1
|
Functional investigation of SLC1A2 variants associated with epilepsy. Cell Death Dis 2022; 13:1063. [PMID: 36543780 PMCID: PMC9772344 DOI: 10.1038/s41419-022-05457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Epilepsy is a common neurological disorder and glutamate excitotoxicity plays a key role in epileptic pathogenesis. Astrocytic glutamate transporter GLT-1 is responsible for preventing excitotoxicity via clearing extracellular accumulated glutamate. Previously, three variants (G82R, L85P, and P289R) in SLC1A2 (encoding GLT-1) have been clinically reported to be associated with epilepsy. However, the functional validation and underlying mechanism of these GLT-1 variants in epilepsy remain undetermined. In this study, we reported that these disease-linked mutants significantly decrease glutamate uptake, cell membrane expression of the glutamate transporter, and glutamate-elicited current. Additionally, we found that these variants may disturbed stromal-interacting molecule 1 (STIM1)/Orai1-mediated store-operated Ca2+ entry (SOCE) machinery in the endoplasmic reticulum (ER), in which GLT-1 may be a new partner of SOCE. Furthermore, knock-in mice with disease-associated variants showed a hyperactive phenotype accompanied by reduced glutamate transporter expression. Therefore, GLT-1 is a promising and reliable therapeutic target for epilepsy interventions.
Collapse
|
2
|
Comparative Modelling of Organic Anion Transporting Polypeptides: Structural Insights and Comparison of Binding Modes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238531. [PMID: 36500622 PMCID: PMC9738416 DOI: 10.3390/molecules27238531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
To better understand the functionality of organic anion transporting polypeptides (OATPs) and to design new ligands, reliable structural data of each OATP is needed. In this work, we used a combination of homology model with molecular dynamics simulations to generate a comprehensive structural dataset, that encompasses a diverse set of OATPs but also their relevant conformations. Our OATP models share a conserved transmembrane helix folding harbouring a druggable binding pocket in the shape of an inner pore. Our simulations suggest that the conserved salt bridges at the extracellular region between residues on TM1 and TM7 might influence the entrance of substrates. Interactions between residues on TM1 and TM4 within OATP1 family shown their importance in transport of substrates. Additionally, in transmembrane (TM) 1/2, a known conserved element, interact with two identified motifs in the TM7 and TM11. Our simulations suggest that TM1/2-TM7 interaction influence the inner pocket accessibility, while TM1/2-TM11 salt bridges control the substrate binding stability.
Collapse
|
3
|
Wang Z, Li Y, Villanueva CE, Peng T, Han W, Bo Z, Zhang H, Hagenbuch B, Gui C. The Importance of Val386 in Transmembrane Domain 8 for the Activation of OATP1B3 by Epigallocatechin Gallate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6552-6560. [PMID: 35603894 PMCID: PMC9438777 DOI: 10.1021/acs.jafc.2c02692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Estrone-3-sulfate (E3S) uptake mediated by organic anion transporting polypeptide 1B3 (OATP1B3) can be activated by epigallocatechin gallate (EGCG). In this study, by using chimeric transporters and site-directed mutagenesis, we found that Val386 in transmembrane domain 8 (TM8) is essential for OATP1B3's activation by EGCG. Kinetic studies showed that the loss of activation of 1B3-TM8 and 1B3-V386F in the presence of EGCG is due to their decreased substrate binding affinity and reduced maximal transport rate. The overall transport efficiencies of OATP1B3, 1B3-TM8, and 1B3-V386F in the absence and presence of EGCG are 8.6 ± 0.7 vs 15.9 ± 1.4 (p < 0.05), 11.2 ± 2.1 vs 2.7 ± 0.3 (p < 0.05), and 10.2 ± 1.0 vs 2.5 ± 0.3 (p < 0.05), respectively. While 1B3-V386F cannot be activated by EGCG, its transport activity for EGCG is also diminished. OATP1B3's activation by EGCG is substrate-dependent as EGCG inhibits OATP1B3-mediated pravastatin uptake. Furthermore, the activation of OATP1B3-mediated E3S uptake by quercetin 3-O-α-l-arabinopyranosyl(1 → 2)-α-l-rhamnopyranoside is not affected by TM8 and V386F. Taken together, the activation of OATP1B3 by small molecules is substrate- and modulator-dependent, and V386 in TM8 plays a critical role in the activation of OATP1B3-mediated E3S uptake by EGCG.
Collapse
Affiliation(s)
- Zhongmin Wang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Ying Li
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Cecilia E. Villanueva
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Taotao Peng
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Wanjun Han
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Zheyue Bo
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Hongjian Zhang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, the University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| |
Collapse
|
4
|
Hussner J, Foletti A, Seibert I, Fuchs A, Schuler E, Malagnino V, Grube M, Meyer Zu Schwabedissen HE. Differences in transport function of the human and rat orthologue of the Organic Anion Transporting Polypeptide 2B1 (OATP2B1). Drug Metab Pharmacokinet 2021; 41:100418. [PMID: 34628357 DOI: 10.1016/j.dmpk.2021.100418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023]
Abstract
The human drug transporter Organic Anion Transporting Polypeptide (hOATP)2B1 facilitates cellular uptake of its substrates. Various studies suggest that hOATP2B1 is involved in intestinal absorption, but preclinical evaluations performed in rodents do not support this. Thus, our study aimed to compare the expression and function of hOATP2B1 with its orthologue in rats (rOatp2b1). Even if the general expression pattern was comparable, the transporters exhibited substantial differences on functional level. While bromosulfophthalein and atorvastatin were substrates of both transporters, the steroid sulfate conjugates estrone 3-sulfate (E1S), progesterone sulfate and dehydroepiandrosterone sulfate were only transported by hOATP2B1. To further elucidate these functional differences, experiments searching for the E1S substrate recognition site were conducted generating human-rat chimera as well as partly humanized variants of rOatp2b1. The rOatp2b1-329-hOATP2B1 chimera led to a significant increase in E1S uptake suggesting the C-terminal part of the human transporter is involved. However, humanization of various regions within this part, namely of the transmembrane domain (TMD)-9, TMD-10 or the extracellular loop-5 did not significantly change E1S transport function. Replacement of the intracellular loop-3, slightly enhanced cellular accumulation of sulfated steroids. Taken together, we report that OATP2B1 exhibited differences in recognition of steroid sulfate conjugates comparing the rat and human orthologues.
Collapse
Affiliation(s)
- Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Annalise Foletti
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anja Fuchs
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Eveline Schuler
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus Grube
- Institute of Pharmacology, C_DAT Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
5
|
Adla SK, Tonduru AK, Kronenberger T, Kudova E, Poso A, Huttunen KM. Neurosteroids: Structure-Uptake Relationships and Computational Modeling of Organic Anion Transporting Polypeptides (OATP)1A2. Molecules 2021; 26:5662. [PMID: 34577133 PMCID: PMC8472597 DOI: 10.3390/molecules26185662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023] Open
Abstract
In this study, we investigated the delivery of synthetic neurosteroids into MCF-7 human breast adenocarcinoma cells via Organic Anionic Transporting Polypeptides (OATPs) (pH 7.4 and 5.5) to identify the structural components required for OATP-mediated cellular uptake and to get insight into brain drug delivery. Then, we identified structure-uptake relationships using in-house developed OATP1A2 homology model to predict binding sites and modes for the ligands. These binding modes were studied by molecular dynamics simulations to rationalize the experimental results. Our results show that carboxylic acid needs to be at least at 3 carbon-carbon bonds distance from amide bond at the C-3 position of the androstane skeleton and have an amino group to avoid efflux transport. Replacement of hydroxyl group at C-3 with any of the 3, 4, and 5-carbon chained terminal carboxylic groups improved the affinity. We attribute this to polar interactions between carboxylic acid and side-chains of Lys33 and Arg556. The additional amine group showed interactions with Glu172 and Glu200. Based on transporter capacities and efficacies, it could be speculated that the functionalization of acetyl group at the C-17 position of the steroidal skeleton might be explored further to enable OAT1A2-mediated delivery of neurosteroids into the cells and also across the blood-brain barrier.
Collapse
Affiliation(s)
- Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic;
| | - Arun Kumar Tonduru
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
| | - Thales Kronenberger
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
- Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic;
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
- Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; (A.K.T.); (T.K.); (A.P.); (K.M.H.)
| |
Collapse
|
6
|
Geck RC, Boyle G, Amorosi CJ, Fowler DM, Dunham MJ. Measuring Pharmacogene Variant Function at Scale Using Multiplexed Assays. Annu Rev Pharmacol Toxicol 2021; 62:531-550. [PMID: 34516287 DOI: 10.1146/annurev-pharmtox-032221-085807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As costs of next-generation sequencing decrease, identification of genetic variants has far outpaced our ability to understand their functional consequences. This lack of understanding is a central challenge to a key promise of pharmacogenomics: using genetic information to guide drug selection and dosing. Recently developed multiplexed assays of variant effect enable experimental measurement of the function of thousands of variants simultaneously. Here, we describe multiplexed assays that have been performed on nearly 25,000 variants in eight key pharmacogenes (ADRB2, CYP2C9, CYP2C19, NUDT15, SLCO1B1, TMPT, VKORC1, and the LDLR promoter), discuss advances in experimental design, and explore key challenges that must be overcome to maximize the utility of multiplexed functional data. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; ,
| | - Gabriel Boyle
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; ,
| | - Clara J Amorosi
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; ,
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; , .,Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; ,
| |
Collapse
|
7
|
Tuerkova A, Ungvári O, Laczkó-Rigó R, Mernyák E, Szakács G, Özvegy-Laczka C, Zdrazil B. Data-Driven Ensemble Docking to Map Molecular Interactions of Steroid Analogs with Hepatic Organic Anion Transporting Polypeptides. J Chem Inf Model 2021; 61:3109-3127. [PMID: 34105971 PMCID: PMC8243326 DOI: 10.1021/acs.jcim.1c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Hepatic organic anion transporting polypeptides—OATP1B1,
OATP1B3, and OATP2B1—are expressed at the basolateral membrane
of hepatocytes, being responsible for the uptake of a wide range of
natural substrates and structurally unrelated pharmaceuticals. Impaired
function of hepatic OATPs has been linked to clinically relevant drug–drug
interactions leading to altered pharmacokinetics of administered drugs.
Therefore, understanding the commonalities and differences across
the three transporters represents useful knowledge to guide the drug
discovery process at an early stage. Unfortunately, such efforts remain
challenging because of the lack of experimentally resolved protein
structures for any member of the OATP family. In this study, we established
a rigorous computational protocol to generate and validate structural
models for hepatic OATPs. The multistep procedure is based on the
systematic exploration of available protein structures with shared
protein folding using normal-mode analysis, the calculation of multiple
template backbones from elastic network models, the utilization of
multiple template conformations to generate OATP structural models
with various degrees of conformational flexibility, and the prioritization
of models on the basis of enrichment docking. We employed the resulting
OATP models of OATP1B1, OATP1B3, and OATP2B1 to elucidate binding
modes of steroid analogs in the three transporters. Steroid conjugates
have been recognized as endogenous substrates of these transporters.
Thus, investigating this data set delivers insights into mechanisms
of substrate recognition. In silico predictions were complemented
with in vitro studies measuring the bioactivity of a compound set
on OATP expressing cell lines. Important structural determinants conferring
shared and distinct binding patterns of steroid analogs in the three
transporters have been identified. Overall, this comparative study
provides novel insights into hepatic OATP-ligand interactions and
selectivity. Furthermore, the integrative computational workflow for
structure-based modeling can be leveraged for other pharmaceutical
targets of interest.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Althanstraße 14, A-1090 Vienna, Austria
| | - Orsolya Ungvári
- Drug Resistance Research Group, Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Réka Laczkó-Rigó
- Drug Resistance Research Group, Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gergely Szakács
- Drug Resistance Research Group, Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117, Budapest, Magyar tudósok krt. 2, Hungary.,Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Barbara Zdrazil
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
8
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
9
|
Fan X, Bai J, Hu M, Xu Y, Zhao S, Sun Y, Wang B, Hu J, Li Y. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Toxicology 2020; 437:152445. [PMID: 32259555 DOI: 10.1016/j.tox.2020.152445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/14/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022]
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1), a liver-specific uptake transporter, was associated with drug induced liver injury (DILI). Screening and identifying potent OATP1B1 inhibitors with little toxicity is of great value in reducing OATP1B1-mediated DILI. Flavonoids are a group of polyphenols ubiquitously present in vegetables, fruits and herbal products, some of them were reported to produce transporter-mediated DDI. Our objective was to investigate potential inhibitors of OATP1B1 from 99 flavonoids, and to assess the hepatoprotective effects on bosentan induced liver injury. Eight flavonoids, including biochanin A, hispidulin, isoliquiritigenin, isosinensetin, kaempferol, licochalcone A, luteolin and sinensetin exhibited significant inhibition (>50 %) on OATP1B1 in OATP1B1-HEK293 cells, which reduced the OATP1B1-mediated influx of methotrexate, accordingly decreased its cytotoxicity in OATP1B1-HEK293 cells and increased its AUC0-t in different extents in rats, from 28.27%-82.71 %. In bosentan-induced rat liver injury models, 8 flavonoids reduced the levels of serum total bile acid (TBA) and the liver concentration of bosentan in different degrees. Among them, kaempferol decreased the concentration most significantly, by 54.17 %, which indicated that flavonoids may alleviate bosentan-induced liver injury by inhibiting OATP1B1-mediated bosentan uptake. Furthermore, the pharmacophore model indicated the hydrogen bond acceptors and hydrogen bond donors may play critical role in the potency of flavonoids inhibition on OATP1B1. Taken together, our findings would provide helpful information for predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and alleviating bosentan -induced liver injury by OATP1B1 regulation.
Collapse
Affiliation(s)
- Xiaoqing Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Minwan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanxia Xu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shengyu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|