronal loss. Regardless of the molecular pathway, the ultimate outcome of the developing CNS exposed to ethanol is almost always the destruction and apoptosis of neurons, which leads to the reduction of neurons and further the development of FASD. In this review, we systematically summarize the current research progress on the pathogenesis of FASD, which hopefully provides new insights into differential early diagnosis, treatment and prevention for patents with FASD.
Collapse
Affiliation(s)
- Xingdong Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Mengyan Wu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Haonan Chen
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215031, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
3
|
Xu N, Han X, Zhang X, Wang J, Yuan J, Wang M, Wu H, Huang F, Shi H, Yang L, Wu X. Huangqi-Guizhi-Wuwu decoction regulates differentiation of CD4 + T cell and prevents against experimental autoimmune encephalomyelitis progression in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155239. [PMID: 38308917 DOI: 10.1016/j.phymed.2023.155239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelination disorder caused by an overactive immune response. Its pathological characteristics include CNS inflammation, white matter demyelination, glial cell proliferation, and so on. Huangqi-Guizhi-Wuwu Decoction (HGWD), which is recorded in the Synopsis of the Golden Chamber, is used clinically for the therapy of MS, but its mechanism is still elusive. PURPOSE This study was aimed to investigate the impact of HGWD on the classical animal model for MS, experimental autoimmune encephalomyelitis (EAE), and explore the underlying action mechanism. RESULTS HGWD ameliorated the pathogenesis of EAE mice, and improved their neurobehavior and pathological tissue damage. Network pharmacology predictions revealed the action mechanism of HGWD in EAE mice might be related to its effect on the immune system of mice. HGWD effectively suppressed the inflammatory infiltration in CNS, while also preventing the elevation of CD4+T cells of mice with EAE. HGWD could increase the ratio of Treg cells, up-regulate the secretion of IL-10 and Foxp3 mRNA expression, inhibit the ratio of Th1 and Th17 cells, down-regulate the IFN-γ and IL-17 protein expression, as well as the RORγT and T-bet gene expression in EAE mice. In addition, HGWD-containing serum modulated Th1/Th17/Treg cell differentiation in vitro. Moreover, HGWD inhibited the p-JAK1, p-JAK2, p-STAT1, p-STAT3 and p-STAT4 proteins and elevated the p-STAT5 protein in lymphoid tissues of EAE mice. CONCLUSION HGWD improved the progress of EAE by regulating the proportion of CD4+T cell subtype differentiation, which might be exerted through JAK/STAT signaling pathway, providing a pharmacological basis for the clinical treatment of MS.
Collapse
Affiliation(s)
- Nuo Xu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojuan Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junhao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liu Yang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Chen Y, Wang H. The changes in adrenal developmental programming and homeostasis in offspring induced by glucocorticoids exposure during pregnancy. VITAMINS AND HORMONES 2024; 124:463-490. [PMID: 38408809 DOI: 10.1016/bs.vh.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Clinically, synthetic glucocorticoids are often used to treat maternal and fetal related diseases, such as preterm birth and autoimmune diseases. Although its clinical efficacy is positive, it will expose the fetus to exogenous glucocorticoids. Adverse environments during pregnancy (e.g., exogenous glucocorticoids exposure, malnutrition, infection, hypoxia, and stress) can lead to fetal overexposure to endogenous maternal glucocorticoids. Basal glucocorticoids levels in utero are crucial in determining fetal tissue maturation and its postnatal fate. As the synthesis and secretion organ of glucocorticoids, the adrenal development is crucial for the growth and development of the body. Studies have found that glucocorticoids exposure during pregnancy could cause abnormal fetal adrenal development, which could last after birth or even adulthood. As the key organ of fetal-originated adult disease, the adrenal developmental programming has a profound impact on the health of offspring, which can lead to many chronic diseases in adulthood. However, the aberrant adrenal development in offspring caused by glucocorticoids exposure during pregnancy and its intrauterine programming mechanism have not been systematically clarified. Therefore, this review summarizes recent research progress on the short and long-term hazards of aberrant adrenal development induced by glucocorticoids exposure during pregnancy, which is of great significance for the analysis of aberrant adrenal development and clarify the intrauterine origin mechanism of fetal-originated adult disease.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China; Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, P.R. China.
| |
Collapse
|
5
|
Chen Z, Xia LP, Shen L, Xu D, Guo Y, Wang H. Glucocorticoids and intrauterine programming of nonalcoholic fatty liver disease. Metabolism 2024; 150:155713. [PMID: 37914025 DOI: 10.1016/j.metabol.2023.155713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Accumulating epidemiological and experimental evidence indicates that nonalcoholic fatty liver disease (NAFLD) has an intrauterine origin. Fetuses exposed to adverse prenatal environments (e.g., maternal malnutrition and xenobiotic exposure) are more susceptible to developing NAFLD after birth. Glucocorticoids are crucial triggers of the developmental programming of fetal-origin diseases. Adverse intrauterine environments often lead to fetal overexposure to maternally derived glucocorticoids, which can program fetal hepatic lipid metabolism through epigenetic modifications. Adverse intrauterine environments program the offspring's glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, which contributes to postnatal catch-up growth and disturbs glucose and lipid metabolism. These glucocorticoid-driven programming alterations increase susceptibility to NAFLD in the offspring. Notably, after delivery, offspring often face an environment distinct from their in utero life. The mismatch between the intrauterine and postnatal environments can serve as a postnatal hit that further disturbs the programmed endocrine axes, accelerating the onset of NAFLD. In this review, we summarize the current epidemiological and experimental evidence demonstrating that NAFLD has an intrauterine origin and discuss the underlying intrauterine programming mechanisms, focusing on the role of overexposure to maternally derived glucocorticoids. We also briefly discuss potential early life interventions that may be beneficial against fetal-originated NAFLD.
Collapse
Affiliation(s)
- Ze Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Li-Ping Xia
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lang Shen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
6
|
Zou K, Zeng Z. Role of early growth response 1 in inflammation-associated lung diseases. Am J Physiol Lung Cell Mol Physiol 2023; 325:L143-L154. [PMID: 37401387 PMCID: PMC10511164 DOI: 10.1152/ajplung.00413.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Early growth response 1 (EGR1), which is involved in cell proliferation, differentiation, apoptosis, adhesion, migration, and immune and inflammatory responses, is a zinc finger transcription factor. EGR1 is a member of the EGR family of early response genes and can be activated by external stimuli such as neurotransmitters, cytokines, hormones, endotoxins, hypoxia, and oxidative stress. EGR1 expression is upregulated during several common respiratory diseases, such as acute lung injury/acute respiratory distress syndrome, chronic obstructive pulmonary disease, asthma, pneumonia, and novel coronavirus disease 2019. Inflammatory response is the common pathophysiological basis of these common respiratory diseases. EGR1 is highly expressed early in the disease, amplifying pathological signals from the extracellular environment and driving disease progression. Thus, EGR1 may be a target for early and effective intervention in these inflammation-associated lung diseases.
Collapse
Affiliation(s)
- Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical College, Ganzhou, People's Republic of China
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
7
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|
8
|
GPR174 knockdown enhances blood flow recovery in hindlimb ischemia mice model by upregulating AREG expression. Nat Commun 2022; 13:7519. [PMID: 36473866 PMCID: PMC9727025 DOI: 10.1038/s41467-022-35159-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are critically involved in neovascularization, an important compensatory mechanism in peripheral artery disease. The contribution of G protein coupled receptor 174 (GPR174), which is a regulator of Treg function and development, in neovascularization remains elusive. Here, we show that genetic deletion of GPR174 in Tregs potentiated blood flow recovery in mice after hindlimb ischemia. GPR174 deficiency upregulates amphiregulin (AREG) expression in Tregs, thereby enhancing endothelial cell functions and reducing pro-inflammatory macrophage polarization and endothelial cell apoptosis. Mechanically, GPR174 regulates AREG expression by inhibiting the nuclear accumulation of early growth response protein 1 (EGR1) via Gαs/cAMP/PKA signal pathway activation. Collectively, these findings demonstrate that GPR174 negatively regulates angiogenesis and vascular remodeling in response to ischemic injury and that GPR174 may be a potential molecular target for therapeutic interventions of ischemic vascular diseases.
Collapse
|
9
|
Nowak AL, Anderson CM, Ford JL, Mackos A, Ohm J, Saadat N, Tan A, Zhao Y, Misra DP, Giurgescu C. DNA Methylation Patterns of Glucocorticoid Pathway Genes in Preterm Birth Among Black Women. Biol Res Nurs 2022; 24:493-502. [PMID: 35512640 PMCID: PMC9630727 DOI: 10.1177/10998004221099253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preterm birth (PTB; <37 weeks gestation) rates have increased for 5 of the last 6 consecutive years in the United States. These rates are particularly alarming for U.S. non-Hispanic Black women who give birth prematurely at 1.5 times the rate of non-Hispanic White women. Previous research suggests that psychological stress is associated with PTB in Black women. However, the biological pathways by which stress alters birth timing are not clear. We examined DNA methylation (DNAm) in peripheral blood leukocytes in 6 glucocorticoid, stress-related genes in 44 (22 PTB; 22 term birth) pregnant Black women. Four cytosine-phosphate-guanine (CpG) sites were identified as differentially methylated (p < 0.05) between women with PTB and women with term births. The ability to identify stress-related biological markers that are associated with PTB among Black women would provide a critical step toward decreasing the PTB disparity among these women. Future studies should include larger sample sizes and gene expression analyses of the stress-related biological pathways to PTB.
Collapse
Affiliation(s)
| | | | - Jodi L. Ford
- College of Nursing, The Ohio State
University, Columbus, OH, USA
| | - Amy Mackos
- College of Nursing, The Ohio State
University, Columbus, OH, USA
| | - Joyce Ohm
- Department of Genetics and
Genomics, Roswell Park Comprehensive Cancer
Center, Buffalo, NY, USA
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Alai Tan
- College of Nursing, The Ohio State
University, Columbus, OH, USA
| | - Yihong Zhao
- School of Nursing, Columbia University, New York, NY, USA
| | - Dawn P. Misra
- Department of Epidemiology and
Biostatistics, Michigan State
University, East Lansing, MI, USA
| | - Carmen Giurgescu
- College of Nursing, University of Central
Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Cao J, Chen Y, Wang H. 11β-hydroxysteroid dehydrogenases and biomarkers in fetal development. Toxicology 2022; 479:153316. [PMID: 36096318 DOI: 10.1016/j.tox.2022.153316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
It is known that basal glucocorticoid levels in utero are essential for regulating fetal development and maturation, and determine the fate of later life. Recently, more and more studies suggest that adverse prenatal environments may cause abnormal maternal glucocorticoid levels in utero. 11β-hydroxysteroid dehydrogenases (11β-HSDs) are widely distributed in the target organs of glucocorticoids (GCs) and mineralocorticoids. 11β-HSDs is involved in fetal physiological and pathological development by activating or inactivating GCs. Prenatal adverse environments (including exogenous and maternal environments) can affect the expression and activity of 11β-HSDs in the placenta and fetus via multiple pathways. It induces abnormal local glucocorticoid levels in fetal multiple tissues, fetal developmental programming and homeostasis changes, and the susceptibility to various diseases after birth. We also discuss the interventions of 11β-HSDs inhibitors on fetal developmental programming and susceptibility to multiple diseases. Finally, we propose that 11β-HSD2 can be used as a molecular target for fetal developmental toxicity, while 11β-HSD1 can be regarded as an intervention target to prevent fetal-originated diseases. This review will provide a theoretical basis for the early prevention and treatment of fetal-originated diseases.
Collapse
Affiliation(s)
- Jiangang Cao
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
11
|
Shi H, Li B, Gao H, He H, Wu Z, Magdaloud J, Wang H, Chen L. Intrauterine programming of cartilaginous 11β-HSD2 induced by corticosterone and caffeine mediated susceptibility to adult osteoarthritis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113624. [PMID: 35588619 DOI: 10.1016/j.ecoenv.2022.113624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Our previous study reported that prenatal caffeine exposure (PCE) could induce chondrodysplasia and increase the susceptibility to osteoarthritis in offspring rats. However, the potential mechanisms and initiating factors remain unknown. This study aims to investigate whether 11β-HSD2, a glucocorticoid-metabolizing enzyme, is involved in the susceptibility of osteoarthritis induced by PCE and to further explore its potential mechanisms and initiating factors. Firstly, we found that PCE reduced cartilage matrix synthesis (aggrecan/Col2a1 expression) in male adult offspring rats and exhibited an osteoarthritis phenotype following chronic stress, which was associated with persistently reduced H3K9ac and H3K27ac levels at the promoter of 11β-HSD2 as well as its expression in the cartilage from fetus to adulthood. The expression of 11β-HSD2, aggrecan and Col2a1 were all decreased by corticosterone in the fetal chondrocytes, while overexpression of 11β-HSD2 could partially alleviate the decrease of matrix synthesis induced by corticosterone in vitro. Furthermore, the glucocorticoid receptor (GR) activated by glucocorticoids directly bonded to the promoter region of 11β-HSD2 to inhibit its expression. Meanwhile, the activated GR reduced the H3K9ac and H3K27ac levels of 11β-HSD2 by recruiting HDAC4 and promoting GR-HDAC4 protein interaction to inhibit the 11β-HSD2 expression. Moreover, caffeine could reduce the expression of 11β-HSD2 by inhibiting the cAMP/PKA signaling pathway but without reducing the H3K9ac and H3K27ac levels of 11β-HSD2, thereby synergistically enhancing the corticosterone effect. In conclusion, the persistently reduced H3K9ac and H3K27ac levels of 11β-HSD2 from fetus to adulthood mediated the inhibition of cartilage matrix synthesis and the increased susceptibility to osteoarthritis. This epigenetic programming change in utero was induced by glucocorticoids with synergistic effect of caffeine.
Collapse
Affiliation(s)
- Huasong Shi
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Gao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hangyuan He
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | | | - Hui Wang
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
12
|
Yu P, Zhou J, Ge C, Fang M, Zhang Y, Wang H. Differential expression of placental 11β-HSD2 induced by high maternal glucocorticoid exposure mediates sex differences in placental and fetal development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154396. [PMID: 35259391 DOI: 10.1016/j.scitotenv.2022.154396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A variety of adverse environmental factors during pregnancy cause maternal chronic stress. Caffeine is a common stressor, and its consumption during pregnancy is widespread. Our previous study showed that prenatal caffeine exposure (PCE) increased maternal blood glucocorticoid levels and caused abnormal development of offspring. However, the placental mechanism for fetal development inhibition caused by PCE-induced high maternal glucocorticoid has not been reported. This study investigated the effects of PCE-induced high maternal glucocorticoid level on placental and fetal development by regulating placental 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) expression and its underlying mechanism. First, human placenta and umbilical cord blood samples were collected from women without prenatal use of synthetic glucocorticoids. We found that placental 11β-HSD2 expression was significantly correlated with umbilical cord blood cortisol level and birth weight in male newborns but not in females. Furthermore, we established a rat model of high maternal glucocorticoids induced by PCE (caffeine, 60 mg/kg·d, ig), and found that the expression of 11β-HSD2 in male PCE placenta was decreased and negatively correlated with the maternal/fetal/placental corticosterone levels. Meanwhile, we found abnormal placental structure and nutrient transporter expression. In vitro, BeWo cells were used and confirm that 11β-HSD2 mediated inhibition of placental nutrient transporter expression induced by high levels of glucocorticoid. Finally, combined with the animal and cell experiments, we further confirmed that high maternal glucocorticoid could activate the GR-C/EBPα-Egr1 signaling pathway, leading to decreased expression of 11β-HSD2 in males. However, there was no significant inhibition of placental 11β-HSD2 expression, placental and fetal development in females. In summary, we confirmed that high maternal glucocorticoids could regulate placental 11β-HSD2 expression in a sex-specific manner, leading to differences in placental and fetal development. This study provides the theoretical and experimental basis for analyzing the inhibition of fetoplacental development and its sex difference caused by maternal stress.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
13
|
Cadmium induces placental glucocorticoid barrier damage by suppressing the cAMP/PKA/Sp1 pathway and the protective role of taurine. Toxicol Appl Pharmacol 2022; 440:115938. [DOI: 10.1016/j.taap.2022.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/20/2022]
|
14
|
Prenatal ethanol exposure induces dynamic changes of expression and activity of hepatic cytochrome P450 isoforms in male rat offspring. Reprod Toxicol 2022; 109:101-108. [PMID: 35301062 DOI: 10.1016/j.reprotox.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
This study aimed at determining the effect of prenatal ethanol exposure (PEE) on the expression and activity of cytochrome P450 (CYP) isozymes at different life stages of male rat offspring. Pregnant Wistar rats were administered with ethanol (4 g/kg/d) intragastrically from gestational day (GD) 9-20. Male offspring's gene and activity of CYP isozymes were analyzed on GD 20 (only expression), postnatal day (PD) 84 and 196. Using aniline as probe, we compared the enzyme kinetics of hepatic CYP2E1 between two groups. Expression of CYP isozymes was examined in rat primary hepatocytes and human hepatic cell lines treated with ethanol or/and glucocorticoid. Gene level of Cyp1a2, 2b1, 2d1, 2e1, 3a1 and aryl hydrocarbon receptor were increased in PEE group on GD 20 and PD 84 and Cyp2e1 still exhibited an increasing trend on PD 196 compared with the control. PEE inhibited CYP2D1 and 2E1 activities in male offspring on PD 84. CYP activities in two groups became the same level on PD 196. PEE induced an opposite change in gene and protein level of hepatic CYP2E1 before and after birth. In consistent with lower protein level, aniline metabolism in PEE was weaker in liver microsome. Both single and combined use of ethanol or/and glucocorticoid increased CYPs expression in vitro. In conclusion, PEE programmed a higher gene and lower protein level of CYPs in male offspring, which dwindled with age. Impairment of protein levels and enzyme activities of CYPs may affect individual metabolism of endogenous and exogenous substances in early adulthood.
Collapse
|
15
|
Ge C, Xu D, Yu P, Fang M, Guo J, Xu D, Qiao Y, Chen S, Zhang Y, Wang H. P-gp expression inhibition mediates placental glucocorticoid barrier opening and fetal weight loss. BMC Med 2021; 19:311. [PMID: 34876109 PMCID: PMC8653610 DOI: 10.1186/s12916-021-02173-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prenatal adverse environments can cause fetal intrauterine growth retardation (IUGR) and higher susceptibility to multiple diseases after birth, related to multi-organ development programming changes mediated by intrauterine overexposure to maternal glucocorticoids. As a glucocorticoid barrier, P-glycoprotein (P-gp) is highly expressed in placental syncytiotrophoblasts; however, the effect of P-gp on the occurrence of IUGR remains unclear. METHODS Human placenta and fetal cord blood samples of IUGR fetuses were collected, and the related indexes were detected. Pregnant Wistar rats were administered with 30 mg/kg·d (low dose) and 120 mg/kg·d (high dose) caffeine from gestational day (GD) 9 to 20 to construct the rat IUGR model. Pregnant mice were administered with caffeine (120 mg/kg·d) separately or combined with sodium ferulate (50 mg/kg·d) from gestational day GD 9 to 18 to confirm the intervention target on fetal weight loss caused by prenatal caffeine exposure (PCE). The fetal serum/placental corticosterone level, placental P-gp expression, and related indicator changes were analyzed. In vitro, primary human trophoblasts and BeWo cells were used to confirm the effect of caffeine on P-gp and its mechanism. RESULTS The placental P-gp expression was significantly reduced, but the umbilical cord blood cortisol level was increased in clinical samples of the IUGR neonates, which were positively and negatively correlated with the neonatal birth weight, respectively. Meanwhile, in the PCE-induced IUGR rat model, the placental P-gp expression of IUGR rats was decreased while the corticosterone levels of the placentas/fetal blood were increased, which were positively and negatively correlated with the decreased placental/fetal weights, respectively. Combined with the PCE-induced IUGR rat model, in vitro caffeine-treated placental trophoblasts, we confirmed that caffeine decreased the histone acetylation and expression of P-gp via RYR/JNK/YB-1/P300 pathway, which inhibited placental and fetal development. We further demonstrated that P-gp inducer sodium ferulate could reverse the inhibitory effect of caffeine on the fetal body/placental weight. Finally, clinical specimens and other animal models of IUGR also confirmed that the JNK/YB-1 pathway is a co-regulatory mechanism of P-gp expression inhibition, among which the expression of YB-1 is the most stable. Therefore, we proposed that YB-1 could be used as the potential early warning target for the opening of the placental glucocorticoid barrier, the occurrence of IUGR, and the susceptibility of a variety of diseases. CONCLUSIONS This study, for the first time, clarified the critical role and epigenetic regulation mechanism of P-gp in mediating the opening mechanism of the placental glucocorticoid barrier, providing a novel idea for exploring the early warning, prevention, and treatment strategies of IUGR.
Collapse
Affiliation(s)
- Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuan Qiao
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Sijia Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
16
|
Chen Y, Xu D, Xia X, Chen G, Xiao H, Chen L, Wang H. Sex difference in adrenal developmental toxicity induced by dexamethasone and its intrauterine programming mechanism. Pharmacol Res 2021; 174:105942. [PMID: 34656764 DOI: 10.1016/j.phrs.2021.105942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/04/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Dexamethasone is widely used to treat preterm labor and related diseases. However, prenatal dexamethasone treatment (PDT) can cause multiorgan developmental toxicities in offspring. Our previous study found that the occurrence of fetal-originated diseases was associated with adrenal developmental programming alterations in offspring. Here, we investigated the effects of PDT on adrenal function in offspring and its intrauterine programming mechanism. A rat model of PDT was established to observe the alterations of adrenal steroidogenesis in offspring. Furthermore, we confirmed the sex differences of adrenal steroidogenesis and its molecular mechanism combined with in vivo and in vitro experiments. PDT caused a decrease in adrenal steroidogenic function in fetal rats, but it was decreased in males and increased in females after birth. Meanwhile, the adrenal H3K14ac level and expression of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) in PDT offspring were decreased in males and increased in females, suggesting that 11β-HSD2 might mediate sex differences in adrenal function. We further confirmed that dexamethasone inhibited the H3K14ac level and expression of 11β-HSD2 through the GR/SP1/p300 pathway. After bilateral testectomy or ovariectomy of adult PDT offspring rats, adrenal 11β-HSD2 expression and steroidogenic function were both reduced. Using rat primary fetal adrenal cells, the differential expression of AR and ERβ was proven to be involved in regulating the sex difference in 11β-HSD2 expression. This study demonstrated the sex difference in adrenal steroidogenic function of PDT offspring after birth and elucidated a sex hormone receptor-dependent epigenetically regulating mechanism for adrenal 11β-HSD2 programming alteration.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xuan Xia
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guanghui Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
17
|
Steane SE, Young SL, Clifton VL, Gallo LA, Akison LK, Moritz KM. Prenatal alcohol consumption and placental outcomes: a systematic review and meta-analysis of clinical studies. Am J Obstet Gynecol 2021; 225:607.e1-607.e22. [PMID: 34181895 DOI: 10.1016/j.ajog.2021.06.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A systematic review was conducted to determine placental outcomes following prenatal alcohol exposure in women. DATA SOURCES The search terms "maternal OR prenatal OR pregnant OR periconception" AND "placenta" AND "alcohol OR ethanol" were used across 5 databases (PubMed, Embase, Cochrane Library, Web of Science, and CINAHL) from inception until November 2020. STUDY ELIGIBILITY CRITERIA Articles were included if they reported placental outcomes in an alcohol exposure group compared with a control group. Studies were excluded if placentas were from elective termination before 20 weeks' gestation, animal studies, in vitro studies, case studies, or coexposure studies. METHODS Study quality was assessed by 2 reviewers using the Newcastle-Ottawa Quality Assessment Scale. Title and abstract screening was conducted by 2 reviewers to remove duplicates and irrelevant studies. Remaining full text articles were screened by 2 reviewers against inclusion and exclusion criteria. Placental outcome data were extracted and tabulated separately for studies of placentation, placental weight, placental morphology, and placental molecular studies. Meta-analyses were conducted for outcomes reported by >3 studies. RESULTS Database searching retrieved 640 unique records. Screening against inclusion and exclusion criteria resulted in 33 included studies. The quality assessment identified that 61% of studies were high quality, 30% were average quality, and 9% were low quality. Meta-analyses indicated that prenatal alcohol exposure increased the likelihood of placental abruption (odds ratio, 1.48; 95% confidence interval, 1.37-1.60) but not placenta previa (odds ratio, 1.14; 95% confidence interval, 0.84-1.34) and resulted in a reduction in placental weight of 51 g (95% confidence interval, -82.8 to -19.3). Reports of altered placental vasculature, placental DNA methylation, and gene expression following prenatal alcohol exposure were identified. A single study examined placentas from male and female infants separately and found sex-specific placental outcomes. CONCLUSION Prenatal alcohol exposure increases the likelihood of placental abruption and is associated with decreased placental weight, altered placental vasculature, DNA methylation, and molecular pathways. Given the critical role of the placenta in determining pregnancy outcomes, further studies investigating the molecular mechanisms underlying alcohol-induced placental dysfunction are required. Sex-specific placental adaptations to adverse conditions in utero have been well documented; thus, future studies should examine prenatal alcohol exposure-associated placental outcomes separately by sex.
Collapse
|
18
|
Cao J, Chen Y, Xia X, Qu H, Ao Y, Wang H. Intergenerational genetic programming mechanism and sex differences of the adrenal corticosterone synthesis dysfunction in offspring induced by prenatal ethanol exposure. Toxicol Lett 2021; 351:78-88. [PMID: 34454011 DOI: 10.1016/j.toxlet.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
We previously found that prenatal ethanol exposure (PEE) induced adrenal dysplasia in offspring, which was related to intrauterine maternal glucocorticoid overexposure. This study investigated the intergenerational genetic effect and sex differences of PEE-induced changes in the synthetic function of adrenal corticosterone in offspring, and to clarify the intrauterine origin programming mechanism. Wistar pregnant rats were gavaged with ethanol (4 g/kg bw/d) from gestation day (GD) 9-20, and F1 generation was born naturally. The F1 generation female rats in the PEE group were mated with normal male rats to produce F2 generation. Serum and adrenal glands of fetal rats and F1/F2 adult rats were collected at GD20 and postnatal week 28. PEE increased the serum corticosterone level, while diminishing the expression of adrenal steroid synthases of fetal rats. Moreover, PEE enhanced the mRNA expression of GR and HDAC1, but inhibited the mRNA expression of SF1 and reduced the H3K9ac level of P450scc in the fetal adrenal gland. In PEE adult offspring of F1 and F2 generation the serum corticosterone level, the H3K9ac level of P450scc and its expression were decreased in males but were increased in females. In NCI-H295R cells, cortisol reduced the production of endogenous cortisol, down-regulated SF1, and up-regulated HDAC1 expression by activating GR, and decreased H3K9ac level and expression of P450scc. In conclusion, PEE could induce adrenal dysplasia in offspring with sex differences and intergenerational genetic effects, and the adrenal insufficiency in male offspring was related to the induction of low functional genetic programming of P450scc by intrauterine high corticosterone through the GR/SF1/HDAC1 pathway.
Collapse
Affiliation(s)
- Jiangang Cao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yawen Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuan Xia
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Qu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
19
|
Prenatal ethanol exposure increases maternal bile acids through placental transport pathway. Toxicology 2021; 458:152848. [PMID: 34217791 DOI: 10.1016/j.tox.2021.152848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
High maternal serum bile acid level is common and sometimes harmful to the gravida. This study aimed to confirm the bile acid phenotypic change caused by prenatal ethanol exposure (PEE) and elucidate its placental mechanism. Pregnant Wistar rats were administered intragastrically with ethanol 4 g/kg⋅d from gestational day 9-20. Total bile acids (TBA) were detected in maternal, fetal serum and placental tissues, increasing significantly in the serum but no significant change in the placental tissues. Meta-analysis was performed and verified the efficacy of the PEE-induced model based on published data from several relevant studies. Mining of microarray data from human and rat placental sources identified the involvement of bile acid metabolism and its significant genes, which were verified by RT-qPCR and western blotting on tissues and treated BeWo cells with the administration of FXR/PXR siRNAs or FXR/PXR agonists. Our examination, consistent with microarray data and wet experiments, showed that organic anion transporter polypeptide-related protein 2B1 (Oatp2b1), multidrug resistance-associated proteins 3 (Mrp3) and breast cancer resistance protein (Bcrp) expression were increased, while nuclear receptor farnesoid X receptor (Fxr) was decreased but pregnane X receptor (Pxr) was increased. Furthermore, the interventional experiments confirmed that FXR regulated Bcrp while PXR regulated Oatp2b1 and Mrp3. In summary, PEE could induce high bile acid level in maternal serum and its mechanism is associated with the high expression of BCRP/MRP3/OATP2B1 in the placenta through up-regulating PXR and down-regulating FXR, thereby leading to an excessive bile acid transport to maternal blood via the placenta. Our study provides a novel perspective in terms of placenta, explaining the increased maternal blood bile acids under the toxicity of PEE.
Collapse
|
20
|
Huan Z, Wang Y, Zhang M, Zhang X, Liu Y, Kong L, Xu J. Follicle-stimulating hormone worsens osteoarthritis by causing inflammation and chondrocyte dedifferentiation. FEBS Open Bio 2021. [PMID: 34176242 PMCID: PMC8329950 DOI: 10.1002/2211-5463.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Previous studies have found follicle‐stimulating hormone (FSH) receptors on chondrocytes (cartilage cells), but the mechanism of FSH action on chondrocytes is not clear. The purpose of this experiment is to study whether FSH affects chondrocytes and how it causes changes in these cells. Our results show that osteoarthritis became worse after FSH injection in the knee joint of mice. After the stimulation of chondrocytes by FSH, a total of 664 up‐regulated genes, such as Col12a1 and Col1a1, and 644 down‐regulated genes, such as MGP, were screened by transcriptomics. A subset of extracellular matrix (ECM)‐related genes and pathways underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the downregulation of MGP, the upregulation of EGR1 and Col1a1, and the increase of IL‐6 were verified. It was also observed that FSH can inhibit the cAMP/PKA and MKK4/JNK signaling pathway. In conclusion, we demonstrated that FSH can increase cartilage inflammatory response and promote chondrocyte dedifferentiation by inhibiting the cAMP/PKA and MKK4/JNK signaling pathways.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Yan Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Mengqi Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Yaping Liu
- Department of Endocrinology, Jining No.1 People's Hospital, Jining, China
| | - Lei Kong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Young SL, Saif Z, Meakin AS, McMaster ES, Hayes N, Gallo LA, Reid N, Moritz KM, Clifton VL. Alterations to Placental Glucocorticoid Receptor Expression with Alcohol Consumption. Reprod Sci 2021; 28:1390-1402. [PMID: 33409870 DOI: 10.1007/s43032-020-00413-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022]
Abstract
Maternal alcohol consumption during pregnancy results in elevated vulnerability to intrauterine growth restriction, preterm birth, miscarriage, and stillbirth. Many of the detrimental effects of fetal alcohol exposure may be mediated through placental dysfunction; however, the exact mechanisms remain unknown. Here, we aimed to determine the effect of maternal alcohol exposure prior to and during early pregnancy on placental glucocorticoid receptor (GR) isoforms, associated GR regulated genes, and infant outcomes. Participants carrying singleton fetuses (n = 113) were recruited during early pregnancy. Amount and type of alcohol consumed over the last 12 months were obtained at 18 weeks of gestation. The level of drinking was separated into none (0 g/day), low (< 10 g/day), moderate (10-100 g/day), and heavy (> 100 g/day). At delivery, placental weight, infant sex, birthweight, and head circumference were recorded. Placental GR isoforms and genes involved in downstream signalling pathways were quantified. The majority of women (70.8%) consumed alcohol. Of these, most consumed low (48.8%) or moderate (37.5%) amounts. Placental weight was unaffected by alcohol consumption, but infants born to heavy drinkers tended to be lighter at birth. In female, but not male, placentae, maternal alcohol consumption resulted in increased GRαC and decreased GRαD1 cytoplasmic expression. In both female and male placentae, a dampened inflammatory response was evident with maternal alcohol consumption, involving downregulated IL6R and upregulated POU2F2 gene expression, respectively. Maternal alcohol consumption in the months prior to, and/or during early, pregnancy alters placental GR isoform and expression of some inflammatory genes in a sex-specific manner.
Collapse
Affiliation(s)
- S L Young
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Z Saif
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - A S Meakin
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - E S McMaster
- School of Chemical and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - N Hayes
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - L A Gallo
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - N Reid
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - K M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia.
| | - V L Clifton
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
22
|
Liu D, Wang Y, Pan Z, Huang Z, Chen F. cAMP regulates 11β-hydroxysteroid dehydrogenase-2 and Sp1 expression in MLO-Y4/MC3T3-E1 cells. Exp Ther Med 2020; 20:2166-2172. [PMID: 32765692 PMCID: PMC7401907 DOI: 10.3892/etm.2020.8942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
11β-hydroxysteroid dehydrogenase-2 (11β-HSD2) is one of the key enzymes in glucocorticoid metabolism, which can inactivate local corticosterone and regulate the level of active glucocorticoid in tissues. The expression of 11β-HSD2 and its regulatory pathway serve an important role in the apoptosis of steroid induced osteonecrosis of the femoral head (SANFH). The present study aimed to identify the regulatory effects of cAMP on the expression of Sp1 transcription factor (Sp1) and 11β-HSD2 in osteocytes at the cellular level. Murine long bone osteocyte Y4 (MLO-Y4) clone cells and mouse embryo osteoblast-like (MC3T3-E1) cells were cultured in vitro with adenylate cyclase activator or inhibitor (forskolin and SQ22536, respectively) to investigate the effects of alterations to intracellular cAMP levels. mRNA and protein expression levels of Sp1 and 11β-HSD2 were detected by reverse transcription-quantitative PCR and western blotting, respectively. Compared with the negative control group, the mRNA and protein expression levels of Sp1 were significantly increased in the activation group, whereas Sp1 expression levels were significantly decreased in the inhibition group. Similarly, compared with the negative control group, the mRNA and protein expression levels of 11β-HSD2 were significantly increased in the activator group, but significantly decreased in the inhibitor group. The aforementioned results indicated that intracellular cAMP levels significantly regulated the expression of Sp1 and 11β-HSD2 in mouse osteocytes and osteoblasts. Therefore, the present study suggested a potential therapeutic strategy for the prevention of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Di Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yaoqing Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhenyu Pan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhen Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fan Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
23
|
Hu W, Yuan C, Luo H, Hu S, Shen L, Chen L, Xu D, Wang H. Glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis programming mediated hepatic lipid-metabolic in offspring caused by prenatal ethanol exposure. Toxicol Lett 2020; 331:167-177. [PMID: 32535229 DOI: 10.1016/j.toxlet.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/24/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
Abstract
Prenatal ethanol exposure (PEE) could increase offspring's susceptibility to adult liver lipid-metabolism diseases. This study aimed to confirm intrauterine programming mechanism of glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis for liver dysfunction in offspring rats induced by PEE. The results showed that levels of hepatic IGF1, lipid metabolism-related enzymes (e.g. FASN and HMGCR) and serum phenotype (TG, TCH, HDL-C, and LDL-C) were low in fetal rats of PEE but high in adult offspring except for HDL-C, meanwhile, hepatic H3K9ac and expression levels of IGF1 were low in fetal rats but high in adult offspring. Furthermore, levels of serum corticosterone and hepatic glucocorticoid-activation system (mainly including expression of 11β-HSD1, GR, and C/EBPα as well as 11β-HSD1/11β-HSD2 ratio) were high in fetal rats of PEE but low or unchanged in adult offspring. The adult F2 generation of PEE maintained the same GC-IGF1 axis programming alteration as the F1 generation despite gender differences. In vitro, cortisol was proved to activate hepatocyte glucocorticoid-activation system and decrease H3K9ac and expression levels of IGF1 by GR. Therefore, PEE has a long-term effect on the offspring's liver functional development, which may be mainly related to the epigenetic programming alteration of the GC-IGF1 axis mediated by the glucocorticoid-activation system.
Collapse
Affiliation(s)
- Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Chao Yuan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuwei Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lang Shen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
24
|
Napso T, Hung YP, Davidge ST, Care AS, Sferruzzi-Perri AN. Advanced maternal age compromises fetal growth and induces sex-specific changes in placental phenotype in rats. Sci Rep 2019; 9:16916. [PMID: 31780670 PMCID: PMC6882885 DOI: 10.1038/s41598-019-53199-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Advanced maternal age is associated with an increased risk of pregnancy complications. It programmes sex-specific cardiovascular dysfunction in rat offspring, however the intrauterine mechanisms involved remain unknown. This study in the rat assessed the impact of advanced maternal age on placental phenotype in relation to the growth of female and male fetuses. We show that relative to young (3-4 months) dams, advanced maternal age (9.5-10 months) compromises growth of both female and male fetuses but affects the placental phenotype sex-specifically. In placentas from aged versus young dams, the size of the placental transport and endocrine zones were increased and expression of Igf2 (+41%) and placental lactogen (Prl3b1: +59%) genes were upregulated in female, but not male fetuses. Placental abundance of IGF2 protein also decreased in the placenta of males only (-95%). Moreover, in placentas from aged versus young dams, glucocorticoid metabolism (11β-hsd2: +63% and 11β-hsd1: -33%) was higher in females, but lower in males (11β-hsd2: -50% and 11β-hsd1: unaltered). There was however, no change in the placental abundance of 11β-HSD2 protein in aged versus young dams regardless of fetal sex. Levels of oxidative stress in the placenta were increased in female and male fetuses (+57% and +90%, respectively) and apoptosis increased specifically in the placenta of males from aged rat dams (+700%). Thus, advanced maternal age alters placental phenotype in a sex-specific fashion. These sexually-divergent changes may play a role in determining health outcomes of female and male offspring of aged mothers.
Collapse
Affiliation(s)
- Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yin-Po Hung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynaecology, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alison S Care
- Department of Obstetrics and Gynaecology, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, South Australia, Australia
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Chen Y, He Z, Chen G, Liu M, Wang H. Prenatal glucocorticoids exposure and fetal adrenal developmental programming. Toxicology 2019; 428:152308. [PMID: 31614174 DOI: 10.1016/j.tox.2019.152308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/25/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Clinically, we apply synthetic glucocorticoids to treat fetal and maternal diseases, such as premature labor and autoimmune diseases. Although its clinical efficacy is positive, the fetus will be exposed to exogenous synthetic glucocorticoids. Prenatal adverse environments (such as xenobiotics exposure, malnutrition, infection, hypoxia and stress) can cause fetuses overexposure to excessive endogenous maternal glucocorticoids. The level of glucocorticoids is the key to fetal tissue maturation and postnatal fate. A large number of studies have found that prenatal glucocorticoids exposure can lead to fetal adrenal dysplasia and dysfunction, continuing after birth and even into adulthood. As the core organ of fetal-originated adult diseases, fetal adrenal dysplasia is closely related to the susceptibility and occurrence of multiple chronic diseases, and there are also obvious gender differences. However, its intrauterine programming mechanisms have not been fully elucidated. This review summarizes recent advances in prenatal glucocorticoids exposure and fetal adrenal developmental programming alterations, which is of great significance for explaining adrenal developmental toxicity and the intrauterine origin of fetal-originated adult diseases.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Zheng He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Min Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
26
|
Fu L, Chen YH, Bo QL, Song YP, Ma L, Wang B, Xu S, Zhang C, Wang H, Xu DX. Lipopolysaccharide Downregulates 11β-Hydroxysteroid Dehydrogenase 2 Expression through Inhibiting Peroxisome Proliferator–Activated Receptor-γ in Placental Trophoblasts. THE JOURNAL OF IMMUNOLOGY 2019; 203:1198-1207. [DOI: 10.4049/jimmunol.1900132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
|
27
|
Zhang G, Zhou J, Huang W, Fang M, Yu L, Wang H, Zhang Y. Prenatal ethanol exposure-induced a low level of foetal blood cholesterol and its mechanism of IGF1-related placental cholesterol transport dysfunction. Toxicology 2019; 424:152237. [PMID: 31226463 DOI: 10.1016/j.tox.2019.152237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 02/04/2023]
Abstract
Clinical researches showed that intrauterine growth retardation (IUGR) foetus had decreased blood cholesterol levels. The present study aimed to confirm that prenatal ethanol exposure (PEE) caused decreased blood cholesterol levels in IUGR foetal rats and elucidate its placental mechanism. Pregnant Wistar rats were intragastrically administrated with ethanol (4 g/kg.d) on gestational days 9-20 (GD9-20). in vivo, PEE increased the levels of total cholesterol (TCH), high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C) in maternal serum, whereas decreased them in both female and male foetal serum. Moreover, the expression of cholesterol transport genes, scavenger receptor class B type 1 (SCARB1), low-density lipoprotein receptor (LDLR), ATP binding cassette subfamily A member 1 (ABCA1) and ATP binding cassette subfamily G member 1 (ABCG1) was reduced in female and male placentas in the PEE group. Meanwhile, the proliferation decreased and the apoptosis increased in female and male placentas, and the insulin like growth factor 1 (IGF1) signal pathway was inhibited. in vitro, after being treated with ethanol (15, 30, 60, 120 mM) for 72 h, the expression of cholesterol transport genes was decreased, the apoptosis was increased, the proliferation was decreased and the IGF1 signal pathway was inhibited in BeWo cells, whereas exogenous IGF1 reversed these changes. In conclusion, by inhibiting the IGF1 signal pathway in placentas, PEE induced apoptosis and inhibited proliferation, thus decreased the cholesterol transport in placentas, and eventually leading to low blood cholesterol levels in foetal rats.
Collapse
Affiliation(s)
- Guohui Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Wen Huang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Luting Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
28
|
Liu M, Zhang Q, Pei L, Zou Y, Chen G, Wang H. Corticosterone rather than ethanol epigenetic programmed testicular dysplasia caused by prenatal ethanol exposure in male offspring rats. Epigenetics 2019; 14:245-259. [PMID: 30821590 DOI: 10.1080/15592294.2019.1581595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Prenatal ethanol exposure (PEE) could affect offspring's testicular development. This study aimed to illuminate its intrauterine origin and the programming mechanism caused by PEE. Pregnant Wistar rats were given ethanol (4 g/kg.d) by gavage administration during gestational days (GD) 9-20. Serum samples and testes of male offspring rats were collected on GD20, postnatal week (PW) 6, and PW12. We found that PEE induced testicular morphological abnormality, low serum testosterone levels, expressive suppression of 3β-hydroxysteroid dehydrogenase (3β-HSD), and low acetylation levels of histone 3 lysine 14 (H3K14ac) of 3β-HSD before and after birth. In utero, when fetal rats were overexposed to corticosterone by PEE, the expression levels of testicular glucocorticoid receptor (GR) and histone deacetylase 2 (HDAC2) were increased, while that of steroidogenic factor 1 (SF1) was decreased. In vitro, corticosterone (rather than ethanol) at 500 to 2,000 nM concentration decreased testosterone production and 3β-HSD expression in a concentration-dependent manner. Moreover, corticosterone downregulated SF1 and upregulated HDAC2 via activating GR, accompanied by a low H3K14ac level of 3β-HSD; SF1 overexpression could reverse the increased HDAC2 expression, and knockdown of HDAC2 could partially reverse the inhibitory effects of corticosterone on H3K14ac level and 3β-HSD expression but not on SF1 expression. Taken together, PEE caused testicular dysplasia in male offspring rats, which was associated with corticosterone-induced low-functional programming of 3β-HSD through the GR/SF1/HDAC2/H3K14ac pathway. This study provides new academic perspectives to illuminate the theory of 'Developmental Origins of Health and Disease.'
Collapse
Affiliation(s)
- Min Liu
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China
| | - Qi Zhang
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China
| | - Linguo Pei
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China.,b Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| | - Yunfei Zou
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China.,c School of public health , Wannan Medical College , Wuhu , China
| | - Guanghui Chen
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China
| | - Hui Wang
- a Department of Pharmacology , Basic Medical School of Wuhan University , Wuhan , China.,b Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| |
Collapse
|