1
|
Qin X, Ning W, Liu H, Liu X, Luo W, Xia N. Stepping forward: T-cell redirecting bispecific antibodies in cancer therapy. Acta Pharm Sin B 2024; 14:2361-2377. [PMID: 38828136 PMCID: PMC11143529 DOI: 10.1016/j.apsb.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens, thereby engaging with CD3 on the T cell receptor. This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells. These antibodies have emerged as one of the most promising avenues within tumor immunotherapy. However, despite success in treating hematological malignancies, significant advancements in solid tumors have yet to be explored. In this review, we aim to address the critical challenges associated with T cell-redirecting bispecific antibodies and explore novel strategies to overcome these obstacles, with the ultimate goal of expanding the application of this therapy to include solid tumors.
Collapse
Affiliation(s)
- Xiaojing Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Han Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry–Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Ma Z, Zhou Z, Duan W, Yao G, Sheng S, Zong S, Zhang X, Li C, Liu Y, Ou F, Dahar MR, Huang Y, Yu L. DR30318, a novel tri-specific T cell engager for Claudin 18.2 positive cancers immunotherapy. Cancer Immunol Immunother 2024; 73:82. [PMID: 38554200 PMCID: PMC10981630 DOI: 10.1007/s00262-024-03673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Claudin 18.2 (CLDN18.2) is a highly anticipated target for solid tumor therapy, especially in advanced gastric carcinoma and pancreatic carcinoma. The T cell engager targeting CLDN18.2 represents a compelling strategy for enhancing anti-cancer efficacy. METHODS Based on the in-house screened anti-CLDN18.2 VHH, we have developed a novel tri-specific T cell engager targeting CLDN18.2 for gastric and pancreatic cancer immunotherapy. This tri-specific antibody was designed with binding to CLDN18.2, human serum albumin (HSA) and CD3 on T cells. RESULTS The DR30318 demonstrated binding affinity to CLDN18.2, HSA and CD3, and exhibited T cell-dependent cellular cytotoxicity (TDCC) activity in vitro. Pharmacokinetic analysis revealed a half-life of 22.2-28.6 h in rodents and 41.8 h in cynomolgus monkeys, respectively. The administration of DR30318 resulted in a slight increase in the levels of IL-6 and C-reactive protein (CRP) in cynomolgus monkeys. Furthermore, after incubation with human PBMCs and CLDN18.2 expressing cells, DR30318 induced TDCC activity and the production of interleukin-6 (IL-6) and interferon-gamma (IFN-γ). Notably, DR30318 demonstrated significant tumor suppression effects on gastric cancer xenograft models NUGC4/hCLDN18.2 and pancreatic cancer xenograft model BxPC3/hCLDN18.2 without affecting the body weight of mice.
Collapse
Affiliation(s)
- Zhe Ma
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Zhenxing Zhou
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Wenwen Duan
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Gaofeng Yao
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Shimei Sheng
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Sidou Zong
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Xin Zhang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Changkui Li
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Yuanyuan Liu
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Fengting Ou
- Jinhua Institute of Zhejiang University, Jinhua, 321036, China
| | - Maha Raja Dahar
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yanshan Huang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321036, China.
- Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China.
| |
Collapse
|
3
|
Wang J, Li C, He K, Kuang Z, Lu J, Yao Y, He F, Li N, Li L, Fu F, Wu Z, Zhou S, Kang D, Qiu X, Wu M, Liu Y, Cao X, Xu M, Chen B, Wu W, Guo F. Characterization of anti-CD79b/CD3 bispecific antibody, a potential therapy for B cell malignancies. Cancer Immunol Immunother 2023; 72:493-507. [PMID: 35963895 PMCID: PMC10992295 DOI: 10.1007/s00262-022-03267-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 01/26/2023]
Abstract
High rates of relapse and poor prognosis confer an urgent need for novel therapeutic agents for B cell non-Hodgkin lymphomas (B-NHLs). Herein, we describe a human IgG-like anti-CD79b/CD3 bispecific antibody (IBI38D9-L) that selectively depletes antigen-positive malignant B cells as an alternative treatment option for relapsed or refractory NHL patients. The antitumor activity and mechanism of action of IBI38D9-L were investigated in vitro using B-NHL cell lines and human primary effector cells and in vivo using xenograft models reconstituted with human PBMCs (peripheral blood mononuclear cells). Pharmacokinetic (PK) properties and preclinical toxicology were evaluated in cynomolgus monkeys and HSC-NPG mice. IBI38D9-L exerted potent B cell killing as well as T cell activation and proliferation in a tumor cell-dependent manner in vitro and was active against B-NHL cell lines with various CD79b expression levels. Subcutaneous xenograft tumors in NOG mice engrafted with human PBMCs were eradicated by IBI38D9-L treatment. Moreover, IBI38D9-L-treated mice showed a strong infiltration of activated T cells. In HSC-NPG mice, IBI38D9-L resulted in potent B cell depletion in peripheral blood and induced only slight body weight loss and cytokine release syndrome without significant toxicological findings. In cynomolgus monkeys, IBI38D9-L was well tolerated with good pharmacokinetic profiles. Collectively, these preclinical efficacy and safety data provide strong scientific rationales for using anti-CD79b/CD3 bispecific antibody as a promising therapeutic agent for B cell malignancies.
Collapse
Affiliation(s)
- Jie Wang
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Chen Li
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Kaijie He
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Zhihui Kuang
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Jia Lu
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Ying Yao
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Fufan He
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Ninghuan Li
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Li Li
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Fenggen Fu
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Zhihai Wu
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | | | - Dian Kang
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Xuan Qiu
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Min Wu
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yang Liu
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xiaochao Cao
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Mengqiu Xu
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China
| | - Bingliang Chen
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China.
| | - Weiwei Wu
- Innovent Biologics (Suzhou) Co., Suzhou, Jiangsu, China.
| | - Feng Guo
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Iwata Y, Narushima Y, Harada A, Mishima M. Priming treatment with T-cell redirecting bispecific antibody ERY974 reduced cytokine induction without losing cytotoxic activity in vitro by changing the chromatin state in T cells. Toxicol Appl Pharmacol 2022; 441:115986. [PMID: 35304238 DOI: 10.1016/j.taap.2022.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
CD3 bispecific constructs are anticipated to become an important form of cancer immunotherapy, but they frequently cause cytokine release syndrome (CRS) that is difficult to manage in clinical contexts. A combination of intra-patient dose escalation and immunosuppressive treatment is widely used to mitigate CRS. Studies suggest that CRS after subsequent doses of CD3 bispecific constructs is less severe than after the priming dose, and that step-up dosing reduces cytokine levels in animals and humans. However, the mechanism underlying the reduced cytokine induction after priming treatment with CD3 bispecific constructs is unclear. To understand human T-cell activation and chromatin states after priming treatment with CD3 bispecific construct targeting CD3ɛ and glypican 3 (ERY974), we examined cytokine levels, cytokine mRNA expression, CD3ɛ expression, CD3-mediated signal transduction, T cell activation markers, cytotoxicity against target cells, and chromatin states in T cells after ERY974 priming treatment or negative control. The second ERY974 treatment decreased cytokines on Day 8, and ERY974 priming treatment changed the chromatin state in T cells. CD3ɛ expression, CD3-mediated signal transduction, T cell activation markers, and cytotoxicity were similar between the priming treatment with ERY974 and negative control. The present study suggests that chromatin state changes in T cells after the priming treatment was a pivotal factor in the mitigation of cytokine release after the second ERY974 treatment.
Collapse
Affiliation(s)
- Yoshika Iwata
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan.
| | - Yuta Narushima
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Asako Harada
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Masayuki Mishima
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| |
Collapse
|
5
|
Wu Y, Yi M, Zhu S, Wang H, Wu K. Recent advances and challenges of bispecific antibodies in solid tumors. Exp Hematol Oncol 2021; 10:56. [PMID: 34922633 PMCID: PMC8684149 DOI: 10.1186/s40164-021-00250-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer immunotherapy has made remarkable progress in the past decade. Bispecific antibodies (BsAbs) have acquired much attention as the next generation strategy of antibody-target cancer immunotherapy, which overwhelmingly focus on T cell recruitment and dual receptors blockade. So far, BsAb drugs have been proved clinically effective and approved for the treatment of hematologic malignancies, but no BsAb have been approved in solid tumors. Numerous designed BsAb drugs for solid tumors are now undergoing evaluation in clinical trials. In this review, we will introduce the formats of bispecific antibodies, and then update the latest preclinical studies and clinical trials in solid tumors of BsAbs targeting EpCAM, CEA, PMSA, ErbB family, and so on. Finally, we discuss the BsAb-related adverse effects and the alternative strategy for future study.
Collapse
Affiliation(s)
- Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haiyong Wang
- Beijing Anjianxi Medicinal Technology Co., Ltd., No.2 Cuiwei Road, Haidian District, Beijing, 100036, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Chen X, Chen Y, Liang R, Xiang L, Li J, Zhu Y, He H, Huang L, Zuo D, Li W, Liang X, Dong S, Hu S, Ho M, Feng M. Combination Therapy of Hepatocellular Carcinoma by GPC3-Targeted Bispecific Antibody and Irinotecan is Potent in Suppressing Tumor Growth in Mice. Mol Cancer Ther 2021; 21:149-158. [PMID: 34725191 DOI: 10.1158/1535-7163.mct-20-1025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a world leading cause of cancer-related mortality, and currently no curative treatment for advanced HCC is available. Glypican-3 (GPC3) is an attractive target for HCC immunotherapy. This study explored the efficacy of six GPC3-targeted bispecific antibodies, alone or in combination with chemotherapeutic drug Irinotecan, for the treatment of HCC. The bispecific antibodies were constructed using three different structures, knob-into-hole (KH), scFv-scFv-hFc, and scFv-hFc-scFv, where CD3-targeting mAb OKT3 (scFv) was paired with two representative GPC3 mAbs hYP7 (scFv) and HN3 (VH only) that target different epitopes. The In vitro cell killing assay revealed that all bispecific antibodies efficiently killed GPC3 positive cancer cells, with hYP7-KH, hYP7-OKT3-hFc, and HN3-KH being most potent. In vivo xenograft mouse studies demonstrated that all bispecific antibodies suppressed tumor growth similarly, with hYP7-OKT3-hFc performing slightly better. Combination of hYP7-OKT3-hFc with Irinotecan dramatically improved the efficacy and arrested tumor growth of HepG2, Hep3B, and G1 in xenograft mice. Our results demonstrated that the cell surface proximal bispecific antibody hYP7-OKT3-hFc was superior in terms of potency and the GPC3-targeted bispecific antibody combined with Irinotecan was much potent to control HCC growth.
Collapse
Affiliation(s)
- Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanmin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rong Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lanxin Xiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingwen Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuankui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huixia He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Le Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dianbao Zuo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihang Li
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Xinjun Liang
- Department of Internal Medicine-Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Shuang Dong
- Department of Internal Medicine-Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Sheng Hu
- Department of Internal Medicine-Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China. .,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
8
|
Jiang X, Chen X, Jaiprasart P, Carpenter TJ, Zhou R, Wang W. Development of a minimal physiologically-based pharmacokinetic/pharmacodynamic model to characterize target cell depletion and cytokine release for T cell-redirecting bispecific agents in humans. Eur J Pharm Sci 2020; 146:105260. [PMID: 32058058 DOI: 10.1016/j.ejps.2020.105260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/23/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
T cell-redirecting bispecific antibodies (bsAbs) are highly potent tumor-killing molecules. Following bsAb mediated engagement with target cells, T cells get activated and kill target cells while inducing cytokine release, which at higher levels may lead to life-threatening cytokine release syndrome (CRS). Clinical evidence suggests that CRS can be mitigated by implementing a stepwise dosing strategy. Here, we developed a mechanism-based minimal physiologically-based pharmacokinetic/pharmacodynamic (mPBPK/PD) model using reported preclinical and clinical data from blinatumomab. The mPBPK/PD model reasonably captured blinatumomab PK and B cell depletion profiles in blood and in various tissue sites of action (i.e., red marrow perivascular niche, spleen, and lymph nodes) in patients with non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukemia (ALL). Using interleukin 6 (IL-6) as an example, our model quantitatively characterized the mitigation of cytokine release by a blinatumomab 5-15-60 µg/m2/day stepwise dosing regimen comparing to a 60 µg/m2/day flat dose in NHL patients. Furthermore, by only modifying the system parameters specific for ALL patients, the mPBPK/PD model successfully predicted the mitigation of IL-6 release by a blinatumomab 5-15 µg/m2/day stepwise dosing regimen comparing to a 15 µg/m2/day flat dose. Our work provided a case example to show how mPBPK/PD model can be used to support the discovery and clinical development of T cell-redirecting bsAbs.
Collapse
Affiliation(s)
- Xiling Jiang
- Janssen Research & Development Inc, Spring House, PA, USA
| | - Xi Chen
- Janssen Research & Development Inc, Spring House, PA, USA
| | | | | | - Rebecca Zhou
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| | - Weirong Wang
- Janssen Research & Development Inc, Spring House, PA, USA.
| |
Collapse
|