1
|
Shen C, Zuo Q, Shao Z, Lin Y, Chen S. Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review). Int J Mol Med 2025; 55:86. [PMID: 40183403 PMCID: PMC12005369 DOI: 10.3892/ijmm.2025.5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Muscarinic acetylcholine (ACh) receptors (also known as M receptors) are widely distributed in all organs and tissues of the body, mainly playing a role in cholinergic nerve conduction. There are five known subtypes of muscarinic ACh receptors, but their pharmacological mechanisms of action on myocardial function have remained to be clearly defined. Functional myocardial diseases and myocardial injuries, such as arrhythmia, myocardial ischemia, myocarditis and myocardial fibrosis, may be affected by muscarinic ACh receptors. This article reviews the research progress of the regulation of myocardial function by muscarinic ACh receptors and related diseases, with the aim of developing better strategies and providing references for further revealing and clarifying the signal transduction and mechanisms of muscarinic ACh receptors in cardiomyocytes, and finding potential myocardial protective drugs that act on muscarinic ACh receptors.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Qiang Zuo
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Zhengbin Shao
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yixuan Lin
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Shuo Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P.R. China
| |
Collapse
|
2
|
Pereyra EV, Godoy Coto J, Velez Rueda JO, Cavalli FA, González Arbelaez LF, Fantinelli JC, Aranda O, Colman Lerner JE, Portiansky EL, Mosca SM, Ennis IL. Beneficial Consequences of One-Month Oral Treatment with Cannabis Oil on Cardiac Hypertrophy and the Mitochondrial Pool in Spontaneously Hypertensive Rats. Cannabis Cannabinoid Res 2025; 10:e134-e144. [PMID: 39137344 DOI: 10.1089/can.2024.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Introduction: It has been demonstrated the dysregulation of the cardiac endocannabinoid system in cardiovascular diseases. Thus, the modulation of this system through the administration of phytocannabinoids present in medicinal cannabis oil (CO) emerges as a promising therapeutic approach. Furthermore, phytocannabinoids exhibit potent antioxidant properties, making them highly desirable in the treatment of cardiac pathologies, such as hypertension-induced cardiac hypertrophy (CH). Objective: To evaluate the effect of CO treatment on hypertrophy and mitochondrial status in spontaneously hypertensive rat (SHR) hearts. Methods: Three-month-old male SHR were randomly assigned to CO or olive oil (vehicle) oral treatment for 1 month. We evaluated cardiac mass and histology, mitochondrial dynamics, membrane potential, area and density, myocardial reactive oxygen species (ROS) production, superoxide dismutase (SOD), and citrate synthase (CS) activity and expression. Data are presented as mean ± SEM (n) and compared by t-test, or two-way ANOVA and Bonferroni post hoc test were used as appropriate. p < 0.05 was considered statistically significant. Results: CH was reduced by CO treatment, as indicated by the left ventricular weight/tibia length ratio, left ventricular mass index, myocyte cross-sectional area, and left ventricle collagen volume fraction. The ejection fraction was preserved in the CO-treated group despite the persistence of elevated systolic blood pressure and the reduction in CH. Mitochondrial membrane potential was improved and mitochondrial biogenesis, dynamics, area, and density were all increased by treatment. Moreover, the activity and expression of the CS were enhanced by treatment, whereas ROS production was decreased and the antioxidant activity of SOD increased by CO administration. Conclusion: Based on the mentioned results, we propose that 1-month oral treatment with CO is effective to reduce hypertrophy, improve the mitochondrial pool and increase the antioxidant capacity in SHR hearts.
Collapse
Affiliation(s)
- Erica Vanesa Pereyra
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Joshua Godoy Coto
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Jorge Omar Velez Rueda
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Fiorella Anabel Cavalli
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Luisa Fernanda González Arbelaez
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Juliana Catalina Fantinelli
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Oswaldo Aranda
- Programa Ambiental de extensión universitaria (PAEU). Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| | | | - Enrique Leo Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, UNLP, La Plata, Argentina
| | - Susana Maria Mosca
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| | - Irene Lucia Ennis
- Centro de Investigaciones Cardiovasculares "Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP) - CONICET, La Plata, Argentina
| |
Collapse
|
3
|
Engeli BE, Lachenmeier DW, Diel P, Guth S, Villar Fernandez MA, Roth A, Lampen A, Cartus AT, Wätjen W, Hengstler JG, Mally A. Cannabidiol in Foods and Food Supplements: Evaluation of Health Risks and Health Claims. Nutrients 2025; 17:489. [PMID: 39940347 PMCID: PMC11820564 DOI: 10.3390/nu17030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Cannabidiol (CBD) is a cannabinoid present in the hemp plant (Cannabis sativa L.). Non-medicinal CBD oils with typically 5-40% CBD are advertised for various alleged positive health effects. While such foodstuffs containing cannabinoids are covered by the Novel Food Regulation in the European Union (EU), none of these products have yet been authorized. Nevertheless, they continue to be available on the European market. METHODS The Permanent Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) reviewed the currently available data on adverse and potential beneficial effects of CBD in the dose range relevant for foods. RESULTS Increased liver enzyme activities were observed in healthy volunteers following administration of 4.3 mg CBD/kg bw/day and higher for 3-4 weeks. As lower doses were not tested, a no observed adverse effect level (NOAEL) could not be derived, and the dose of 4.3 mg/kg bw/day was identified as the lowest observed adverse effect level (LOAEL). Based on the CBD content and dose recommendations of CBD products on the market, the SKLM considered several exposure scenarios and concluded that the LOAEL for liver toxicity may be easily reached, e.g., via consumption of 30 drops of an oil containing 20% CBD, or even exceeded. A critical evaluation of the available data on potential beneficial health effects of CBD in the dose range at or below the LOAEL of 4.3 mg/kg bw/day revealed no scientific evidence that would substantiate health claims, e.g., in relation to physical performance, the cardiovascular, immune, and nervous system, anxiety, relaxation, stress, sleep, pain, or menstrual health. CONCLUSIONS The SKLM concluded that consumption of CBD-containing foods/food supplements may not provide substantiated health benefits and may even pose a health risk to consumers.
Collapse
Affiliation(s)
- Barbara E. Engeli
- Federal Food Safety and Veterinary Office (FSVO), Division Knowledge Foundation, Section Risk Assessment, Schwarzenburgstr 155, 3003 Bern, Switzerland;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany;
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany;
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Maria A. Villar Fernandez
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Alfonso Lampen
- Risk Assessment Strategies, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8–10, 10589 Berlin, Germany;
| | | | - Wim Wätjen
- Institut für Agrar-und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany;
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| |
Collapse
|
4
|
Harasim-Symbor E, Bielawiec P, Pedzinska-Betiuk A, Weresa J, Malinowska B, Konstantynowicz-Nowicka K, Chabowski A. Cannabidiol treatment changes myocardial lipid profile in spontaneously hypertensive rats. Nutr Metab Cardiovasc Dis 2024; 34:2817-2833. [PMID: 39358107 DOI: 10.1016/j.numecd.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND AIMS Hypertension is a potent risk factor for cardiovascular diseases, which are the leading worldwide cause of death. Within time increased blood pressure (BP) induces cardiac contractile dysfunction, metabolic alternations, and eventually, heart failure, which makes hypertension an area for seeking safe therapies such as phytocannabinoids. METHODS AND RESULTS In the present study spontaneously hypertensive rats (SHRs) were used as an experimental model of genetically induced hypertension, where cannabidiol (CBD) was applied as a potential treatment (intraperitoneally administered for 2 weeks, 10 mg/kg) for elevated BP and related metabolic disturbances. Langendorff working heart system, Western blotting as well as gas-liquid chromatography were applied to determine radiolabeled 3H-palmitate uptake, incorporation, and oxidation, protein expression, as well as the content and fatty acid composition of different lipid fractions in the left ventricle and plasma, respectively. Most importantly, we noticed that 2-week CBD treatment was effective in upregulating ex vivo3H-palmitate uptake, oxidation, and its incorporation into triacylglycerol and cholesterol fractions with concomitant lowering free fatty acid, diacylglycerol, and phospholipid fractions, which was in agreement with in vivo studies and alternations in protein expressions of lipoprotein lipase, carnitine palmitoyltransferase I, 3-hydroxyacyl-CoA dehydrogenase, diacylglycerol acyltransferase 1, and adipose triglyceride lipase as well as proteins associated with eicosanoid signaling pathways and extracellular matrix remodeling in the heart of hypertensive rats. CONCLUSION Our study reveals that 2-week CBD administration substantially affects the energetic substrate milieu in cardiac muscle regarding fatty acids uptake and their further utilization without parallel significant alternations in cardiovascular parameters.
Collapse
Affiliation(s)
- Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-222, Bialystok, Poland.
| | - Patrycja Bielawiec
- Department of Physiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| | - Anna Pedzinska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-222, Bialystok, Poland
| |
Collapse
|
5
|
Pędzińska-Betiuk A, Gergs U, Weresa J, Remiszewski P, Harasim-Symbor E, Malinowska B. Comparison of Cardioprotective Potential of Cannabidiol and β-Adrenergic Stimulation Against Hypoxia/Reoxygenation Injury in Rat Atria and Ventricular Papillary Muscles. Pharmaceuticals (Basel) 2024; 17:1379. [PMID: 39459019 PMCID: PMC11509923 DOI: 10.3390/ph17101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hypoxia is one of the most significant pathogenic factors in cardiovascular diseases. Preclinical studies suggest that nonpsychoactive cannabidiol (CBD) and β-adrenoceptor stimulation might possess cardioprotective potential against ischemia-reperfusion injury. The current study evaluates the influence of hypoxia-reoxygenation (H/R) on the function of atria and ventricular papillary muscles in the presence of CBD and the nonselective β-adrenoceptor agonist isoprenaline (ISO). METHODS The concentration curves for ISO were constructed in the presence of CBD (1 µM) before or after H/R. In chronic experiments (CBD 10 mg/kg, 14 days), the left atria isolated from spontaneously hypertensive (SHR) and their normotensive control (WKY) rats were subjected to H/R following ISO administration. RESULTS Hypoxia decreased the rate and force of contractions in all compartments. The right atria were the most resistant to hypoxia regardless of prior β-adrenergic stimulation. Previous β-adrenergic stimulation improved recovery in isolated left atria and right (but not left) papillary muscles. Acute (but not chronic) CBD administration increased the effects of ISO in left atria and right (but not left) papillary muscles. Hypertension accelerates left atrial recovery during reoxygenation. CONCLUSIONS H/R directly modifies the function of particular cardiac compartments in a manner dependent on cardiac region and β-adrenergic prestimulation. The moderate direct cardioprotective potential of CBD and β-adrenergic stimulation against H/R is dependent on the cardiac region, and it is less than in the whole heart with preserved coronary flow. In clinical terms, our research expands the existing knowledge about the impact of cannabidiol on cardiac ischemia, the world's leading cause of death.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany;
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| |
Collapse
|
6
|
Ni B, Liu Y, Dai M, Zhao J, Liang Y, Yang X, Han B, Jiang M. The role of cannabidiol in aging. Biomed Pharmacother 2023; 165:115074. [PMID: 37418976 DOI: 10.1016/j.biopha.2023.115074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Aging is usually considered a key risk factor associated with multiple diseases, such as neurodegenerative diseases, cardiovascular diseases and cancer. Furthermore, the burden of age-related diseases has become a global challenge. It is of great significance to search for drugs to extend lifespan and healthspan. Cannabidiol (CBD), a natural nontoxic phytocannabinoid, has been regarded as a potential candidate drug for antiaging. An increasing number of studies have suggested that CBD could benefit healthy longevity. Herein, we summarized the effect of CBD on aging and analyzed the possible mechanism. All these conclusions may provide a perspective for further study of CBD on aging.
Collapse
Affiliation(s)
- Beibei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanying Liu
- Department of Basic Medical, Qingdao Huanghai University, Qingdao 266427, China
| | - Meng Dai
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yu Liang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bing Han
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Man Jiang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
7
|
Dragun T, Brown CV, Tulppo MP, Obad A, Dujić Ž. The Influence of Oral Cannabidiol on 24-h Ambulatory Blood Pressure and Arterial Stiffness in Untreated Hypertension: A Double-Blind, Placebo-Controlled, Cross-Over Pilot Study. Adv Ther 2023; 40:3495-3511. [PMID: 37291376 DOI: 10.1007/s12325-023-02560-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Studies reveal that cannabidiol may acutely reduce blood pressure and arterial stiffness in normotensive humans; however, it remains unknown if this holds true in patients with untreated hypertension. We aimed to extend these findings to examine the influence of the administration of cannabidiol on 24-h ambulatory blood pressure and arterial stiffness in hypertensive individuals. METHODS Sixteen volunteers (eight females) with untreated hypertension (elevated blood pressure, stage 1, stage 2) were given oral cannabidiol (150 mg every 8 h) or placebo for 24 h in a randomised, placebo-controlled, double-blind, cross-over study. Measures of 24-h ambulatory blood pressure and electrocardiogram (ECG) monitoring and estimates of arterial stiffness and heart rate variability were obtained. Physical activity and sleep were also recorded. RESULTS Although physical activity, sleep patterns and heart rate variability were comparable between groups, arterial stiffness (~ 0.7 m/s), systolic blood pressure (~ 5 mmHg), and mean arterial pressure (~ 3 mmHg) were all significantly (P < 0.05) lower over 24 h on cannabidiol when compared to the placebo. These reductions were generally larger during sleep. Oral cannabidiol was safe and well tolerated with no development of new sustained arrhythmias. CONCLUSIONS Our findings indicate that acute dosing of cannabidiol over 24 h can lower blood pressure and arterial stiffness in individuals with untreated hypertension. The clinical implications and safety of longer-term cannabidiol usage in treated and untreated hypertension remains to be established.
Collapse
Affiliation(s)
- Tanja Dragun
- Department of Integrative Physiology, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia
| | - Courtney V Brown
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, BC, Canada
| | - Mikko P Tulppo
- Research Unit of Biomedicine, Medical Research Center Oulu, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - Ante Obad
- Department of Health Studies, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Željko Dujić
- Department of Integrative Physiology, University of Split School of Medicine, Šoltanska 2, 21000, Split, Croatia.
| |
Collapse
|
8
|
Toczek M, Ryszkiewicz P, Remiszewski P, Schlicker E, Krzyżewska A, Kozłowska H, Malinowska B. Weak Hypotensive Effect of Chronic Administration of the Dual FAAH/MAGL Inhibitor JZL195 in Spontaneously Hypertensive Rats as Revealed by Area under the Curve Analysis. Int J Mol Sci 2023; 24:10942. [PMID: 37446125 DOI: 10.3390/ijms241310942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The enhancement of the endocannabinoid tone might have a beneficial influence on hypertension. Polypharmacology proposes multi-target-directed ligands (MTDLs) as potential therapeutic agents for the treatment of complex diseases. In the present paper, we studied JZL195, a dual inhibitor of the two major endocannabinoid-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Hemodynamic parameters were assessed in conscious animals via radiotelemetry and tail-cuff methods and then evaluated by the area under the curve (AUC). Single administration of JZL195 induced dose-dependent weak hypotensive and bradycardic responses in SHR but not in WKY. Similarly, its chronic application revealed only a slight hypotensive potential which, however, effectively prevented the progression of hypertension and did not undergo tolerance. In addition, multiple JZL195 administrations slightly decreased heart rate only in WKY and prevented the gradual weight gain in both groups. JZL195 did not affect organ weights, blood glucose level, rectal temperature and plasma oxidative stress markers. In conclusion, chronic dual FAAH/MAGL inhibition prevents the progression of hypertension in SHR without affecting some basal functions of the body. In addition, our study clearly proves the suitability of AUC for the evaluation of weak blood pressure changes.
Collapse
Affiliation(s)
- Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Piotr Ryszkiewicz
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-222 Białystok, Poland
| |
Collapse
|
9
|
Krzyżewska A, Baranowska-Kuczko M, Kasacka I, Kozłowska H. Cannabidiol alleviates right ventricular fibrosis by inhibiting the transforming growth factor β pathway in monocrotaline-induced pulmonary hypertension in rats. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166753. [PMID: 37187449 DOI: 10.1016/j.bbadis.2023.166753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Cannabidiol (CBD) is a non-intoxicating compound of Cannabis with anti-fibrotic properties. Pulmonary hypertension (PH) is a disease that can lead to right ventricular (RV) failure and premature death. There is evidence that CBD reduces monocrotaline (MCT)-induced PH, including reducing right ventricular systolic pressure (RVSP), vasorelaxant effect on pulmonary arteries, and decreasing expression of profibrotic markers in the lungs. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on profibrotic parameters in the RVs of MCT-induced PH rats. In MCT-induced PH, we found an increase in profibrotic parameters and parameters related to RV dysfunction, i.e. plasma pro-B-type natriuretic peptide (NT-proBNP), cardiomyocyte width, interstitial and perivascular fibrosis area, amount of fibroblasts and fibronectin, as well as overexpression of the transforming growth of factor β1 (TGF-β1), galectin-3 (Gal-3), suppressor of mothers against decapentaplegic 2 (SMAD2), phosphorylated SMAD2 (pSMAD2) and alpha-smooth muscle actin (α-SMA). In contrast, vascular endothelial cadherin (VE-cadherin) levels were decreased in the RVs of MCT-induced PH rats. Administration of CBD reduced the amount of plasma NT-proBNP, the width of cardiomyocytes, the amount of fibrosis area, fibronectin and fibroblast expression, as well as decreased the expression of TGF-β1, Gal-3, SMAD2, pSMAD2, and increased the level of VE-cadherin. Overall, CBD has been found to have the anti-fibrotic potential in MCT-induced PH. As such, CBD may act as an adjuvant therapy for PH, however, further detailed investigations are recommended to confirm our promising results.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland.
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland; Department of Clinical Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
10
|
Krzyżewska A, Baranowska-Kuczko M, Kasacka I, Kozłowska H. Cannabidiol inhibits lung proliferation in monocrotaline-induced pulmonary hypertension in rats. Biomed Pharmacother 2023; 159:114234. [PMID: 36634588 DOI: 10.1016/j.biopha.2023.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Cannabidiol (CBD) is a safe and well-tolerated plant-derived drug with anti-proliferative properties. Pulmonary hypertension (PH) is a rapidly progressive and still incurable disease. CBD diminishes monocrotaline (MCT)-induced PH, including reduced right ventricular systolic pressure, pulmonary vascular hypertrophy, and right ventricular remodeling. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg once daily for 21 days) on selected remodeling parameters in the lung of MCT-induced PH rats. In MCT-induced PH, we found an increase in profibrotic parameters, e.g., transforming growth factor β1 (TGF-β1), galectin-3 (Gal-3), procollagen I, collagen I, C-propeptide, matrix metalloproteinase 9 (MMP-9) and an increased number of mast cells. In our study, we observed that the TGF-β1, Gal-3, procollagen I, collagen I, C-propeptide, and mast cell levels in lung tissue were decreased after CBD administration to MCT-treated rats. In summary, CBD treatment has an anti-proliferative effect on MCT-induced PH. Given the beneficial multidirectional effects of CBD on PH, we believe that CBD can be used as an adjuvant PH therapy, but this argument needs to be confirmed by clinical trials.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland.
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland; Department of Clinical Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
11
|
Dziemitko S, Harasim-Symbor E, Chabowski A. How do phytocannabinoids affect cardiovascular health? An update on the most common cardiovascular diseases. Ther Adv Chronic Dis 2023; 14:20406223221143239. [PMID: 36636553 PMCID: PMC9830002 DOI: 10.1177/20406223221143239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease (CVD) causes millions of deaths worldwide each year. Despite the great progress in therapies available for patients with CVD, some limitations, including drug complications, still exist. Hence, the endocannabinoid system (ECS) was proposed as a new avenue for CVDs treatment. The ECS components are widely distributed through the body, including the heart and blood vessels, thus the action of its endogenous and exogenous ligands, in particular, phytocannabinoids play a key role in various pathological states. The cardiovascular action of cannabinoids is complex as they affect vasculature and myocardium directly via specific receptors and exert indirect effects through the central and peripheral nervous system. The growing interest in phytocannabinoid studies, however, has extended the knowledge about their molecular targets as well as therapeutical properties; nonetheless, some areas of their actions are not yet fully recognized. Researchers have reported various cannabinoids, especially cannabidiol, as a promising approach to CVDs; hence, the purpose of this review is to summarize and update the cardiovascular actions of the most potent phytocannabinoids and the potential therapeutic role of ECS in CVDs, including ischemic reperfusion injury, arrhythmia, heart failure as well as hypertension.
Collapse
Affiliation(s)
- Sylwia Dziemitko
- Department of Physiology, Medical University of
Bialystok, Bialystok 15-222, Poland
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of
Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of
Bialystok, Bialystok, Poland
| |
Collapse
|
12
|
Why Multitarget Vasodilatory (Endo)cannabinoids are Not Effective as Antihypertensive Compounds after Chronic Administration: Comparison of Their Effects on Systemic and Pulmonary Hypertension. Pharmaceuticals (Basel) 2022; 15:ph15091119. [PMID: 36145339 PMCID: PMC9503677 DOI: 10.3390/ph15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic and pulmonary hypertension are multifactorial, high-pressure diseases. The first one is a civilizational condition, and the second one is characterized by a very high mortality rate. Searching for new therapeutic strategies is still an important task. (Endo)cannabinoids, known for their strong vasodilatory properties, have been proposed as possible drugs for different types of hypertension. Unfortunately, our review, in which we summarized all publications found in the PubMed database regarding chronic administration of (endo)cannabinoids in experimental models of systemic and pulmonary hypertension, does not confirm any encouraging suggestions, being based mainly on in vitro and acute in vivo experiments. We considered vasodilator or blood pressure (BP) responses and cardioprotective, anti-oxidative, and the anti-inflammatory effects of particular compounds and their influence on the endocannabinoid system. We found that multitarget (endo)cannabinoids failed to modify higher BP in systemic hypertension since they induced responses leading to decreased and increased BP. In contrast, multitarget cannabidiol and monotarget ligands effectively treated pulmonary and systemic hypertension, respectively. To summarize, based on the available literature, only (endo)cannabinoids with a defined site of action are recommended as potential antihypertensive compounds in systemic hypertension, whereas both mono- and multitarget compounds may be effective in pulmonary hypertension.
Collapse
|
13
|
Weresa J, Pędzińska-Betiuk A, Schlicker E, Hirnle G, Mitrosz M, Malinowska B. Beneficial and harmful effects of CB 1 and CB 2 receptor antagonists on chronotropic and inotropic effects related to atrial β-adrenoceptor activation in humans and in rats with primary hypertension. Clin Exp Pharmacol Physiol 2021; 48:1547-1557. [PMID: 34333780 DOI: 10.1111/1440-1681.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
We have previously shown that cannabinoid CB1 and CB2 receptor antagonists, AM251 and AM630, respectively, modulate cardiostimulatory effects of isoprenaline in atria of Wistar rats. The aim of the present study was to examine whether such modulatory effects can also be observed (a) in the human atrium and (b) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Inotropic effects of isoprenaline and/or CGP12177 (that activate the high- and low-affinity site of β1 -adrenoceptors, respectively) were examined in paced human atrial trabeculae and rat left atria; chronotropic effects were studied in spontaneously beating right rat atria. AM251 modified cardiostimulatory effects more strongly than AM630. Therefore, AM251 (1 μM) enhanced the chronotropic effect of isoprenaline in WKY and SHR as well as inotropic action of isoprenaline in WKY and in human atria. It also increased the inotropic influence of CGP12177 in SHR. AM630 (1 μM) decreased the inotropic effect of isoprenaline and CGP12177 in WKY, but enhanced the isoprenaline-induced inotropic effect in SHR and human atria. Furthermore, AM251 (0.1 and 3 μM) and AM630 (0.1 μM) reduced the inotropic action of isoprenaline in human atria. In conclusion, cannabinoid receptor antagonists have potentially harmful and beneficial effects through their amplificatory effects on β-adrenoceptor-mediated positive chronotropic and inotropic actions, respectively.
Collapse
MESH Headings
- Animals
- Humans
- Rats
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Male
- Rats, Inbred SHR
- Heart Atria/drug effects
- Heart Atria/metabolism
- Heart Atria/physiopathology
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Isoproterenol/pharmacology
- Hypertension/physiopathology
- Hypertension/drug therapy
- Hypertension/metabolism
- Hypertension/chemically induced
- Piperidines/pharmacology
- Myocardial Contraction/drug effects
- Heart Rate/drug effects
- Pyrazoles/pharmacology
- Rats, Inbred WKY
- Receptors, Adrenergic, beta/metabolism
- Indoles/pharmacology
- Cannabinoid Receptor Antagonists/pharmacology
- Female
- Propanolamines
Collapse
Affiliation(s)
- Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Grzegorz Hirnle
- Department of Cardiac Surgery, Medical University of Białystok, Białystok, Poland
| | - Maciej Mitrosz
- Department of Cardiac Surgery, Medical University of Białystok, Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
14
|
Vasoprotective Endothelial Effects of Chronic Cannabidiol Treatment and Its Influence on the Endocannabinoid System in Rats with Primary and Secondary Hypertension. Pharmaceuticals (Basel) 2021; 14:ph14111120. [PMID: 34832902 PMCID: PMC8624681 DOI: 10.3390/ph14111120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022] Open
Abstract
Our study aimed to examine the endothelium (vascular)-protecting effects of chronic cannabidiol (CBD) administration (10 mg/kg once daily for 2 weeks) in aortas and small mesenteric (G3) arteries isolated from deoxycorticosterone-induced hypertensive (DOCA-salt) rats and spontaneously hypertensive rats (SHR). CBD reduced hypertrophy and improved the endothelium-dependent vasodilation in response to acetylcholine in the aortas and G3 of DOCA-salt rats and SHR. The enhancement of vasorelaxation was prevented by the inhibition of nitric oxide (NO) with L-NAME and/or the inhibition of cyclooxygenase (COX) with indomethacin in the aortas and G3 of DOCA-salt and SHR, respectively. The mechanism of the CBD-mediated improvement of endothelial function in hypertensive vessels depends on the vessel diameter and may be associated with its NO-, the intermediate-conductance calcium-activated potassium channel- or NO-, COX-, the intermediate and the small-conductance calcium-activated potassium channels-dependent effect in aortas and G3, respectively. CBD increased the vascular expression of the cannabinoid CB1 and CB2 receptors and aortic levels of endocannabinoids with vasorelaxant properties e.g., anandamide, 2-arachidonoylglycerol and palmitoyl ethanolamide in aortas of DOCA-salt and/or SHR. In conclusion, CBD treatment has vasoprotective effects in hypertensive rats, in a vessel-size- and hypertension-model-independent manner, at least partly via inducing local vascular changes in the endocannabinoid system.
Collapse
|
15
|
Baranowska-Kuczko M, Kozłowska H, Kloza M, Harasim-Symbor E, Biernacki M, Kasacka I, Malinowska B. Beneficial Changes in Rat Vascular Endocannabinoid System in Primary Hypertension and under Treatment with Chronic Inhibition of Fatty Acid Amide Hydrolase by URB597. Int J Mol Sci 2021; 22:4833. [PMID: 34063297 PMCID: PMC8125657 DOI: 10.3390/ijms22094833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
Our study aimed to examine the effects of hypertension and the chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabinoid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). In the aortas and sMA of SHR, endocannabinoid levels and cannabinoid CB1 receptor (CB1R) expression were elevated. The CB1R antagonist AM251 diminished the methanandamide-evoked relaxation only in the sMA of SHR and enhanced the vasoconstriction induced by phenylephrine and the thromboxane analog U46619 in sMA in SHR and WKY. In the sMA of SHR, URB597 elevated anandamide levels, improved the endothelium-dependent vasorelaxation to acetylcholine, and in the presence of AM251 reduced the vasoconstriction to phenylephrine and enhanced the vasodilatation to methanandamide, and tended to reduce hypertrophy. In the aortas, URB597 elevated endocannabinoid levels improved the endothelium-dependent vasorelaxation to acetylcholine and decreased CB1R expression. Our study showed that hypertension and chronic administration of URB597 caused local, resistance artery-specific beneficial alterations in the vascular endocannabinoid system, which may bring further advantages for therapeutic application of pharmacological inhibition of FAAH.
Collapse
Affiliation(s)
- Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (H.K.); (M.K.); (B.M.)
- Department of Clinical Pharmacy, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (H.K.); (M.K.); (B.M.)
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (H.K.); (M.K.); (B.M.)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Białystok, ul. Mickiewicza 2D, 15-222 Białystok, Poland;
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (H.K.); (M.K.); (B.M.)
| |
Collapse
|
16
|
Malinowska B, Baranowska-Kuczko M, Kicman A, Schlicker E. Opportunities, Challenges and Pitfalls of Using Cannabidiol as an Adjuvant Drug in COVID-19. Int J Mol Sci 2021; 22:1986. [PMID: 33671463 PMCID: PMC7922403 DOI: 10.3390/ijms22041986] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may lead to coronavirus disease 2019 (COVID-19) which, in turn, may be associated with multiple organ dysfunction. In this review, we present advantages and disadvantages of cannabidiol (CBD), a non-intoxicating phytocannabinoid from the cannabis plant, as a potential agent for the treatment of COVID-19. CBD has been shown to downregulate proteins responsible for viral entry and to inhibit SARS-CoV-2 replication. Preclinical studies have demonstrated its effectiveness against diseases of the respiratory system as well as its cardioprotective, nephroprotective, hepatoprotective, neuroprotective and anti-convulsant properties, that is, effects that may be beneficial for COVID-19. Only the latter two properties have been demonstrated in clinical studies, which also revealed anxiolytic and antinociceptive effects of CBD (given alone or together with Δ9-tetrahydrocannabinol), which may be important for an adjuvant treatment to improve the quality of life in patients with COVID-19 and to limit post-traumatic stress symptoms. However, one should be aware of side effects of CBD (which are rarely serious), drug interactions (also extending to drugs acting against COVID-19) and the proper route of its administration (vaping may be dangerous). Clearly, further clinical studies are necessary to prove the suitability of CBD for the treatment of COVID-19.
Collapse
Affiliation(s)
- Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (M.B.-K.); (A.K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (M.B.-K.); (A.K.)
- Department of Clinical Pharmacy, Medical University of Białystok, 15-222 Białystok, Poland
| | - Aleksandra Kicman
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (M.B.-K.); (A.K.)
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|